• Aucun résultat trouvé

The construction of an experimental apparatus for testing the power plant of the Stanley Steam automobile and some tests made with it

N/A
N/A
Protected

Academic year: 2021

Partager "The construction of an experimental apparatus for testing the power plant of the Stanley Steam automobile and some tests made with it"

Copied!
30
0
0
En savoir plus ( Page)

Texte intégral

(1)

OF THE

FOR TESTING THill POWER PLANT ..' - .... ,-... ..,.; \' <"0 ,/ \ .... T1-1 .I. \V .... ...,.~\l'

THE

CONSTRUCTION OF AN EXPERIMENTAL APPARATUS

STANLEY STEAM AUTOMOBILE

AND

SOME TESTS MADE WITH IT.

A Thesis surmitted to the

Mechanical Enginaering Department

.J> of the

-

...

Massachusetts Institute cf ~echnology

as a partial requirement for the

Degree of Bachelor of Sciancs.

June, 1917

(2)

REPOR~S OF TESTS

In order that these reports IDay re more readily stated,

the various items will

re

numrered thus: (27).

The meanings of these numrers, as ~ell 8S the

calcula-tions of test No.2, which will serve to illustrate the

man-ner of calculating all of the tests, are given on the

ro1-lowing pages.

(3)

8BSERVATIONS

2..

Steam chest pressure, gage.

" "temperature, centigrade.

Exhaust pressure, inches of mercury.

" temperature, Fahrenheit.

Length of t.est.

Counter readings a~ reginning and end of test.

Deadweight on rope rrake.

Right counterralance re.ading.

Weight of condensate for test.

" "kerosene " "

Temperature of feedwater entering railer, Fahrenheit.

Boiler pressure,

gage.

Corresponding toiling temper'ature, ~ahrenheit.

Superheater terminal pressure, gage.

( 1) ( 2) (5) (6) (7) (9) (11) (14) ( 15) (1.6) (17) ( 18) (19) (20 ) (21.) (22) Left

"

"

tf If temperature, centigrade.

(4)

v.

DATA, AND SAMPLE CALCULATIONS FOR 'RUN NO.2 (3) Average R.P.M.

4518 7 6

=

225.9, use 226 R.P.M.

(~) Corresponding miles per hour.

, 226. 104 = 23.5

(8) Net rrake pull.

62.0 - 3.50

=

58.5 Lts.

(10) Water rate, or

Lrs.

steam per hour.

=

9.50 Lrs. 17 2.69 x 60 120 40 x 60 20

(12) Kerosene per hour.

2 Lrs.11oz. in 17 min.

=

(18) Gasolene per ~our•

15 oz. in 5 hr.l0 min.

=

• 938

x

60

310

=

.182 Lrs.

(23) Heat of feedwater entering toiler.

From Goodenough's Ta~las q

=

171.96 at 204°,

U36 172 8.~.U. per Lt.

(24) Heat of stean' leo.vinJ roil~J.~, aSBUll'inS tt. to t-a dry

and saturated.

590 L1"'3. per sq~ingage

=

005 Ll"'s. per sq. in. a1'8.

H

=

1199.7, use 1200 B.T.D. per Lt.

(25) Heat of steam leaving superheater.

63.8 Lrs. per sq.in

gage

=

78 Lts. per sq.in. ars.

78.Lts. ~er sq.in

~rs.

a~d F7foF.

=

1319 B.T.U. per Lt.

(26) Heat: of

61.7 76.4

~ =

steam in steam chest.

Lts. par sq.in

gage

=

76.4 Ll"'3. per sq. in. at-so

" n n "and 550°F.

=

1307

B.T.D.

per

Lr.

(5)

(27)

DATA, AND SAMPLE CALCULATIONS ~OR RUN NO.2 (Cont.)

Heat of water, at toiling temperature corresponding to

pressure in exhaust pipe.

p

=

14.7 ... 258 x .491

=

14.82 Lts. per sq.in. ats.

9,= 180

+,!~

= 180.41 , u~e... 480J.: R ~•..•• (J osr L~'l'.

29' l:

(28) Heat input to water and steam in toiler, assuming steam

to te dry and saturated.

1200 - 172

=

1028 B.T.B. per Lt-.

(29) Heat input to water and steam in roiler and superheater.

1319 - 172 = 1147 B.T.ll. per Lt.

(30) Heat supplied to steam chest,

actually.-lB07 - 172

=

1135 B.T.H. per Lt.

(31) Heat supplied to steam chest, if fesdwater were at the

temperature corresponding to pressure in the exhaust

pipe.

(6)

RESULTS, AND SAMPLE CALCULATIONS FOR RUN NO.2

(32) Boiler horse power developed.

=

(Heat

or

steam leaving superheater - Heat of feedwater)

x

Lrs.

per hour

---~~~-20---

~Ut..l

(1319 - 172) x 120

---

33520

=

4.10

(33) Fuel B.T.U. pEn' nour.

=

Lf~.

gasolin,~ per hour x heat

or

comr ustion of 1 L1:.

+ If kerosene

"

"

tJ

"

"

"

" " "

(34) Lts. of water evaporated per

Lr.

kerosene.

120

=

12.6 9.50 , 1'10

B.T.H.

(35) (36) (37)

Efficiency of roiler and su~erbeater.

~2~~~_:_2?~2_:_~~~

=

75. ()~

Fuel B.T.D. per hr.

Heat transrerred to water and steam, in ~oiler and

super-heater per hour, per sq. ft.

or

heating surface.

1 :1.4-7 x 120

104;i.'

-Brake horse power developed ty engine.

Constant x net rrake pull x R.P.M •

• 000288 x 58.5 x 226 7 3.82

(38) L1:3. of ste~m per rr8.ke horse /?cwer ~ hr.

!~~-

= 31.4

(7)

-RESULTS, AND SAMPLE CALCULATIONS FOR RUN NO.2

(cont.)

(39) Lrs.

of kerosene per rrake

R.P.

hr.

6. 9.50 3.82

=

2.49 ?54R ~

%

----

=

7. ~O 35400 . 0 (42) Efficiency or R?J~kir.:c-:cycle

=

(40) Heat consumption of engine per rrake R.P. hr.

1127 x 31.4 : 35400

(41) Thermal efficiency of 8n~ine, ~asea on trake H.P.

r.:r ...

~j 1. - ~ 2

1307 - 1156 (H2 at ~ = 1.762 and P2.=

--- "= 14.8? Lt,3o per sq'-In als.)

1307 - j80

=

13.4 ~

(43) Ratio of thermal to Rankine efficiency.

(44) Fuel B.T.U. per trake B.P. hr.

filuel B.T. U. per hr.

I_!~_c:.~~_

=

---~-~-2--- , 3.82

~.'-~

(45) Overall thermal effi,ciency of p.lant.

2545

= ~---

'uel B.T.U. per rrake H.P. hr.

(8)

RUN

NO.2 OBSERVATIONS ( 1) 20 min. ( 2) 21322

-

25840 (5) 62 Ll:s. (B) 1.00 1.25 1.25 1.50 1.25 1.25

---7.50 (7) 2.50 2.25 2.25 1.75 2.50 2.25

---

13.60 7.50

-A):)i-66

-" ... 8.50 Lrs. (9 ) 40 Ll:'s. (11) 2.69 Lt-s. in 17 UJ1n. (14) 202 199 205 212 202 200

6)1220

203.7, use 204°F.

(9)

RUN NO.2 OBSERVATIONS (l~) fED 520 580 580 580 520

5PO + 10

=

590 Lts. per sq.in.

gage.

(16) 487° F. (1.7) 61.5 60.0 62.0 62.5 61.5 62.0 6)369.5

---61.6 + 1.7

=

63.3

L~3.

per sq. in. ( 1.8) 307 299 295 31.1 300 298

6)1810

301:7°C.

=

575°F. 0,

(10)

RUN NO.2 OBSERVATIONS (19) 60.0 58.:5 60.5 61.0 60.0 80.0

, 6)330:6

---60.0 + 1~7

=

61.7 Lts. per sq. in. (20) 289 2aO 285 292 290 285 " 6)

1721

-287°C

=

550°F •

.(21) .25 .30 .25 .25 .25 .25

6)1:55

.258 "Hg. (22) 268 270 270 270 272 274

6)1624

---270.6

=

271°F.

(11)

RUN NO.2 DATA (3) 226 R.P.M. (4) 23.5 M.P.H. -. (8) 58.5 L1:s. (10 ) 120 L1:s. ( 12) 9.50 Ll:'s. (13) • 182 Ll:'s. (23) 1.72 B. T. U. (24) 1200 B. T. U. - (25) 1319 B.T.U • . (20) 1307 B.T.H. (27) 180

"

(28) 1028 n (29) 1147

"

(30) 1135

"

(31) 1127

"

10.

(12)

(32) (33) (34) (35) (36) (37) (38) (39) , (40) (41) (42) (48) (44) (45) RUN NO.2 RESULTS 4.10 183,(190 12.6 Lrs. 75.0~ IZ90 B.T.U. 3.82 Brake

H.P•

31.4 Lrs.

steaw per Brake

H.P.

2.49 Lrs. 35400 B.~.U. 7.20

o;{,

13.4 o~ .538

'-I

8000 B. T. U. 5',)0

7r

II.

(13)

RUN NO.3 OBSERVATIONS ( 1) 12 min. (2) 28980 - 32167 (5) 120 Lrs. ( 6) 8.0 9.0 8.5 9.0 8.0 42.5 . (7) 6.0 7.0 6.5 6.5 7.0 33.0 33.0 42.5

5)75:5

15.1 + 2.5 = 17.6 Lrs. Counterpull. (~) 40 Lrs. 12 oz.

(11) 3 Lrs. 3

oz. (14) 20~ 203 207 206 204

5)1025

2050 F. 11.

(14)

RUN NO.3 OBSERVATIONS (15) 580 575 575 580 575

5)2885

577 + 10

=

587 Lbs. per sq. in. gage.

(16) 602 L~s. per sq.in. abs.

=

487°F.

(17) 85.5 84.5 86.5 85.0 86.0

5)427:5

85.5 + 1.8

=

87.3 Lts. per aq.in.

gaga.

(18) 313 315 315 311 317

, 5)1571

314.2°C.

=

597°F. 13.

(15)

RUN NO.3 OBSERVATIONS (19) 83.5 82.5 85.0 83.0 84.5

5)418:5

83.7 + 1.8

=

85.5 Lrs. per sq. in.

gage.

(20) 296 299 303 300 301

5)1499-299.8°0.

=

572° (21) .40 .35 .35 .40 .35

5)1:85

.37"

Hg.

(22) 272 273 276 274 273

5)1368

273.6

=

274°F. J'I,

(16)

RUN NO.3 DATA (3) 266 R.P.M. (4) 27.6 M.P.H. (8) 102.4 Lts. (10) 204 Lbs. per hr. (12) 15.94 Lrs. per hr. (13) .182 n

"

"

(23) 173'

B.T.U.

(24) 1200 n (25) 1329

"

(26) 1315

"

(27) 181 If ( 28) 1027 II (29) 1156 If (30) 11.42 n (31) 1133 If /5.

(17)

RUN

NO.3

RESULTS

(32) 7.03 Boiler

R.P.

()33 30~090 -f3.:J.U. (34) 12.8Lrs. ( 35 ) ..,7. 0 ~ (36) 221.0B.T.D. per hr. (37) 7.83 Brake H.P. (38) 26.05 Lrs. stearnper rrake

R.P.

hr. (39) 2.04 Lrs. (40) 29600 B.T.ll. (41) 8.60

%

( 42 ) 1.5. 40

%

(43) .558 ( 44)

'11." 6()

0

-13.::;'

u .

(45)

6.

J) ~ 16.

(18)

RUN

NO.4

OBSERVATIONS (1) 18 min. (2) 35615 - 41280 (5) 195.Lbs. (6) 13.5 18.5 14.5 13.0 13.0 72.5 (7) 13.5 20.5 18.0 15.0 .13.0

---.80.0 80.0 ~...!;l2. 5

5)152:5

30.5 + 1

=

31.5 Lts. Counterpull. (9) 97 Lrs. (11) 5 Lbs. 15 oz. in 16 min. (14) 20J 205 200 208 207

5)1020

204°F.

(19)

RUN NO.4 , OBSERVATIONS (15) 570 565 575 575 575

5)2860-572 + 10 = 582 Lrs. per sq. in.

gage.

(16) 4850 F. (17) 120.5 119.0 122.5 120.0 1.22.5

5)604:5

120.9 + 2.1

=

123 Lrs. per sq.in. gage

(18) 314 302 313 305 303

5)1537

307.4°0. ~ 585°F.

(20)

RUN NO.4

OBSERVATIONS

(19) 117.5 117.5 120.0 :1.17.0 120.0

5)592:6

1.1.8.4+ 2.1

=

120.5 Lts. per sq.in.

gage.

(20 ) 297 298 306 297 298

5)1496

299. 2°C.

=

57:l°ji\ (21) 1.00 .95 .80 .95 .90

5)4:60

•92"

Hg •

(22) 258 256 257 256 256

5)1283

256.6

=

257°Jil.

(21)

RUN NO.4 'DATA (3) 315

R.P.M.

.(4) 32.8 M.P. H. (8) 1.63.5 Lts. (10) 323 Lrs. per hour. (12) 22.25 11 n 1f (13) .182 n

"

"

(23) 172 B. T. U. per Lt. (24) 1200 11

"

"

(25) 1320 n

"

"

( 26) 131.3

"

"

"

~ T 1.712 (27) 1.82

"

"

"

(28) 1028 n

"

"

(29) 1148

"

"

"

(30) 1141 n

"

"

(31) 1.1.31

"

"

n

(22)

RUN

NO.4

RESULTS

(32) 11.05 Boiler

H.P.

(33) 1..10S 590 '#J.::J,

u.

(34) 14.5 Lrs • . (35) <jS. 8'

ojrr

( 38 )

J

2 70 ~.::;. U . (37) 14.95 Brake

H.P.

(38) 21.6 Lrs. (39) 1.49 Lrs. (40) 24500 B.T.U. ( 41 ) :10. 4

0/

0 (42) 16.9

%

(43) .615 ( 44)

Z

8 "/()O (45) ~rf 6 ~

(23)

RUN NO.5 OBSlliRVA~.lIONS . (1) 15 min. (2) 45702 - 48975 (5) 260 Lt.s. (6) 27.0 29.0 27.0 29.0 28.0 ----,----140'.0 (7) 26.0 28.0 30.0 27.0 29.0 140.0 140.0

5)286:6

50.0 Lrs. Counterpull. (9) 75 Lts.Roz. in 15 min. (11) 5 Lrs.50Z. (14) 187 203 204 204 " II II 208

5)1001

200.2, use 200o~.

(24)

RUN NO.5' OBSERVATIONS (15) 570 560 570 570 ,570

5)2840

568 + 10

=

578 Lrs. per sq. in.

gage.

(17) 150.5 148.0 139.0 138.5 148.0

---5) 724.0 144.8 + 2.7 = 147.5 Lrs. per sq.in.gage. (18) 322 320 308 313 317

5)1580

316°C. = 600°F.

(25)

RUN NO.5 OBSERVATIONS (19) 148.5 146.0 :135.5 :187.0 :146.0

5)714:6

142.8 + 2.7

=

145.5 Lts. ~er sq.in.

gage.

(20) 310 308 298 803 306 J:; ) 1~2~ t..J _\._.' ~.(.... 305°C. = 581°W. ( 21) .80 .70 .80 .75 .70

5)3:75

• 75If Hg • (22) 258 258 254 256 254

5)1280

256°

F.

(26)

RUN

NO.5 DATA (3) 218

R.P.M.

(5) 22.7

M.P.H.

(8) 204 Lrs. ( 10) 301.5 Lrs. (12) 21..25

Lrs.

(13) .182 Lts. (23) 168 B.T.U. per

Lt.

(24) 1200 rr rr 1J (25) 1325 n f1 n (26} 1315 1J

" "

~ =

1.702 (27) 181

"

"

11 (28) 1032

"

"

n (29) 11.57

"

rr

"

'(30) 1147 n 11 11 (31.) 1184

"

n 11 2S.

(27)

!.iUN NO.5

RESULTS

(32) 10.4 Boiler

H.P.

(33) ...,0 ~ 59 f)

13.

';J. U. (34) 14.2Lt~. (35) 8S.g'~ (36) 3

z

70

'-i3,~.

U . (37) 12.90 Brake H.P.

(38)

23.4 Lrs.

per Brake

R.P.

(39) 1.65Lrso (dO) 26600 B.T.D. (41) 9.56

%

(42) 17.5

%

(43) .546 ( 44) 3 I (../00

7i.

J. U. ( 45 ) g'. , () ~

(28)

-~t (l) +=> ro ~ :=> ~

.

W E-I ,.t.. 0

.

.0 •....J co () ..- ~1 lL C\J 00 0 LO

~

--

a tC: ~ l!J C\J ~ 0 T:-l 00 00 ",,1 0 I.C 0" LO crJ 0 ~ a l(j • 0)

--

• ... ~ l:'-- ~

~ C'Y.; T-i ill 00

~ (.,~ .0;;] 0

-

crJ 0' ();) a 0 crJ a 0 "r""1

--

0 C\! t--. C\J t--. 1..L T-i t--. C\.: 0 ex; a

-

,-1 0 ~ eN '" 0.... 0

--

~ a C\1 0 ~ ... ,-l 1.0 0"; W ~ cY.; ~. C\l E-' ro «; "r""1 .-.:1 M ,-1 0 ~ en " c-a !'-. o~ a::::; {l) ... H 'n $.., G:..

-

0 ~ 0 ,-l ..L 0

---

<D ~ s :-: .1-' Q) Z 0 <D ~! ~ 0 S-I rf.!. • w ~-I 0 01 11) H ~ W () a::: w <D

,~

<Ii -I-' ~ ~ CH ~ t ... >I • (I) ~ ~ ~ ::-/ ~ 0... :::; 0 m ~c; r-I rD 0 (l) "'0 r:c: ~... ~ m

..

)\) ([. (l) .~ .... :-0.. a., .~ .r-! .r-i 4.J

.

s:: co c...

.

~>--. 0 ~ ::.0 (lj ;

.

.,-1 <:) ~ ~C; ::r:: E- ~ C W ro ro ~ r-l ~ CD ~ 'M .1.:J ~ 0) 0 0 ...

.-I ,-I a., .,-1 •..,:> 0

.r-l (1) ro tl-4 Ctl .,....., 0 !:'j :> Cf.-t co co G:... c-a i:-i:l ;:r:: ..-

-cv C(: 'q! to ~c CQ C0 cYJ 00 ex:

--

-'

-'

--27.

(29)

..

~ ~

.

c...

.

:I:: • ~ ,. .... 1 {l)

.

OJ ~ • • W. r12 E.' ~ ~ ~ ~ • ~ J-:i 1-:1 00 0 ,... OJ OJ .~, Ir.i

"

1.0 ~l • • ~ 0 1.(.; leI ~ -" C\l C\1 lY.J 0 • • T'""I C\.: ri ,-C (j~ t--. ...;:j: W ri I.!"J C\l u:-...;; 1.0ri m .~' m • • -::jl 0 ...;:jl 0) -" 00 ~1 ~l • 0 • • l.D ~l C\1 T'""I 1.('; 0 m "'ll ~l T'""I T'""I c.~ ~ ,... ~ o..~ L(; 0 0 U) 00 C\l cr:: 0 o;::j'l 0

",

-q. 00 E-" ---C\l 0 0 • • • 1-=1 ?::-- (C ~. CX; lD 1.0 0 C\.:

,,,

m ri 1..0 en (1.:'

'\4

I~l ~ 0:; .r-! .~)() ... ~: ~ C\1 (J'~ 0 G:. ,-... (1;- C\l C\1 OC -.;jl ...;:j. C\l ~l 00 a (,\.1. -" C\1 • • • 0 • • • q cr:: ~i c;\,; 0 l:--- cr;; 00 0 cr:;. ~ ri 1.0 ~~ ~ 1.1.:: 0 ~, cr~ OJ H rQ cr. .;..,:l <::1; ,--i 0., :-s ~ rr>. 0 (l) 0 0:; !) ~l ..c: • H

.

~ 0.. • 0 (!) ::c !» ~ 0 C\'S :: ~ ~ C\) ~ .r: ~ ~ :: :: S-4 I.l) 'r. (\) a., ~'-l • a., ~ a ()) r-o (\) 0., ~ (D ())

.

~ >:: w, ,-I (j) X ~ <D ~ (,"\) s::

.

(/). E! ... (\) ~'=' n.' ~ 0 ~ ~ ~ .-t .---

.

_'Y. Q) ~ C\'S Q) s:: Q c... m .~ (\) Q) ...c ro ~

.

~ ~ ~ ::r:: E-: 0:; 0 r.c r.:c ~ ... ... ...

-

... ... ,... t'-. 00 0) a ~I C\l 00 (,l:; cr:. 00 cr: ~ ~I "di ~

-'

_.'

---

--

-'

-'

---

-"

(30)

~

-

0 0 a to ~ rt

-

..-1 00 oc """""0 ~o ~

-~

C» oc ('\l 00 -0 oc 000 rt - I.CJ • -r-l '-0 'q' 0 0 C;;O CfJ 0 It -0:; LCJ W ",,"' E-~ ~

co

r::::l cr. " UJ. +' Ii. rl 0 ... ~ Q O'J CfJ ~I -.- 0) ~C: Z ~ 0 'CD +;) CL. H !:l .i cr.: ro tc <:t; .-t D-. c... (\) ~ .~ a ~ 0 ~ ~ ~ C) $:i ~ <D <l' .1""4 c., 0 .1""4

.

~ b

.

tt-f Q) E-' It. rl 00 .-t ro .-t !:-l ro ([) ~ :> G::. 0

-

...-.. ~ tC ~ .q

-

-,

Références

Documents relatifs

A ce propos, dans le cadre du « Groupes EFES (Evaluation du Français pour l’Enseignement Supérieur), nous sommes en train de mener une grande enquête auprès des

228 Adapté du récit des propos tenus lors de discussions entre les membres d’une coopérative de producteurs et de consommateurs*.. 173 qui achètent, elles

The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: State Committee of Science, World Federation

The fire resistance model, described here, consists of two sub-models: a heat transfer sub-model that predicts the temperature profile inside the wood-stud wall and the time

permetre als nens recollir diferents materials de l’àrea natural que visiteu per fer col·leccions; demaneu als nens que apleguin algunes roques i compareu les

(2011) de mener des recherches sur l’intention entrepreneuriale dans les pays en développement afin de construire une fertilisation forte et croisée des connaissances de ce

Scheme 10 FeCl 3 -mediated direct oxidative coupling of indoles and N-acyl indoles for the synthesis of benzofuroindolines.... Scheme 11 Related oxidative couplings of

In order to determine whether a purely vascular dysfunction or a neuronal alteration of blood vessels diameter control could be responsible for the impaired

The results obtained prove that the available useful power and the total thermal efficiency of gas turbine have been kept constant, as in operating conditions (ISO conditions),

In this paper, we introduce a design method of the cognitive information display for the water level control of steam generator, which is made up of the task selection, the

Formulas (3, 4, 6, 8-16) as well as the stability criterion (2) are the basis of the proposed model for the calculation of steam-water flow in ground pipelines of

Anchura de lavado • Largura de lavagem • Ширина моющейся поверхности mm 550 Serbatoio Soluzione • Cleaning solution tank capacity • Lösungsbehälter • Réservoir de

The aim of this controller is to combine the estimation (based on the current DNI value) of the water mass flow rate to impose at the inlet of the system in order to

Edited by: Brian Godman, Karolinska Institutet (KI), Sweden Reviewed by: Alessandra Maciel Almeida, Faculdade de Cie ˆ ncias Me´dicas de Minas Gerais, Brazil Ludo Haazen,

For both Miscanthus × giganteus and wheat straw samples, the LOI showed higher value (p &lt; 0.001) for the pretreated samples compared to the untreated material (Table 

Most of the information presented in this section concerns the heat exchanger tubing, including its fabrication, materials of construction and installation into the tube sheets

340 Steam é a máquina lavadora e varredora de nova geração com dimensões compactas, para a limpeza de superfícies múltiplas e adaptada para espaços de tamanho médio..

1 On the other hand, historians of technology have pointed out the prolonged resilience of the Boulton and Watt low-pressure engine design in England, despite the fact

La durée de réanimation avant retour à une activité circulatoire spontanée (RACS) a déjà été décrite comme étant un facteur associé à la mortalité dans une série de

The physical problem consists here to solve the linear heat conduction in the case of an orthotropic material, with k a 2D tensor of the thermal conductivity and ρc a scalar value

In addition, the effects of various parameters on power plant efficiency with absorption cooling system are inves- tigated which include, vapor extraction rates, changes in the steam

In this study, exergoeconomic analysis is performed on a steam power plant in Iran and effects of adding a new feedwater heater to the cycle are investigated through exergy

On the other hand, according to expressed pattern plot in Figure 10, the thermal conductivity coef fi cient of reservoir and adjacent formation can be calculated by matching