• Aucun résultat trouvé

Legume-enriched Pasta

N/A
N/A
Protected

Academic year: 2021

Partager "Legume-enriched Pasta"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: hal-02818916

https://hal.inrae.fr/hal-02818916

Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Legume-enriched Pasta

Maud Petitot, Chantal Brossard, Cecile Barron, Colette Larre, Marie Helene

Morel, Evelyne Paty, Brigitte Nicolie, Valérie Micard

To cite this version:

Maud Petitot, Chantal Brossard, Cecile Barron, Colette Larre, Marie Helene Morel, et al..

Legume-enriched Pasta: how structure impacts starch and protein digestibilities and protein allergenicity.

Biopolymères 2010 Matrices alimentaires : Construction, déconstruction, propriétés sensorielles et

nutritionnelles, Institut National de Recherche Agronomique (INRA). UR Biopolymères, Interactions

Assemblages (1268)., Dec 2010, Le Croisic, France. �hal-02818916�

(2)

1

Legume-enriched Pasta : how structure

impacts starch and protein digestibilities

and protein allergenicity

M. Petitot,

C. Brossard

, C. Barron,

C. Larré

,

M.H. Morel,

E. Paty, B. Nicolie

, V. Micard

Biopolymers – Le Croisic, December 3rd2010 UMR IATE, SupAgro, Montpellier CHU Necker, Paris

UR 1268 Bia, INRA Nantes CHU Angers, Angers

Inspired by The Mediterranean diet and its health benefits

Wheat & Legume Well represented But Legume consumption decreased

Interest of Mixing Durum Wheat and Legume in pasta

Fibres + Proteins ++ Rich in Lysine Poor in sulphur Aa Fibres Proteins Poor in Lysine Rich in sulphur Aa

Nutritional complementarities

STRUCTURE

digestibility and allergenicity

Starch digestibility Protein

?

Durum wheat pasta structure

Macroscopic

Microscopic

Durum wheat + water

Starch (~75%) Amylose Amylopectin Gliadins Gluten (~13%) Glutenins S-S bonds

+

Starch granules Gluten network + fibres (3%) Supramolecular

+

Durum wheat pasta: a low glycemic index (GI) food

Structure/ Nutrition: what is known on durum wheat pasta

Cereal products GI Glucose 100 95 65 53 Foster-Powell, 2002 Time (h) G ly ce m ia (g /L

)

GI =

Area A (tested food) Area B (bread or glucose)

-

Pasta compactness

(Fardet et al.,1998; Granfeldt et al, 1991)

-

Encapsulation of starch by proteins

(Colonna et al, 1990; Fardet et al, 1998)

-

Physical structure of starch

(Akerberg, 1998, Englyst et al, 1992; Holm et al, 1988)

Main hypothesis

*100

Pasta structure and nutritional properties:

impact of Legume addition and changes in process

?

Starch and

Protein

Digestibilities

Allergenicity

Porosity Protein network

COMPOSITION

P

R

O

C

E

S

S

IN

G

100% Durum wheat

(

CONTROL)

35% Split pea

LT-dried

Freeze-drying LT (55°C) (CONTROL) VHT.LM (90°C)

Methodology

Macroscopic Microscopic Supramolecular Porosity Rheology Starch Proteins Fibres Protein interactions

Structure

PASTA STRUCTURE

in vitro starch digestibility

G

I

RAG (% available carbohydrates) 110 90 70 50 30 10 0 20 40 60 80 100 120 Time (min) r = 0.76 (P < 0.001) GLYCEMIC INDEX Englyst et al, 1996 PROTEIN HYDROLYSIS 100 ] NH [ ] NH [ ] NH [ ] NH [ (%) DH ) 0 T ( 2 ) Ttotal ( 2 ) 0 T ( 2 ) Tx ( 2 − × = ALLERGENICITY Presence of IgE-Reactive Fragments in digestion juices : inhibition ELISA, pools of sera from allergic patients to wheat or to pea

Gastric : 30 min pepsin, pH2 Intestinal = Gastric + 3h pancreatine, pH7

Impact of legume flour addition

100% Durum wheat pasta

(control)

35% Split pea pasta

DW SP LT drying

Pasta composition

Pasta Proteins (% db) Starch (% db) Fibres (% db) Insolubles Solubles 100% Durum wheat 13.3 77.6 2.4 0.7 35% Split pea 16.1 67.0 6.2 0.8

35% legume fortified pasta: higher protein and fibre contents

- Porosity (Hg porosimeter):

Macroscopic structure of dry and cooked pasta

Total porosity (%) 100% Durum wheat 5.9 35% Split pea 5.6 No effect 0.00 0.02 0.04 0.06 LT LT LT T P A H a rd n e s s ( N .m m -_ ) b a 100% DW35% SP 100% DW 35% SP 0 1 2 3 4 5 6 LT LT B re a k in g e n e rg y ( * 1 0 -5) (J .m -3) a b Tension test Compression test - Rheology (TAXTplus):

Legume effect: higher hardness and lower breaking energy

Microscopic structure of cooked pasta

100% Durum wheat 35% Split pea Legume fortified pasta Some partially gelatinised starch granules

Starch

Polarised light Increase in fibre content

Fibres

Fluorescence 100 µm 100 µm 100 µm 100 µm 100 µm No major impact

Proteins

CLSM + image analysis Protein Starch

(3)

2

Supramolecular structure of cooked pasta

SE-HPLC after protein extraction

Legume pasta: - non covalent bonds - covalent bonds Weaker protein network Covalent (others) Non covalent Covalent (S-S) 0 10 20 30 40 50 60 70 80

Non covalent Covalent S-S Covalent autre

% o f to ta l p ro te in c o n te n t Durum wheat 35% Split pea a b a b a ab

Non covalent bonds S-S bonds Other covalent bonds

Pasta samples RAG value % Available carbohydrates 100% Durum wheat 62.5 ±1.0 a 35% Split pea 59.4 ±1.1 a

in vitro Starch digestibility of cooked pasta

Rapidly available glucose : RAG value

No effect of structural modifications made by pasta

fortification with 35% of legume flour on the RAG value

No change in the in vitro starch digestibility (RAG)

in vitro Protein digestibility and allergenicity

Degree of Proteine hydrolysis (%, n=3)

Pasta fortification with 35% of legume changed both

• the in vitro protein digestibility

• the in vitro allergenicity of digestion juices

(nature and quantity of released fragments) 0 5 10 15 20 25 30 35 Gastric pepsin pH2 End of intestinal + 3h pancreatin pH7 wheat-LT 35%Pea-LT a b c d

ELISA Inhibition with allergic sera : presence of IgE reactive fragments (IgE-RF)

Gastric juices 0 20 40 60 80 100 a G liadi ne g G liadi ne LM W g lute nines Alb/G lob LTP Legu min fract ion 7S pea extra ct Wheat Pea Protein fractions % in h ib it io n Wheat-LT 35%pea-LT Pasta

Freeze-drying

LT

(55°C) CONTROL

VHT.LM

(90°C)

35% Split pea

Impact of drying treatments

- Porosity:

Macroscopic structure of dry and cooked pasta

Total porosity (%)

Freeze-drying 14.9 LT 5.6 VHT.LM 6.5 Freeze-drying : Porosity 0.00 0.02 0.04 0.06 0.08 0.10 0.12 Freeze-drying LT VHT.LM H a rd n e s s T P A ( N .m m ) 0 2 4 6 8 10 LT VHT.LM B re a k in g e n e rg y ( * 1 0 -5) (J .m -3) Tension test Compression test - Rheology:

VHT.LM: Strengthened pasta structure

Microscopic structure of cooked pasta

Starch

Proteins

LT Freeze-drying

VHT.LM

Effect of drying No major impact No major impact

nd

0 10 20 30 40 50 60 70

SDS-soluble DTE-soluble Insoluble

% o f to ta l p ro te in c o n te n t Freeze-drying LT VHT.LM Non covalent bonds S-S bonds Other covalent bonds

SE-HPLC after protein extraction

a b c a ab ab a b b

Freeze-drying : idem than LT-dried pasta VHT.LM: proteins linked by covalent bonds

Supramolecular structure of cooked pasta

0 10 20 30 40 50 60 70 80 90 100 Freeze-drying LT VHT.LM % A v a il a b le c a rb o h y d ra te s

In vitro starch digestibility of cooked pasta

56.8 47.2 Rapidly available glucose: RAG value

b 59.4 88.1 48.2 c a Freeze-drying RAG

Higher porosity could increase accessibility to amylases VHT.LM RAG

Stronger protein network at a supramolecular level

in vitro Protein digestibility of cooked pasta

Degree of Proteine hydrolysis (%, n=3)

Freeze-drying No significant difference

VHT.LM DH in gastric conditions only – kinetical effect ? Stronger protein network at a supramolecular level 0 5 10 15 20 25 30 35 Gastric pepsin pH2 End of intestinal + 3h pancreatin pH7 Freeze-dried LT VHT.LM a c b b a a

(4)

3

In vitro allergenicity of digestion juices of cooked pasta

56.8 47.2 ELISA Inhibition with allergic sera : presence of IgE reactive fragments (IgE-RF)

59.4 88.1

48.2

Freeze-drying no significant difference VHT.LM Changes concerned wheat proteins

presence of IgE- RF from some wheat proteins (γgliadins, LTP…) Gastric juices 0 20 40 60 80 100 a Gliadi ne g Gliadi ne LMW glute nines Alb/G lob LTP Legu min fract ion 7S pea extra ct Wheat Pea Protein fractions % i n h ib it io n Freeze-dried LT VHT.LM

Pasta Intestinal juices

0 20 40 60 80 100 a Gliadi ne g Gliadi ne LMW glutenine s Alb/G lob LTP Wheat fractions % i n h ib itio n

Conclusions (1)

COMPOSITION

P

R

O

C

E

S

S

IN

G

More fibres Non- gelatinised starch at the core Weaker protein network Same RAG value Change DH and IgE-RF Freeze-drying: porosity VHT.LM Stronger protein network

(Covalent links) No effect

Freeze-drying: RAG, same DH and IgE-RF VHT.LM: RAG, Change DH

and IgE- RF from wheat More fibres More fibres

Conclusions (2)

Hypothesis

: A highly aggregated protein network

would be more resistant to protein hydrolysis, which

could delay hydrolysis of starch by amylases

Protein network thickness: No changes Pasta porosity : YES

Nature & quantity of interactions between proteins: YES

Structural elements involved in starch digestibility

Conclusions (3)

A highly aggregated protein network would be more

resistant to protein hydrolysis, which could delay

hydrolysis, change released fragments

and impact

their allergenicity response

Protein network thickness: No changes Pasta porosity : NO

Nature & quantity of interactions between proteins: YES

Structural elements involved in protein digestibility and allergenicity

PASTALEG

PASTALEG

PASTALEG

PASTALEG

PASTALEG

PASTALEG

PASTALEG

PASTALEG

“Design of foods made from durum wheat and

legumes: How the association of their

components contributes to their nutritional and

Références

Documents relatifs

[r]

In FELIX KLEIZ~ Ober t~iemann's Theorie der Abel'schen IMegrale finden sieh wichtige Siitze tiber weitcrgehende Beziehungen dicser Art.. l~ber einige Gruudgebilde

&amp; SAMPSON, G., On weak restricted estimates and end point problems for con- volutions with oscillating kernels (I), submitted for publication.. Thesis, Washington

North America Cabernet Sauvignon 2015 Grace Bridge Pinot Noir, California, North America Pinot Noir. 2016 Secret Malbec, Viu Manent, Colchagua Valley, Chile, South America Malbec

Le directeur de communication et internet dans les collectivités territoriales – 2005 / 2006.. 2000, Les extranets, nouvel outil coopératif pour

Microphagous ciliate growth, measured in 64-gin screened water, gave estimates of community generation times of 21.4 h (avg. Declines in microphagous ciliate densities

L’Utilisateur reconnait que YES WE WINE ne peut être tenue pour responsable de l’utilisation que l’Utilisateur peut faire du Site et/ou de l’Application.. YES WE WINE met

• La première action correspond à une force parallèle à la vitesse et de sens contraire ; la seconde action correspond à une force perpendiculaire à la vitesse et peut