• Aucun résultat trouvé

Le problème à N corps nucléaire: structure nucléaire

N/A
N/A
Protected

Academic year: 2022

Partager "Le problème à N corps nucléaire: structure nucléaire"

Copied!
56
0
0

Texte intégral

(1)

4 November 2010. Master 2 APIM

Le problème à N corps

nucléaire: structure nucléaire

(2)

The atomic nucleus is a self-bound quantum many-body (many-

nucleon) system

(3)

Rich phenomenology for nuclei

Mean field

(4)

Which particles?

Which are the degrees of freedom

taken into account in the nuclear many- body problem?

Which is the interaction?

STRONG INTERACTION

(5)

D. Lacroix Lecture. École Joliot-Curie 2009, Lacanau, France

(6)

Deriving the nucleon-nucleon interaction from the underlying theory of QCD is extremely difficult (so far almost no quantitative results).

Three main possible directions to deal with the nuclear interaction in low-energy nuclear physics are:

Realistic interactions

Effective field theories (deep links with QCD)

Phenomenological interactions

(7)

Nuclear physics and the strong interaction

Chadwick discovers the neutron (he

measures its mass) in 1932 (Nobel Prize in 1935): the two types of nucleons are thus known

How do the nucleons interact among themselves?

The idea at the basis of Yukawa hypothesis:

In the case of the electromagnetic interaction the mediator of the force is the photon (zero mass). Quantum

electrodynamics: at the beginning of the 30s, it is already formulated.

(8)

Yukawa hypothesis

Yukawa introduces a particle that he calls U. He suggests that this particle is the mediator of the nuclear strong interaction

m

U

≈ 200 m

e

;

m

p

≈ 1800 m

e

(9)

15 years later the formulation of the hypothesis…

• In 1947 and 1948 the Yukawa particle is identified with the meson π : pseudoscalar (negative parity), spin 0 (the two quarks have opposite spin). The mass is ~ 140 MeV/c

2

- Observed in cosmic rays - Produced at Berkeley

π mesons interact strongly with nucleons and have the correct mass that leads to the correct range of the nuclear force

1949: NOBEL PRIZE FOR YUKAWA !!

(10)

Yukawa potential

g -> coupling constant mπ -> mass of pion

Range

Compton wave length of pion:

(11)

60s: heavier mesons are discovered

ω and ρ mesons: mass ≈ 800

MeV

(12)

Realistic interactions

The earliest realistic potentials in the 60s: one-pion exchange potentials with adjustable parameters + a repulsive hard core

(to describe high-energy scattering data)

70s - 80s: Paris and Bonn potentials

90s: High-precision realistic potentials (starting from the 90s) : CD-Bonn, Argonne V18, Nijmegen I et II. High-precision adjustments (around 50 parameters) are done to reproduce phase shifts (free nucleon- nucleon scattering) and spectroscopy of nuclei with a small number of nucleons

(13)

The adjustment of the parameters

Scattering amplitude

Differential cross section

Total cross section

(14)

Long range (pion)

Intermediate range (more or less phenomenological +, eventually, exchange of mesons)

Short range: hard core (phenomenological +,

eventually, the exchange of mesons)

(15)

Problem of the hard core: motivation to use phenomenological interactions (calculations with more sophisticated models become easier)

Two types:

1) zero range (contact interaction) (Skyrme)

2) finite range (Gogny)

(16)

The simple idea

Construction of an effective phenomenological force that is chosen to reproduce (at the mean-field level) global

properties of some selected nuclei (binding energies and radii) and properties related to the EoS of nuclear matter (first of all saturation point)

Form and parameters to choose

For instance, to have in-medium effects (Pauli principle), we need the density-dependent term

Correlations are contained in the interaction in an effective way.

(17)

Finite-range: Gogny interaction

It has been introduced from a realistic G matrix Standard form:

Finite-range (gaussian form) Density dependent (zero-range)

Spin-orbit (zero-range)

First parametrization: D1

Déchargé, Gogny, PRC 21, 1568 (1980)

Most used: D1S (fit also on fission barriers) Berger, Girod, Gogny, NPA 502, 85c (1989)

A recent modification (towards finite-range in all terms): D1N Chappert, Girod, Hilaire, Phis. Lett. B 668 (2008), 420

CEA

Bruyères-le- châtel

(18)

and -> 14 parameters

Spin and isospin exchange operators acting on the left

acting on the right

Isospin matrices Spin matrices

(19)

Zero-range: Skyrme interaction

Standard form: 10 parameters

central non local

density dependent

spin-orbit

T.H.R. Skyrme, Phil. Mag. 1, 1043 (1956), Nucl. Phys. 9, 615 (1959)

First applications: Vautherin, Brink, PRC 5, 626 (1972) IPN Orsay

(20)

Advantage of using phenomenological

interactions. Which nuclei

can be treated?

(21)

Mean field for ground state nuclear structure (HF, HFB,..) RPA and QRPA for small amplitude

oscillations Beyond small amplitude

oscillations: time- dependent mean field for dynamics (TDHF, TDHFB,…)

Beyond-mean - field models

(correlations): GCM, particle-vibration coupling, variational multiparticle-

multihole

configuration mixing, extensions of RPA, Second RPA,…

(22)

Links with Quantum Chromodynamics (70s,

Standard Model)

Internal degrees

of freedom of the

nucleon

(23)

Links with QCD Lagrangian

(chiral symmetry)

(24)

Djalali Lecture.

Ecole Joliot- Curie 2009

(25)

The symmetry is spontaneously broken…

…Goldstone boson (pion !!! Links with realistic

interactions)…but the pion has a non-zero mass…

Djalali Lecture.

Ecole Joliot- Curie 2009

All nucleons have positive parity

(26)

… and the pion has non-zero mass because…

…the symmetry is explicitly broken… non-zero mass of quarks !! Broken symmetry scale: 1 GeV (see quark masses)

(27)

Hard scale =>

1 GeV, chiral symmetry

breaking scale Effective field theories: choice of the relevant degrees

of freedom at the scales we are interested in

|q| ~ Ml << Mh

q -> soft scale

It diverges at large q. Introduce a cut-off Λ

Leading order (LO)

Next-to-leading order (NLO)

(28)

A natural hierarchy (that is intuitive) can be formally established between 2-body, 3-body,…,N-body forces

Leading order Next-to-leading order

Next-to-next-to-leading order

Q=q/Λ

(29)

Nuclear matter

Ideal and infinite system composed by nucleons:

Symmetric matter (protons and neutrons with equal densities)

Asymmetric matter Neutron matter

Nuclei

Neutron stars

(30)

Saturation density ρ0 0.16 fm-3 ->

2.5 ּ 1014 g/cm3

After evolution (thermonuclear

reactions) of massive stars (M 8 M๏) (107 years) -> supernova explosion . Slow

cooling for millions of years.

Typical values:

R 10 km M 1.4 M๏

EXOTIC NUCLEI

(31)

Mass measurements of

neutron stars in binary systems

Mass (M๏)

0.5 1 1.5 2 2.5 3 3.5

(32)

Equation of state (EOS): E/A as a function of the density

Isospin effects and density dependence No equilibrium point in pure neutron matter

Symmetric matter

From symmetric to neutron matter. Yp=Z/A

Equilibrium point:

saturation density

(33)

Equation of State with different models

Symmetric nuclear matter Pure neutron matter

stiff

soft

(34)

48

Ca density profiles. Spherical nucleus. Hartree-Fock calculations

with a Skyrme interaction

Neutron density Proton density

R (fm) R (fm)

Density

N = 28 Z = 20

(35)

Rich phenomenology for nuclei

Mean field

(36)

Light nuclei

(37)

Some properties of light nuclei

(38)

Borromean nuclei

• Borromean Nuclei: 3-body systems. Example:

11Li = 9Li+n+n

• Generalization to n-body systems. Example :

10C = 4He+4He+p+p

• Mixing of complex correlations

(39)

Halo densities

(40)

Some applications of mean-

field-based models. The basic

method for many-body systems

(41)

Masses Separation energies Drip lines?

Densities

Single particle spectra Energies and

occupation probabilities?

Ground state of nuclei. Mean field: individual degrees of freedom

(42)

Mean field

calculations (HFB) with a Skyrme

force

DRIP LINE ? Strongly

model dependent!!!

Binding energy (top) and two-

neutron separation energy (bottom)

(43)

48

Ca density profiles. Spherical nucleus. Hartree-Fock with

Skyrme

Neutron density Proton density

R (fm) R (fm)

Density

(44)

Last neutron single-particle Hartree-Fock states

Ca isotopes

Can we

predict single- particle

energies and spectroscopic factors? We need to go

beyond mean field (see next Lecture).

Why?

Grasso, Yoshida, Sandulescu, Van Giai, PRC 74, 064317 (2006)

1f5/2 2p1/2

(45)

Single-particle and collective degrees of freedom couple:

beyond mean field

(46)

These correlations also affect the excited states …

Effects of particle-

vibration coupling on the single-particle

spectrum

Neutron states in 208Pb

Bernard, Van Giai, Nucl. Phys. A 348 (1980), 75

(47)

Particle-vibration coupling

E. Litvinova, et al.

208Pb 132Sn

(48)

At mean field level we can include pairing correlations to treat superfluid nuclei (BCS

superfluidity -> Cooper pairs)

Energy gap in excitation spectra

Odd-even effect in binding energy

Moments of inertia

(49)

No isotopes (Z=102)

Duguet et al. arXiv:nucl-th/0005040v1

Sn = E (Z,N)-E(Z,N-1)

Odd-even effect

(50)

Excitations. Collective

degrees of freedom

(51)

Two-neutron 0+ addition mode QRPA in particle-particle channel

Response function for 124Sn

Khan, Grasso, and Margueron

Excitation modes (small amplitudes)

Quadrupole mode QRPA in

particle-hole channel

Response function for 22O

Khan, Sandulescu, Grasso, and Van Giai, PRC 66, 024309 (2002)

Pair transfer mode

Khan, Grasso, Margueron, submitted PRC

(52)

Dynamics. Beyond small amplitude

oscillations. Time dependent approaches for the dynamics

Time-dependent HF

Collision Dynamics of

Two 238U Atomic Nuclei Golabek and Simenel, PRL 103, 042701 (2009)

(53)

Neutron stars. Very exotic nuclear systems

Nuclear structure / Astrophysics

(54)

Picture of the crust of a neutron star

Baym, Bethe, Pethick, NPA 175 (1971), 225

Outer crust: crystal of nuclei in an electron sea

Drip point for neutrons

4 ּ 1011g/cm3

Inner crust: crystal of nuclear clusters in an electron sea and in a gas of superfluid neutrons

ρ ≈ 0.5 ρ0

ρ

Inner crust: 0.001 ρ0 ≤ ρ ≤ 0.5 ρ0

β-stability condition -> µe = µn - µp Saturation density

ρ0 = 0.16 fm-3

2.5 ּ 1014 g/cm3

(55)

Wigner-Seitz cell model

(56)

J.W. Negele and D. Vautherin, Nucl. Phys. A 207, 298 (1973)

Références

Documents relatifs

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Nous avons donc développé un modèle dans lequel nous obtenons à la fois les propriétés des mésons et la saturation de la matière nucléaire, en tenant compte explicitement de

Appendix C Parti le-Hole Potentials and Residual Intera tion from a Quasi-Lo al Fun tional In this appendix we derive the expression of the parti le-hole ee tive potential and

In the classical dif- fusion case, the stochastic process converges in the small-noise limit to the deter- ministic solution of the dynamical system and the large deviation

L’objet du présent rapport est de généraliser cette méthode, notamment de l’étendre au cas d’un réacteur ayant une structure en cellule, compte tenu de

En qualité de partenaires, nous nous efforçons, dans le cadre du projet HarmoS, d’établir les fondements solidement étayés, en nous appuyant sur l’expérience et

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Objectifs: mettre en évidence les difficultés et les problèmes que soulèvent le syntagme « parole poétique », à l’occasion de l’analyse d’une question (exemple de