• Aucun résultat trouvé

Linear response in neuronal networks: from neurons dynamics to collective response

N/A
N/A
Protected

Academic year: 2021

Partager "Linear response in neuronal networks: from neurons dynamics to collective response"

Copied!
128
0
0

Texte intégral

(1)

HAL Id: cel-01986987

https://hal.archives-ouvertes.fr/cel-01986987

Submitted on 21 Jan 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

dynamics to collective response

Bruno Cessac

To cite this version:

Bruno Cessac. Linear response in neuronal networks: from neurons dynamics to collective response.

Doctoral. Chile. 2019. �cel-01986987�

(2)

Linear response in neuronal networks:

from neurons dynamics to collective response

Bruno Cessac

Biovision Team, INRIA Sophia Antipolis,France.

14/15-01-2019

(3)

Neuron response to a stimulus

https://www.plasticitylab.com/methods/

(4)

Neuron response to a stimulus

(5)

Network response to a stimulus

(6)
(7)

From firing rate neurons dynamics to linear response. From spiking neurons dynamics to linear response. General conclusions Appendix: Linear response theory in physics vs linear response in neuronal networks

Network response to a stimulus

1

How does an input/ stimulation applied to a subgroup of

neurons in a population affect the dynamics of the whole

network ?

another neuron ?

3

How does this ”effective connectivity” relates to :

(a)

Synaptic connectivity;

(b)

Pairwise correlations;

(c)

”Information” transport.

(8)

From firing rate neurons dynamics to linear response. From spiking neurons dynamics to linear response. General conclusions Appendix: Linear response theory in physics vs linear response in neuronal networks

Network response to a stimulus

1

How does an input/ stimulation applied to a subgroup of

neurons in a population affect the dynamics of the whole

network ?

2

How to measure the influence of a stimulated neuron on

another neuron ?

(a)

Synaptic connectivity;

(b)

Pairwise correlations;

(9)

Network response to a stimulus

1

How does an input/ stimulation applied to a subgroup of

neurons in a population affect the dynamics of the whole

network ?

2

How to measure the influence of a stimulated neuron on

another neuron ?

3

How does this ”effective connectivity” relates to :

(a)

Synaptic connectivity;

(b)

Pairwise correlations;

(c)

”Information” transport.

(10)

1

From firing rate neurons dynamics to linear response.

2

From spiking neurons dynamics to linear response.

3

General conclusions

4

Appendix: Linear response theory in physics vs linear response

in neuronal networks

(11)

From firing rate neurons dynamics to linear

response.

(12)

From firing rate neurons dynamics to linear response. From spiking neurons dynamics to linear response. General conclusions Appendix: Linear response theory in physics vs linear response in neuronal networks

Amari-Wilson-Cowan model

Amari, 1971; Wilson-Cowan, 1972; Cohen-Grossberg, 1983; Sompolinsky et al, 1988; ...

dV

i

dt

= −µV

i

+

N

X

j =1

J

ij

f (V

j

(t)) + S

i

(t);

i = 1 . . . N.

(1)

Ex: J

ij

∼ N



0,

J

N

2



(Sompolinsky et al, 1988)

Ex: f (x ) =

1

2

( 1 + tanh(gx ) ),

f (x ) = tanh(gx ).

(13)

Amari-Wilson-Cowan model

Amari, 1971; Wilson-Cowan, 1972; Cohen-Grossberg, 1983; Sompolinsky et al, 1988; ...

dV

i

dt

= −µV

i

+

N

X

j =1

J

ij

f (V

j

(t)) + S

i

(t);

i = 1 . . . N.

(1)

Network

Ex: J

ij

∼ N



0,

J

N

2



(Sompolinsky et al, 1988)

Non linearity

Ex: f (x ) =

1

2

( 1 + tanh(gx ) ),

f (x ) = tanh(gx ).

(14)

Amari-Wilson-Cowan model

Amari, 1971; Wilson-Cowan, 1972; Cohen-Grossberg, 1983; Sompolinsky et al, 1988; ...

d ~

V

dt

= −µ ~

V + J .f ( ~

V ) + ~

S (t);

i = 1 . . . N.

(1)

Network

Ex: J

ij

∼ N



0,

J

2

N



(Sompolinsky et al, 1988)

Non linearity

Ex: f (x ) =

1

2

( 1 + tanh(gx ) ),

f (x ) = tanh(gx ).

(15)

Amari-Wilson-Cowan model

Amari, 1971; Wilson-Cowan, 1972; Cohen-Grossberg, 1983; Sompolinsky et al, 1988; ...

d ~

V

dt

= −µ ~

|

V + J .f ( ~

{z

V )

}

~

G ( ~

V )

+~

S (t);

i = 1 . . . N.

(1)

Network

Ex: J

ij

∼ N



0,

J

N

2



(Sompolinsky et al, 1988)

Non linearity

Ex: f (x ) =

1

2

( 1 + tanh(gx ) ),

f (x ) = tanh(gx ).

(16)

Low gain g dynamics

Theorem. If g is small enough ~

G is contractive.

∀ ~

V , ~

V

0

∈ M,

k ~

G ( ~

V

0

) − ~

G ( ~

V )k ≤ ηk ~

V

0

− ~

V k,

0 < η < 1

(17)

Low gain g dynamics

Small perturbation of the fixed point. ~

V = ~

V

+ ~

ξ.

d ~

ξ

dt

= DG

V

~

.~

ξ + ~

S (t) + O



k~

ξk

2



~

ξ(t) =

Z

t

−∞

e

DG

V ∗~

(t−s)

.~

S (s)ds

Λ = P−1.DG~V ∗.P; ~ξ = P ~ξ 0; ~S = P ~S0

⇒ ~

ξ

0

(t) =

Z

t

−∞

e

Λ(t−s)

.~

S

0

(s)ds

ξ

0

k

(t) =

Z

t

−∞

e

λ

k

(t−s)

.S

0

k

(s)ds

(18)

Low gain g dynamics

Harmonic perturbation. S

k

0

(t) = A

0

k

e

i ωt

.

λ

k

= λ

k,r

+ i λ

k,i

;

ω = ω

r

+ i ω

i

.

The integral is finite if ω

i

< −λ

k,r

.

ξ

k

0

(t) = ˆ

χ

0

k

(ω)e

i ωt

.

Complex susceptibility matrix.

~

(19)

Low gain g dynamics

40 35 30 25 20 15 10 5 0.6 0.8 1 1.2 1.4 1.6 1.8 2

ω

r 0 0.2 0.4 0.6 0.8 1

ω

ι 0 5 10 15 20 25 30 35 40 45

|χ(ω)|

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -4 -2 0 2 4 6 λι ∆ ω |χ(ω)| ω

(20)

Low gain g dynamics

40 35 30 25 20 15 10 5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

ω

r 0 0.2 0.4 0.6 0.8 1

ω

ι 0 5 10 15 20 25 30 35 40 45

|χ (ω)|

0 1 2 3 4 5 6 7 8 9 -10 -5 0 5 10 |χ κ (ω)| ω

(21)

Low gain g dynamics

Example 1. f (x ) = tanh(gx ) ⇒

~

V

= ~0;

DG

V

~

= −µI + g J

Let s

k

≡ s

k,r

+ is

k,i

eigenvalues of J .

λ

k

= −µ + g s

k,r

|

{z

}

λ

k,r

±i g s

k,i

| {z }

λ

k,i

When J is random, J

ij

∼ N (0,

J

2

N

) the probability distribution of

eigenvalues is known.

(

Girko, V. L., Theory Probab. Appl. 29, 694-706, 1984. ).

(22)

Low gain g dynamics

Example 2. f (x ) =

1+tanh(gx )

2

~

V

≡ ~

V

(J );

DG

V

~

= −µI + gD( ~

V

)J

where D( ~

V

) = diag (

1−tanh

2

(gV

∗ i

)

2

).

The eigenvalues of D( ~

V

)J cannot be determined from the

eigenvalues of J . However, when J is random, J

ij

∼ N (0,

J

2

N

) the

probability distribution of eigenvalues can be determined.

(23)

Low gain g dynamics

Summary:

The linear response to a signal of weak amplitude is controlled

by the Jacobian matrix DG

V

~

.

Eigenvalues of DG

V

~

⇒ Poles of the complex susceptibility ⇒

Resonances.

What is the phenomenological/neuronal interpretation of

DG

V

~

?

(24)

Low gain g dynamics

Summary:

The linear response to a signal of weak amplitude is controlled

by the Jacobian matrix DG

V

~

.

Eigenvalues of DG

V

~

⇒ Poles of the complex susceptibility ⇒

Resonances.

What is the phenomenological/neuronal interpretation of

DG

V

~

?

DG

V

~

= − µI

|{z}

Leak

+ g

|{z}

Gain

D( ~

V

)

|

{z

}

f

0

J

|{z}

Synapses

(25)

Low gain g dynamics

Summary:

The linear response to a signal of weak amplitude is controlled

by the Jacobian matrix DG

V

~

.

Eigenvalues of DG

V

~

⇒ Poles of the complex susceptibility ⇒

Resonances.

What is the phenomenological/neuronal interpretation of

DG

V

~

?

DG

V

~

= − µI

|{z}

Leak

+ g

|{z}

Gain

D( ~

V

)

|

{z

}

f

0

J

|{z}

Synapses

(26)

Expansion/Contraction

(27)

Expansion/Contraction

(28)
(29)

Expansion/Contraction

(30)
(31)

Linear response in a dynamical regime

dV

i

dt

= −µV

i

+

N

X

j =1

J

ij

f (V

j

(t)) + I

i

(t);

i = 1 . . . N.

V

i

(t + dt) = V

i

(t)(1 − µdt) +

N

X

j =1

J

ij

f (V

j

(t))dt + S

i

(t)dt

V

i

(t + 1) =

N

X

j =1

J

ij

f (V

j

(t)) + S

i

(t).

(3)

(32)

Linear response in the chaotic regime

B. Cessac, J.A. Sepulchre, PRE (2004); Chaos (2006); Physica D (2006)

~

V (t + 1) = J .f ( ~

V (t))

|

{z

}

~

G ( ~

V (t))

+~

S (t)

f (x ) = tanh(g x )

(33)

Transition to chaos by quasi periodity as g increases

g

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Doyon B. et al, International Journal Of Bifurcation and Chaos, Vol. 3, Num. 2, 279-291 (1993) Cessac B. et al, Physica D, 74, 24-44 (1994)

(34)
(35)

Chaotic dynamics and strange attractors

https://upload.wikimedia.org/wikipedia/commons/a/ac/

enon map



x (t + 1)

= 1 − ax

2

(t) + y (t)

y (t + 1)

= bx (t)

a = 1.4; b = 0.3

(36)

Chaotic dynamics and strange attractors

https://upload.wikimedia.org/wikipedia/commons/a/ac/

enon map



x (t + 1)

= 1 − ax

2

(t) + y (t)

y (t + 1)

= bx (t)

a = 1.4; b = 0.3

(37)

Chaotic dynamics and strange attractors

http://www.demonstrations.wolfram.com/OrbitDiagramOfTheHenonMap/HTMLImages/index.en/

enon map



x (t + 1)

= 1 − ax

2

(t) + y (t)

y (t + 1)

= bx (t)

a = 1.4; b = 0.3

(38)

Chaotic dynamics and strange attractors

http://www.sfu.ca/ rpyke/335/W00/

enon map



x (t + 1)

= 1 − ax

2

(t) + y (t)

y (t + 1)

= bx (t)

a = 1.4; b = 0.3

(39)

Chaotic dynamics and strange attractors

(40)

Chaotic dynamics and strange attractors

Expansive Positive Lyapunov exponent

(41)

Chaotic dynamics and strange attractors

(42)

From firing rate neurons dynamics to linear response. From spiking neurons dynamics to linear response. General conclusions Appendix: Linear response theory in physics vs linear response in neuronal networks

Time dependent perturbation

~

V (t + 1) = ~

G ( ~

V (t));

V

~

0

(t + 1) = ~

G ( ~

V

0

(t)) + ~

S (t)

Switch the stimulus on at time t

0

; ~

V (t

0

) = ~

V

0

(t

0

).

~

δ(t) = ~

V

0

(t) − ~

V (t) ⇒ ~

δ(t

0

+ 1) = ~

V

0

(t

0

+ 1) − ~

V (t

0

+ 1) = ~

S (t

0

)

~

δ(t

0

+ 2) = ~

G ( ~

V

0

(t

0

+ 1)) + ~

S (t

0

+ 1) − ~

G ( ~

V (t

0

+ 1))

~

δ(t

0

+ 2) = ~

G ( ~

V (t

0

+ 1) + ~

S (t

0

)) + ~

S (t

0

+ 1) − ~

G ( ~

V (t

0

+ 1))

~

δ(t

0

+ 2) = 

h

DG

V (t

~

0

+1)

.~

S (t

0

) + ~

S (t

0

+ 1)

i

+ 

2

~

η(t

0

+ 1)

δ(t) = 

τ =t

0

DG

~

V (t

0

+1)

.~

S (τ ) + 

R(t)

(43)

From firing rate neurons dynamics to linear response. From spiking neurons dynamics to linear response. General conclusions Appendix: Linear response theory in physics vs linear response in neuronal networks

Time dependent perturbation

~

V (t + 1) = ~

G ( ~

V (t));

V

~

0

(t + 1) = ~

G ( ~

V

0

(t)) + ~

S (t)

Switch the stimulus on at time t

0

; ~

V (t

0

) = ~

V

0

(t

0

).

~

δ(t) = ~

V

0

(t) − ~

V (t) ⇒ ~

δ(t

0

+ 1) = ~

V

0

(t

0

+ 1) − ~

V (t

0

+ 1) = ~

S (t

0

)

~

δ(t

0

+ 2) = ~

G ( ~

V

0

(t

0

+ 1)) + ~

S (t

0

+ 1) − ~

G ( ~

V (t

0

+ 1))

~

δ(t

0

+ 2) = ~

G ( ~

V (t

0

+ 1) + ~

S (t

0

)) + ~

S (t

0

+ 1) − ~

G ( ~

V (t

0

+ 1))

~

δ(t

0

+ 2) = 

h

DG

V (t

~

0

+1)

.~

S (t

0

) + ~

S (t

0

+ 1)

i

+ 

2

~

η(t

0

+ 1)

δ(t) = 

τ =t

0

DG

~

V (t

0

+1)

.~

S (τ ) + 

R(t)

(44)

From firing rate neurons dynamics to linear response. From spiking neurons dynamics to linear response. General conclusions Appendix: Linear response theory in physics vs linear response in neuronal networks

Time dependent perturbation

~

V (t + 1) = ~

G ( ~

V (t));

V

~

0

(t + 1) = ~

G ( ~

V

0

(t)) + ~

S (t)

Switch the stimulus on at time t

0

; ~

V (t

0

) = ~

V

0

(t

0

).

~

δ(t) = ~

V

0

(t) − ~

V (t) ⇒ ~

δ(t

0

+ 1) = ~

V

0

(t

0

+ 1) − ~

V (t

0

+ 1) = ~

S (t

0

)

~

δ(t

0

+ 2) = ~

G ( ~

V

0

(t

0

+ 1)) + ~

S (t

0

+ 1) − ~

G ( ~

V (t

0

+ 1))

~

δ(t

0

+ 2) = ~

G ( ~

V (t

0

+ 1) + ~

S (t

0

)) + ~

S (t

0

+ 1) − ~

G ( ~

V (t

0

+ 1))

~

δ(t

0

+ 2) = 

h

DG

V (t

~

0

+1)

.~

S (t

0

) + ~

S (t

0

+ 1)

i

+ 

2

~

η(t

0

+ 1)

δ(t) = 

τ =t

0

DG

~

V (t

0

+1)

.~

S (τ ) + 

R(t)

(45)

From firing rate neurons dynamics to linear response. From spiking neurons dynamics to linear response. General conclusions Appendix: Linear response theory in physics vs linear response in neuronal networks

Time dependent perturbation

~

V (t + 1) = ~

G ( ~

V (t));

V

~

0

(t + 1) = ~

G ( ~

V

0

(t)) + ~

S (t)

Switch the stimulus on at time t

0

; ~

V (t

0

) = ~

V

0

(t

0

).

~

δ(t) = ~

V

0

(t) − ~

V (t) ⇒ ~

δ(t

0

+ 1) = ~

V

0

(t

0

+ 1) − ~

V (t

0

+ 1) = ~

S (t

0

)

~

δ(t

0

+ 2) = ~

G ( ~

V

0

(t

0

+ 1)) + ~

S (t

0

+ 1) − ~

G ( ~

V (t

0

+ 1))

~

δ(t

0

+ 2) = ~

G ( ~

V (t

0

+ 1) + ~

S (t

0

)) + ~

S (t

0

+ 1) − ~

G ( ~

V (t

0

+ 1))

~

δ(t

0

+ 2) = 

h

DG

V (t

~

0

+1)

.~

S (t

0

) + ~

S (t

0

+ 1)

i

+ 

2

~

η(t

0

+ 1)

δ(t) = 

τ =t

0

DG

~

V (t

0

+1)

.~

S (τ ) + 

R(t)

(46)

Time dependent perturbation

~

V (t + 1) = ~

G ( ~

V (t));

V

~

0

(t + 1) = ~

G ( ~

V

0

(t)) + ~

S (t)

Switch the stimulus on at time t

0

; ~

V (t

0

) = ~

V

0

(t

0

).

~

δ(t) = ~

V

0

(t) − ~

V (t) ⇒ ~

δ(t

0

+ 1) = ~

V

0

(t

0

+ 1) − ~

V (t

0

+ 1) = ~

S (t

0

)

~

δ(t

0

+ 2) = ~

G ( ~

V

0

(t

0

+ 1)) + ~

S (t

0

+ 1) − ~

G ( ~

V (t

0

+ 1))

~

δ(t

0

+ 2) = ~

G ( ~

V (t

0

+ 1) + ~

S (t

0

)) + ~

S (t

0

+ 1) − ~

G ( ~

V (t

0

+ 1))

~

δ(t

0

+ 2) = 

h

DG

V (t

~

0

+1)

.~

S (t

0

) + ~

S (t

0

+ 1)

i

+ 

2

~

η(t

0

+ 1)

~

δ(t) = 

t−1

X

τ =t

0

DG

t−τ +1

~

V (t

0

+1)

.~

S (τ ) + 

2

R(t)

~

(47)

Time dependent perturbation

~

δ(t) = 

t−1

X

τ =t0

DF~

V

t−τ +1

.~

S (τ )

|

{z

}

+

2

R(t)

~

(48)

Time dependent perturbation

~

δ(t) = 

t−1

X

τ =t0

DF~

V

t−τ +1

.~

S (τ )

|

{z

}

Controlled by the spectrum ofDF~V ∗

+

2

R(t)

~

Linear stability analysis

~

G ( ~

V ) = J f (g ~

V )

DF

V

~

= g J Λ( ~

V )

(49)

Time dependent perturbation

~

δ(t) = 

t−1

X

τ =t0

DF~

V

t−τ +1

.~

S (τ )

|

{z

}

Controlled by the spectrum ofDF~V ∗

+

2

R(t)

~

Linear stability analysis

~

G ( ~

V ) = J f (g ~

V )

DF

V

~

= g J Λ( ~

V )

Λ

ij

= f

0

(g u

j

) δ

ij

(50)

Time dependent perturbation

~

δ(t) = 

t−1

X

τ =t0

DF~

V

t−τ +1

.~

S (τ )

|

{z

}

Controlled by the spectrum ofDF~V ∗

+

2

R(t)

~

Linear stability analysis

~

G ( ~

V ) = J f (g ~

V )

DF

V

~

= g J Λ( ~

V )

(51)

Time dependent perturbation

~

δ(t) = 

t−1

X

τ =t0

DF

V (t+1)~t−τ +1

.~

S (τ ) + 

2

~

R(t)

~

G ( ~

V ) = J f (g ~

V ) + θ

DF

V

~

= g J Λ( ~

V )

Λ

ij

= f

0

(g u

j

) δ

ij

(52)

Time dependent perturbation

~

δ(t) = 

t−1

X

τ =t0

DF

V (t+1)~t−τ +1

.~

S (τ ) + 

2

~

R(t)

~

G ( ~

V ) = J f (g ~

V ) + θ

DF

V

~

= g J Λ( ~

V )

Λ

ij

= f

0

(g u

j

) δ

ij

(53)

Time dependent perturbation

~

δ(t) = 

t−1

X

τ =t0

DF

~t−τ +1 V (t+1)

.~

S (τ )

|

{z

}

+

2

R(t)

~

(54)

Time dependent perturbation

~

δ(t) = 

t−1

X

τ =t0

DF

~t−τ +1 V (t+1)

.~

S (τ )

|

{z

}

Expansive Positive Lyapunov exponent

(55)

Time dependent perturbation

~

δ(t) = 

t−1

X

τ =t0

DF

~t−τ +1 V (t+1)

.~

S (τ )

|

{z

}

+

2

R(t)

~

(56)

Time dependent perturbation

~

δ(t) = 

t−1

X

τ =t0

DF

V (t+1)~t−τ +1

.~

S (τ )

|

{z

}

+

2

R(t)

~

Linear response vs chaotic

Butterfly effect

Van Kampen objection

The linear expansion provided by

the positive Lyapunov exponent

prevents linear response theory.

(57)

Time dependent perturbation

Linear response vs chaotic

(58)

The Sinai-Ruelle-Bowen measure

Time averaging is robust to perturbation.

lim

T →∞

1

T

T

X

t=1

Φ( ~

G

t

( ~

V )) = lim

T →∞

1

T

T

X

t=1

Φ( ~

G

t

( ~

V + ~

δ))

µ

L

Lebesgue measure on the phase-space.

µ

= lim

w

t→+∞

~

G

∗t

µ

L

,

SRB measure

lim

T →∞

1

T

T

X

t=1

Φ

h ~

G

t

( ~

V )

i

µ

L

=

a.s.

Z

Φ( ~

V )µ(d X)

(59)

The Sinai-Ruelle-Bowen measure

Time averaging is robust to perturbation.

lim T →∞ 1 T T X t=1 Φ( ~Gt( ~V )) = lim T →∞ 1 T T X t=1 Φ( ~Gt( ~V + ~δ))

µLLebesgue measure on the phase-space.

µ=w lim t→+∞ ~ G∗tµL, SRB measure lim T →∞ 1 T T X t=1 Φh ~Gt( ~V )iµL a.s.= Z Ω Φ( ~V )µ(d X)

Natural notion of averaging ”on” the attractor.

(60)

The Sinai-Ruelle-Bowen measure

Time averaging is robust to perturbation.

lim T →∞ 1 T T X t=1 Φ( ~Gt( ~V )) = lim T →∞ 1 T T X t=1 Φ( ~Gt( ~V + ~δ))

µLLebesgue measure on the phase-space.

µ=w lim t→+∞ ~ G∗tµL, SRB measure lim T →∞ 1 T T X t=1 Φh ~Gt( ~V ) iµL a.s. = Z Ω Φ( ~V )µ(d X)

(61)

Out of equilibrium SRB state

D. Ruelle, J. Stat. Phys., 1998

µ

t

= µ + δ

t

µ =

lim

n→+∞

~

G

t

0

. . . ~

G

t−n

0

µ

δ

t

µ [Φ] = 

t−1

X

τ =−∞

Z

µ(d ~

V )

D ~

G

t−τ −1

~

V

~

S

τ

h ~

G

−1

( ~

V )

i

.∇

V (t−τ −1)

~

Φ + NL

δ

t

µ[Φ] = 

X

σ

D

κ

σ

S

~

t−σ−1

◦ ~

G

−1

E

eq

(62)

From firing rate neurons dynamics to linear response. From spiking neurons dynamics to linear response. General conclusions Appendix: Linear response theory in physics vs linear response in neuronal networks

Linear response in the firing rate neural network

B. Cessac, J.A. Sepulchre, PRE (2004); Chaos (2006); Physica D (2006)

Convolution

δ

t

ρ[u

i

] =  [ χ ∗ S ]

i

(t)

= 

N

X

j =1

t

X

σ=−∞

χ

i ,j

(σ)S

j

(t − σ − 1)

(63)

From firing rate neurons dynamics to linear response. From spiking neurons dynamics to linear response. General conclusions Appendix: Linear response theory in physics vs linear response in neuronal networks

Linear response in the firing rate neural network

B. Cessac, J.A. Sepulchre, PRE (2004); Chaos (2006); Physica D (2006)

Convolution

δ

t

ρ[u

i

] =  [ χ ∗ S ]

i

(t)

= 

N

X

j =1

t

X

σ=−∞

χ

i ,j

(σ)S

j

(t − σ − 1)

χ

i ,j

(σ) =

P

γ

ij

(σ)

Q

σ

l =1

J

k

l

k

l −1

Q

σ

l =1

f

0

(u

k

l −1

(l − 1))

eq

(64)

Linear response in the firing rate neural network

B. Cessac, J.A. Sepulchre, PRE (2004); Chaos (2006); Physica D (2006)

Convolution

δ

t

ρ[u

i

] =  [ χ ∗ S ]

i

(t)

= 

N

X

j =1

t

X

σ=−∞

χ

i ,j

(σ)S

j

(t − σ − 1)

Linear response

χ

i ,j

(σ) =

P

γ

ij

(σ)

Q

σ

l =1

J

k

l

k

l −1

Q

σ

l =1

f

0

(u

k

l −1

(l − 1))

eq

(65)

Linear response in the firing rate neural network

B. Cessac, J.A. Sepulchre, PRE (2004); Chaos (2006); Physica D (2006)

Convolution

δ

t

ρ[u

i

] =  [ χ ∗ S ]

i

(t)

= 

N

X

j =1

t

X

σ=−∞

χ

i ,j

(σ)S

j

(t − σ − 1)

Linear response

χ

i ,j

(σ) =

P

γ

ij

(σ)

Q

σ

l =1

J

k

l

k

l −1

Q

σ

l =1

f

0

(u

k

l −1

(l − 1))

eq

(66)

Linear response in the firing rate neural network

B. Cessac, J.A. Sepulchre, PRE (2004); Chaos (2006); Physica D (2006)

Convolution

δ

t

ρ[u

i

] =  [ χ ∗ S ]

i

(t)

= 

N

X

j =1

t

X

σ=−∞

χ

i ,j

(σ)S

j

(t − σ − 1)

Linear response

χ

i ,j

(σ) =

P

γ

ij

(σ)

Q

σ

l =1

J

k

l

k

l −1

Q

σ

l =1

f

0

(u

k

l −1

(l − 1))

eq

(67)

Linear response in the firing rate neural network

B. Cessac, J.A. Sepulchre, PRE (2004); Chaos (2006); Physica D (2006)

Convolution

δ

t

ρ[u

i

] =  [ χ ∗ S ]

i

(t)

= 

N

X

j =1

t

X

σ=−∞

χ

i ,j

(σ)S

j

(t − σ − 1)

Linear response

χ

i ,j

(σ) =

P

γ

ij

(σ)

Q

σ

l =1

J

k

l

k

l −1

Q

σ

l =1

f

0

(u

k

l −1

(l − 1))

eq

(68)

From firing rate neurons dynamics to linear response. From spiking neurons dynamics to linear response. General conclusions Appendix: Linear response theory in physics vs linear response in neuronal networks

Resonances

Power spectrum

Ruelle resonances

Ruelle-Pollicott resonances: In the

power spectrum. Absolutely

continuous part of the SRB

measure.

power spectrum. Singular part of

the SRB measure.

Predicted by D. Ruelle (J. Stat.

Phys, 1999)

Exhibited in B. Cessac, J.A.

Sepulchre, PRE, 2004.

(69)

Resonances

Complex susceptibility

Ruelle resonances

Ruelle-Pollicott resonances: In the

power spectrum. Absolutely

continuous part of the SRB

measure.

Exotic resonances. Not in the

power spectrum. Singular part of

the SRB measure.

Predicted by D. Ruelle (J. Stat.

Phys, 1999)

Exhibited in B. Cessac, J.A.

Sepulchre, PRE, 2004.

(70)

Response to a time-dependent stimulus

Connectivity matrix

(71)

Response to a time-dependent stimulus

(72)
(73)

Response to a time-dependent stimulus

(74)

Main conclusions

Linear response is possible in a chaotic neural network.

Convolution kernel depending on synaptic graph and dynamics

built on equilibrium (SRB) correlations.

The response graph is different from the synaptic weights

graph and depends on the stimulus.

(75)

From spiking neurons dynamics to linear response.

(76)

unbounded memory

B. Cessac, R.Cofr´e, J. Math. Neuro. submitted, 2018

(77)

An Integrate and Fire neural network model with chemical

and electric synapses

R.Cofr´e, B. Cessac, Chaos, Solitons and Fractals, 2013

Spikes

Voltage dynamics is

time-continuous.

events

Spike state ω

k

(n) ∈ 0, 1.

Spike pattern ω(n).

Spike block ω

n

m

.

(78)

An Integrate and Fire neural network model with chemical

and electric synapses

R.Cofr´e, B. Cessac, Chaos, Solitons and Fractals, 2013

Spikes

Voltage dynamics is

time-continuous.

Spikes are time-discrete

events

(time resolution δ > 0).

t

k

(l )

∈ [nδ, (n + 1)δ[

ω

k

(n) = 1

Spike pattern ω(n).

Spike block ω

n

m

.

(79)

An Integrate and Fire neural network model with chemical

and electric synapses

R.Cofr´e, B. Cessac, Chaos, Solitons and Fractals, 2013

Spikes

Voltage dynamics is

time-continuous.

Spikes are time-discrete

events

(time resolution δ > 0).

Spike state ω

k

(n) ∈ 0, 1.

(80)

An Integrate and Fire neural network model with chemical

and electric synapses

R.Cofr´e, B. Cessac, Chaos, Solitons and Fractals, 2013

Spikes

Voltage dynamics is

time-continuous.

Spikes are time-discrete

events

(time resolution δ > 0).

Spike state ω

k

(n) ∈ 0, 1.

(81)

and electric synapses

R.Cofr´e, B. Cessac, Chaos, Solitons and Fractals, 2013

Spikes

Voltage dynamics is

time-continuous.

Spikes are time-discrete

events

(time resolution δ > 0).

Spike state ω

k

(n) ∈ 0, 1.

Spike pattern ω(n).

Spike block ω

n

(82)

A conductance-based Integrate and Fire model

M. Rudolph, A. Destexhe, Neural Comput. 2006, (GIF model)

R.Cofr´e, B. Cessac, Chaos, Solitons and Fractals, 2013

Sub-threshold dynamics:

C

k

dV

k

dt

= −g

L,k

(V

k

− E

L

)

X

j

g

kj

(t, ω)(V

k

− E

j

)

Synapses

α

kj

(t) =

t

τ

e

t τkj

H(t),

(83)

A conductance-based Integrate and Fire model

M. Rudolph, A. Destexhe, Neural Comput. 2006, (GIF model)

R.Cofr´e, B. Cessac, Chaos, Solitons and Fractals, 2013

Sub-threshold dynamics:

C

k

dV

k

dt

= −g

L,k

(V

k

− E

L

)

X

j

g

kj

(t, ω)(V

k

− E

j

)

Synapses

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.5 1 1.5 2 2.5 3 3.5 4 PSP t t=1 t=1.2 t=1.6 t=3 g(x)

g

kj

(t) = g

kj

(t

j

) + G

kj

α

kj

(t − t

j

)

t > t

j

(84)

A conductance-based Integrate and Fire model

M. Rudolph, A. Destexhe, Neural Comput. 2006, (GIF model) R.Cofr´e, B. Cessac, Chaos, Solitons and Fractals, 2013

Sub-threshold dynamics:

C

k

dV

k

dt

= −g

L,k

(V

k

− E

L

)

X

j

g

kj

(t, ω)(V

k

− E

j

)

Synapses

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.5 1 1.5 2 2.5 3 3.5 4 PSP t g(x)

g

kj

(t) = G

kj

X

n≥0

α

kj

(t − t

j

(n)

)

(85)

A conductance-based Integrate and Fire model

M. Rudolph, A. Destexhe, Neural Comput. 2006, (GIF model) R.Cofr´e, B. Cessac, Chaos, Solitons and Fractals, 2013

Sub-threshold dynamics:

C

k

dV

k

dt

= −g

L,k

(V

k

− E

L

)

X

j

g

kj

(t, ω)(V

k

− E

j

)

Synapses

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.5 1 1.5 2 2.5 3 3.5 4 PSP t g(x)

g

kj

(t,

ω

) = G

kj

X

n≥0

α

kj

(t−

)

ω

j

(n)

(86)

M. Rudolph, A. Destexhe, Neural Comput. 2006, (GIF model) R.Cofr´e, B. Cessac, Chaos, Solitons and Fractals, 2013

Sub-threshold dynamics:

C

k

dV

k

dt

= −g

L,k

(V

k

− E

L

)

X

j

g

kj

(t, ω)(V

k

− E

j

)

+S

k

(t) + σ

B

ξ

k

(t)

Synapses

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.5 1 1.5 2 2.5 3 3.5 4 PSP t g(x)

g

kj

(t,

ω

) = G

kj

X

n≥0

α

kj

(t−

)

ω

j

(n)

(87)

Sub-threshold dynamics:

C

k

dV

k

dt

+ g

k

( t, ω ) V

k

= i

k

(t, ω).

W

kj

def

= G

kj

E

j

α

kj

(t, ω) =

X

n≥0

α

kj

(t−nδ)ω

j

(n)

i

k

(t, ω) = g

L,k

E

L

+

X

j

W

kj

α

kj

(t, ω)+S

k

(t)+σ

B

ξ

k

(t)

(88)

Sub-threshold dynamics:

C

k

dV

k

dt

+ g

k

( t, ω ) V

k

= i

k

(t, ω).

Linear in V .

Spike history-dependent.

Dynamics integration

Γ

k

(t

1

, t, ω) = e

1 Ck

R

t t1∨τk (t,ω)

g

k

( u,ω ) du

(89)

Sub-threshold dynamics:

C

k

dV

k

dt

+ g

k

( t, ω ) V

k

= i

k

(t, ω).

Linear in V .

Spike history-dependent.

Dynamics integration

Γ

k

(t

1

, t, ω) = e

1 Ck

R

t t1∨τk (t,ω)

g

k

( u,ω ) du

(90)

Sub-threshold dynamics:

C

k

dV

k

dt

+ g

k

( t, ω ) V

k

= i

k

(t, ω).

Linear in V .

Spike history-dependent.

Dynamics integration

Γ

k

(t

1

, t, ω) = e

1 Ck

R

t t1∨τk (t,ω)

g

k

( u,ω ) du

Vk(t, ω) = Vk(sp)(t, ω) + V (S) k (t, ω) + V (noise) k (t, ω)

(91)

Sub-threshold dynamics:

C

k

dV

k

dt

+ g

k

( t, ω ) V

k

= i

k

(t, ω).

Linear in V .

Spike history-dependent.

Dynamics integration

Γ

k

(t

1

, t, ω) = e

1 Ck

R

t t1∨τk (t,ω)

g

k

( u,ω ) du

Vk(t, ω) = Vk(sp)(t, ω) + V (S) k (t, ω) | {z } Vk(det)(t,ω) +Vk(noise)(t, ω)

(92)

Sub-threshold dynamics:

C

k

dV

k

dt

+ g

k

( t, ω ) V

k

= i

k

(t, ω).

Linear in V .

Spike history-dependent.

Dynamics integration

Γ

k

(t

1

, t, ω) = e

1 Ck

R

t t1∨τk (t,ω)

g

k

( u,ω ) du

Vk(t, ω) = Vk(sp)(t, ω) + V (S) k (t, ω) | {z } Vk(det)(t,ω) +Vk(noise)(t, ω) Vk(sp)(t, ω) = Vk(syn)(t, ω) + Vk(L)(t, ω)

,

(93)

Sub-threshold dynamics:

C

k

dV

k

dt

+ g

k

( t, ω ) V

k

= i

k

(t, ω).

Linear in V .

Spike history-dependent.

Dynamics integration

Γ

k

(t

1

, t, ω) = e

1 Ck

R

t t1∨τk (t,ω)

g

k

( u,ω ) du

Vk(t, ω) = Vk(sp)(t, ω) + V (S) k (t, ω) | {z } Vk(det)(t,ω) +Vk(noise)(t, ω) Vk(sp)(t, ω) = Vk(syn)(t, ω) + Vk(L)(t, ω)

,

V

k

(syn)

(t, ω) =

1

C

k

N

X

j =1

W

kj

Z

t

τ

k

(t,ω)

Γ

k

(t

1

, t, ω)α

kj

(t

1

, ω)dt

1

(94)

Sub-threshold dynamics:

C

k

dV

k

dt

+ g

k

( t, ω ) V

k

= i

k

(t, ω).

Linear in V .

Spike history-dependent.

Dynamics integration

Γ

k

(t

1

, t, ω) = e

1 Ck

R

t t1∨τk (t,ω)

g

k

( u,ω ) du

Vk(t, ω) = Vk(sp)(t, ω) + V (S) k (t, ω) | {z } Vk(det)(t,ω) +Vk(noise)(t, ω) Vk(sp)(t, ω) = Vk(syn)(t, ω) + Vk(L)(t, ω)

,

V

k

(syn)

(t, ω) =

1

C

k

N

X

j =1

W

kj

Z

t

τ

k

(t,ω)

Γ

k

(t

1

, t, ω)α

kj

(t

1

, ω)dt

1

(95)

Sub-threshold dynamics:

C

k

dV

k

dt

+ g

k

( t, ω ) V

k

= i

k

(t, ω).

Linear in V .

Spike history-dependent.

Dynamics integration

Γ

k

(t

1

, t, ω) = e

1 Ck

R

t t1∨τk (t,ω)

g

k

( u,ω ) du

Vk(t, ω) = Vk(sp)(t, ω) + V (S) k (t, ω) | {z } Vk(det)(t,ω) +Vk(noise)(t, ω) Vk(sp)(t, ω) = Vk(syn)(t, ω) + Vk(L)(t, ω)

,

V

k

(syn)

(t, ω) =

1

C

k

N

X

j =1

W

kj

Z

t

τ

k

(t, ω)

Γ

k

(t

1

, t, ω)α

kj

(t

1

, ω)dt

1

(96)

Sub-threshold dynamics:

C

k

dV

k

dt

+ g

k

( t, ω ) V

k

= i

k

(t, ω).

Linear in V .

Spike history-dependent.

Dynamics integration

Γ

k

(t

1

, t, ω) = e

1 Ck

R

t t1∨τk (t,ω)

g

k

( u,ω ) du

Vk(t, ω) = Vk(sp)(t, ω) + V (S) k (t, ω) | {z } Vk(det)(t,ω) +Vk(noise)(t, ω) Vk(sp)(t, ω) = Vk(syn)(t, ω) + Vk(L)(t, ω)

,

V

k

(syn)

(t, ω) =

1

C

k

N

X

j =1

W

kj

Z

t

τ

k

(t,ω)

Γ

k

(t

1

, t, ω)α

kj

(t

1

, ω)

dt

1

(97)

Variable length Markov chain

P

n

 ω(n)

ω

−∞

n−1

 ≡ Π

ω(n),

V

th

− V

(det)

k

(n − 1, ω)

σ

k

(n − 1, ω)

!

(98)

From firing rate neurons dynamics to linear response. From spiking neurons dynamics to linear response. General conclusions Appendix: Linear response theory in physics vs linear response in neuronal networks

Response to stimuli

How is the average of an observable f (ω, t) affected by the

stimulus ?

(99)

Response to stimuli

How is the average of an observable f (ω, t) affected by the

stimulus ?

If S is weak enough:

δµ [ f (t) ] = [ κ

f

∗ S ] ( t )

, (linear

response).

(100)

Response to stimuli

How is the average of an observable f (ω, t) affected by the

stimulus ?

If S is weak enough:

δµ [ f (t) ] = [ κ

f

∗ S ] ( t )

, (linear

response).

κ

k,f

( t − t

1

) =

1

C

k

[ t−t

1

]

X

r =−∞

C

(sp)

"

f (t − t

1

, .),

H

(1)

k

(r , .)

σ

k

(r − 1, .)

Γ

k

(0, r − 1, .)

#

(101)

Response to stimuli

How is the average of an observable f (ω, t) affected by the

stimulus ?

If S is weak enough:

δµ [ f (t) ] = [ κ

f

∗ S ] ( t )

, (linear

response).

κ

k,f

( t − t

1

) =

1

C

k

[ t−t

1

]

X

r = −∞

C

sp

"

f (t − t

1

,

.

),

H

k

(1)

(r ,

.

)

σ

k

(r − 1,

.

)

Γ

k

(0, r − 1,

.

)

#

History dependence.

(102)

Response to stimuli

How is the average of an observable f (ω, t) affected by the

stimulus ?

If S is weak enough:

δµ [ f (t) ] = [ κ

f

∗ S ] ( t )

, (linear

response).

κ

k,f

( t − t

1

) =

1

C

k

[ t−t

1

]

X

r =−∞

C

(sp)

"

f (t − t

1

, .)

,

H

(1)

k

(r , .)

σ

k

(r − 1, .)

Γ

k

(0, r − 1, .)

#

(103)

Response to stimuli

How is the average of an observable f (ω, t) affected by the

stimulus ?

If S is weak enough:

δµ [ f (t) ] = [ κ

f

∗ S ] ( t )

, (linear

response).

κ

k,f

( t − t

1

) =

1

C

k

[ t−t

1

]

X

r =−∞

C

(sp)

h

f (t − t

1

, .),

H

(1) k

(r ,.)

σ

k

(r −1,.)

Γ

k

(0, r − 1, .)

i

History dependence, observable, network dynamics

(104)

Response to stimuli

How is the average of an observable f (ω, t) affected by the

stimulus ?

If S is weak enough:

δµ [ f (t) ] = [ κ

f

∗ S ] ( t )

, (linear

response).

κ

k,f

( t − t

1

) =

1

C

k

[ t−t

1

]

X

r =−∞

C

(sp)

"

f (t − t

1

, .),

H

k

(1)(r ,.)

σ

k

(r − 1, .)

Γ

k

(0, r − 1, .)

#

,

History dependence, (spontaneous) correlation between observable

and network dynamics

(105)

Response to stimuli in a mean-field limit

Characteristic time

τ

d ,k

=

C

k

g

L

+

P

N

j =1

G

kj

ν

j

τ

kj

Approximations

(i)

Replace τ

k

(r − 1, .) by −∞;

(ii)

Replace Γ

k

(t

1

, r − 1, ω) = e

1 Ck

R

r −1 t1

g

k

( u,ω ) du

by e

(r −1−t1) τd,k

.

(106)

Response to stimuli in a mean-field limit

δ

(1)

µ [ f (t) ] =

2

σ

B

P

N

k=1

1

τ

d ,k

P

n=[ t ]

r =−∞

( S

k

∗ e

d ,k

) (r − 1)

e

d ,k

(u) = e

u τd,k

(107)

Response to stimuli in a mean-field limit

δ

(1)

µ [ f (t) ] =

2

σ

B

P

N

k=1

1

τ

d ,k

P

n=[ t ]

r =−∞

( S

k

∗ e

d ,k

) (r − 1)

Markov approximation with memory depth 1

γ

k

(1)

C

(sp)

[ f (t, ·), ω

k

(r ) ]

+

P

N

i =1

γ

(2)

k;i

C

(sp)

[ f (t, ·), ω

k

(r ) ω

i

(r − 1) ]

+

P

N

i ,j =1

γ

(3)

k;ij

C

(sp)

[ f (t, ·), ω

k

(r ) ω

i

(r − 1) ω

j

(r − 1) ]

+

· · ·

(108)

Response to stimuli in a mean-field limit

Markov approximation with memory depth 1

γ

k

(1)

C

(sp)

[ f (t, ·), ω

k

(r ) ]

+

P

N

i =1

γ

(2)

k;i

C

(sp)

[ f (t, ·), ω

k

(r ) ω

i

(r − 1) ]

+

P

N

i ,j =1

γ

(3)

k;ij

C

(sp)

[ f (t, ·), ω

k

(r ) ω

i

(r − 1) ω

j

(r − 1) ]

+

· · ·

(109)

Response to stimuli in a mean-field limit

Markov approximation with memory depth 1

γ

k

(1)

C

(sp)

[ f (t, ·), ω

k

(r ) ]

+

P

N

i =1

γ

(2)

k;i

C

(sp)

[ f (t, ·), ω

k

(r ) ω

i

(r − 1) ]

+

P

N

i ,j =1

γ

(3)

k;ij

C

(sp)

[ f (t, ·), ω

k

(r ) ω

i

(r − 1) ω

j

(r − 1) ]

+

· · ·

(110)

Response to stimuli in a mean-field limit

Ex: Firing rate of neuron m

δ(1) µ [ ωm (t) ] = − 2 σB PN k=1 p1 τd,k Pn=[ t ] r =−∞        γk(1)C(sp) ωm(t), ωk (r)  +PN i =1 γ (2) k;iC(sp) ωm(t), ωk (r) ωi (r − 1)  +PN i ,j =1 γ (3) k;ijC(sp) h ωm (t), ωk (r) ωi (r − 1) ωj (r − 1) i + · · ·         Sk ∗ ed,k  (r − 1)

(111)

Conclusions

Linear response in a spiking neural network.

Convolution kernel depending on synaptic graph and dynamics

built on equilibrium correlations.

Link with receptive fields for sensory neurons ?

Further steps. Handle this equation ... in a simple numerical

example.

(112)
(113)

Network response to a stimulus

(114)

Network response to a stimulus

1

How does an input/ stimulation applied to a subgroup of

neurons in a population affect the dynamics of the whole

network ?

2

How to measure the influence of a stimulated neuron on

another neuron ?

3

How does this ”effective connectivity” relates to :

(a)

Synaptic connectivity;

(b)

Pairwise correlations;

(115)

From firing rate neurons dynamics to linear response. From spiking neurons dynamics to linear response. General conclusions Appendix: Linear response theory in physics vs linear response in neuronal networks

Network response to a stimulus

Spontaneous dynamics ⇒ complex, noise, chaos, non linear.

suitable averaging.

Linear response. The response to the stimulus is obtained in terms

of correlations computed with respect to spontaneous activity

(Kubo like relations).

Information transport ? Requires a suitable probabilitic

characterization (entropy transport, Granger causality, ...).

(116)

From firing rate neurons dynamics to linear response. From spiking neurons dynamics to linear response. General conclusions Appendix: Linear response theory in physics vs linear response in neuronal networks

Network response to a stimulus

Spontaneous dynamics ⇒ complex, noise, chaos, non linear.

Stimulus effect ⇒ requires to filter the spontaneous part ⇒

suitable averaging.

of correlations computed with respect to spontaneous activity

(Kubo like relations).

Information transport ? Requires a suitable probabilitic

characterization (entropy transport, Granger causality, ...).

(117)

From firing rate neurons dynamics to linear response. From spiking neurons dynamics to linear response. General conclusions Appendix: Linear response theory in physics vs linear response in neuronal networks

Network response to a stimulus

Spontaneous dynamics ⇒ complex, noise, chaos, non linear.

Stimulus effect ⇒ requires to filter the spontaneous part ⇒

suitable averaging.

Linear response. The response to the stimulus is obtained in terms

of correlations computed with respect to spontaneous activity

(Kubo like relations).

characterization (entropy transport, Granger causality, ...).

(118)

Network response to a stimulus

Spontaneous dynamics ⇒ complex, noise, chaos, non linear.

Stimulus effect ⇒ requires to filter the spontaneous part ⇒

suitable averaging.

Linear response. The response to the stimulus is obtained in terms

of correlations computed with respect to spontaneous activity

(Kubo like relations).

Information transport ? Requires a suitable probabilitic

characterization (entropy transport, Granger causality, ...).

(119)
(120)

Linear response theory in physics

Equilibrium stat. phys.

(Max. Entropy Principle).

Green-Kubo relations.

P [ S ] =

Z

1

e

−βH{S}

H {S } =

P

α

λ

α

X

α

{S}

λαXα∼ E , P × V , µ × N, h × M, . . .

PV = nRT , ...

(121)

Linear response theory in physics

Equilibrium stat. phys.

(Max. Entropy Principle).

Non equilibrium stat. phys.

Onsager theory.

~

j

α

= ~

F

α

( ~

∇λ

1

, . . . , ~

∇λ

β

, . . . )

~

j

α

X

β

L

αβ

∇λ

~

β

+ . . .

~

j

el

= −σ

E

∇V ;

~

~

j

Q

= −λ ~

∇T , . . .

(122)

Equilibrium stat. phys.

(Max. Entropy Principle).

Non equilibrium stat. phys.

Onsager theory.

Green-Kubo relations.

~

j

α

= ~

F

α

( ~

∇λ

1

, . . . , ~

∇λ

β

, . . . )

~

j

α

X

β

L

αβ

∇λ

~

β

+ . . .

~

j

el

= −σ

E

∇V ;

~

~

j

Q

= −λ ~

∇T , . . .

Linear transport coefficients

equilibrium correlations

of

currents.

(123)

Linear response theory in physics

Onsager theory in non equilibrium statistical mechanics.

gradients ⇒ fluxes

Linear relation between ”small” gradients and fluxes.

(124)

Linear response theory in physics

Onsager-Ruelle - . . . theory in dynamical systems.

Perturbation ⇒ response

(125)

Equilibrium stat. phys.

(Max. Entropy Principle).

Non equ. stat. phys. Onsager

theory.

Ergodic theory, chaotic

systems.

The Sinai-Ruelle-Bowen measure

is a Gibbs measure

(126)

Gibbs distribution

Equilibrium stat. phys.

(Max. Entropy Principle).

Non equ. stat. phys. Onsager

theory.

Ergodic theory.

Markov chains - finite memory.

(Left Interval Specification).

P [ ω ] =

Z

1

e

−βH( ω )

H ( ω ) =

P

α

λ

α

X

α

( ω )

X

α

(ω) = Product of spike events

Hammersley, Clifford, unpublished, 1971

Références

Documents relatifs

However, like in the T=O case, the residual interaction prodkces a strong collectivity effect and a reduction of the fragmentation (see Fig.4). So the final strentgh distributions

Woody plant mortality following 1983-84 drought assessed by the density of living and dead plants (ha -1 ) observed in 1989 in 24 rangeland sites in Gourma using CPC.

Used to support both teaching and learning, technology infuses classrooms with digital learning tools, such as computers and hand held devices; expands course

qui a répondu oui et non pense, comme les autres enseignants, que la vie peut nous jouer des tours à tout moment et que c’est cela qui peut faire tomber une personne en

/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. For

while a large variety of forks are developed independently (including many closed source versions of the OS). Contiki features several network stacks, including the popular uIP

Das föderale Ex- perimentierlabor der Kantone bietet sich für eine solche Untersuchung an, zumal sich die kantonale Autonomie im Bereich Integrationspolitik in einer

Here, we use state-of-the-art solid-state NMR to charac- terize motions in a metalloenzyme, human copper/zinc superoxide dismutase (SOD), and to uncover the links