• Aucun résultat trouvé

Algebraic construction of bilinear forms over $\protect \mathbb{Z}$

N/A
N/A
Protected

Academic year: 2022

Partager "Algebraic construction of bilinear forms over $\protect \mathbb{Z}$"

Copied!
5
0
0

Texte intégral

(1)

THÉORIE DES NOMBRES BESANÇON

Années 1996/97-1997/98

A l g e b r a i c c o n s t r u c t i o n o f b i l i n e a r f o r m s o v e r z

M . K R Û S K E M P E R

(2)

A l g e b r a i c c o n s t r u c t i o n of b i l i n e a r f o r m s o v e r 7Z

Martin K r us kem p er

A b s t r a c t . C l i a p t e r S in [CS] gives algebraic constructions for c e r t a i n lattices. S o m e o f these c o n s t r u c t i o n s used the trace m a p . lu this n o t e we want to show t h a t by applying [Sj,[W], any bilinear f o r m over with nonzero d é t e r m i n a n t can b e c o n s t r u c t e d as a scaled t r a c e f o r m of s o m e algebra A = Z Ï [ X ] / ( f ( X ) ) where f ( X ) € 2Z[X] is monic, irreducible.

Let R b e a c o m m u t a t i v e ring with 1. À bilinear f o r m over R is a p a i r ( M , b) where M is a finitely g e n e r a t e d projective A - m o d u l e a n d b : M x M —• R is s y m m e t r i c bilinear.

If M is f r e e a n d e i , . . . , tn is a basis for M t h e n b can b e described b y t h e s y m m e t r i c n x n i n a t r i x B = ( b ( t t j ) ) over R.. Couversely any B G S y m ( n , R ) defines t h e bilinear f o r m ( Rn, B ) . T h e déterminant. <U:l{M,h) is defined as d t t ( M , b ) = d e t B . ( M , b ) is called régulai- if d t t ( M , b ) is a unit iu R. We call two forms ( M , b) a n d ( M ' , b ' ) with m a t r i c e s B , B ' G S y m ( n , R) isométrie if t h e r e exists an invertible M G M a t ( n , R ) such t h a t B = M * B ' M .

If fi : R. —• A is a r i n g m o r p h i s m such t h a t A is a finitely g e n e r a t e d p r o j e c t i v e R - m o d u l e ancl s G HoniFt(A, i?.), then t h e m a p [ x , y ) € A x A —* s ( x y ) defines a bilinear f o r m (A, s) over R. More generally, if J is an idéal in A such t h a t J is a finitely g e n e r a t e d p r o j e c t i v e /?.-module then (x, y) Ç î x l - » s ( x y ) defines a bilinear form ( J , s ) over R . W e call (Z\.s) scaled trace form of A / R .

Let f ( X ) 6 %[X] be a mouic separable polynomial of degree n (in one variable X ) . T h e n A : = Z [ X ] / ( f ( X ) ) is a free i £ - m o d u l e of r a n k n with basis 1 , X , . . . , Xn~1. We set A q A ® Q. If f is irreducible then A q = Q ( A ) dénotés t h e quotient field of A. Let T r : A q Q d é n o t é t h e trace m a p which is n o n - z e r o . E u l e r ' s l e m m a (see [L]

III—I, proposition 2, corollary) implies t h a t we have:

A * : = {c G A q | T r ( c A ) C Z } = l / ( f ' ( X ) ) A .

A n y c G A * defines a s y m m e t r i c bilinear form (A, T rc) w h e r e T rc m a p s ( a i , 02) G A x A to T r ( c a i n - i ) . Let N : A q —* Q dénoté the n o r m m a p . It is well known (compare [L] I I I - l ) t h a t if c = c u / f ' [ X ) G A#, where cu G A, then we h a v e d e t ( A , T rc) = ( _ l ) « ( « - i ) / ^ V ( cu) . In particular, if c ^ 0 then d t t ( A , T rc) £ 0 a n d t h e f o r m ( A , T rc) is r e g u l a r if Co is a unit in the intégral closure. More generally, let J C A be an idéal in A a n d let c G ( T '!)#. Tlieu we obtain a s y m m e t r i c bilinear f o r m ( J , T rc) if T rc m a p s ( a i , « a ) € J x î to '7V(c«i«2). Note t h a t if B is an idéal in A then B * = B ~XA * = l / ( f ' ( X ) ) B ~l. If c = cu/ f ' { X ) where c„ G 1 ~2 we have d e t ( l , T rc) =

( - l ) « l » - W N { cu) N { l ) i . ( C o m p a r e [CS] page 220.)

An obvions question is the l'ollowiug: Let (MJ>) be a scaled t r a c e f o r m of A/Ziï. If ( N , b') is s y m m e t r i c bilinear such t h a t ( M , h) 0 Q is isométrie to ( N , b') <g> Q, then is

1

(3)

( N , b') also a scaled trace form of A j 221 T h e following ax a m p l e s show, t h a t t h e answer to this question is negative:

E x a m p l e s , (a) Let d € 22 be not a s q u a r e aucl set A = 22[Vd\. Let ( M , b) be a t w o - d i m e n s i o n a l s y m m e t r i c bilinear lbrni over 22. T h e n there exists s o m e c € A * such t h a t ( M , b) = ( A , T rc) if aud only if there exists a 2/-basis m i , m2 of M such t h a t t h e m a t r i x of b w i t h respect to m 1,1112 is in

Proof. Set r : = " - f f i6. We obtain as i n a t r i x of ( A , T rr) with respect t o t h e 22-basis 1 , V d ,

( a ' V

\ b a d )

(b) W e consider t h e field extension A = Q [ \ / d ] / Q . It is easy t o chek t h a t a two- d i m e n s i o n a l s y m m e t r i c bilinear f o r m ( M , b) over Q is scaled t r a c e f o r m of A / Q if a n d only if 0 ^ —det(M, b) is a n o r m .

(c) Let A = ^ ^ T j . Since A

is a principal idéal d o m a i n , e x a m p l e (a) describes ail scaled t r a c e f o r m s of A j A t w o - d i m e n s i o n a l f o r m of d é t e r m i n a n t —4 is a scaled t r a c e f o r m of A / 2 2 if and only if it is given by a m a t r i x of t h e followig t y p e

{ ^ J |« = ± 2 , b = 0 or a = 0 ,b = ± 2 } .

T h e s e m a t r i c e s describe only two différent i s o m e t r y classes of f o r m s over 22. It is well known t h a t t h e r e exists more thau two différent isometry classes of s y m m e t r i c bilinear forms over 22 with d é t e r m i n a n t —4 (See [CS] page 3(52.); m o r e precisely, t h e f o r m given by t h e m a t r i x

U

is not a scaled t r a c e torni ot Aj22. Siuce over Q t h e r e exists only one i s o m e t r y class of forms w i t h d é t e r m i n a n t —4 we see t h a t t h e answer to t h e above question is negative.

T h e following p r o b l e m remains opeu: Let d 6 22 b e not a square a n d

A = Z[y/2j.

T h e n d e t e r m i n e ail isometry classes of scaled t r a c e forms of A / Z . Let D 6 M a t ( n , 22).

Let X d ( X ) = d e t ( X En - D ) e 22[X] be t h e characteristic polynomial of D . T h e next l e m m a was shown in [T]. Other p roofs and généralisations of this resuit can b e found in [CP], [IS], [W].

L e m m a 1. (Taussky) Let B € S y 111.(11,, 22) such. that det. B ^ 0. Suppose there exists some M € M a t ( n , Z ) such. Unit B M ' = M B a n d \ . \ i ( X ) is irreducible. Let A : =

(4)

2Z[X}/(xm{X)). Then U k i t txisls su nu <• G A q und /j t, . . . , hn G A such that Zfby + . . . + 2Zl)n is un idéal in A and B = ( T r ( c btb j ) ) . Furtherrnore ( 6 1 , . . . , bn) G Q { A )n is an eiytnvector of M G M a t ( u , Q { A ) ) .

N o t e t h a t t h e above c is in (2£l>i + . . . 4- 2Sbn)*.~ Given s o m e B G S y m ( n , 2Z) we can always fincl s o m e M such t h a t B M1 — M B : Choose any S G S y m ( n , ZS) and set M : = B S . T h e n B M * = B { S B ) = M B ( C o m p a r e ([CP]).

L e m m a 2. F o r a n y B G S y m ( n , Z ) , det B ^ 0 there exists M G M a t ( n , Z ) such that B M4 = M B a n d X m ( ^ ) Z [ X ] is irrcduvible. F u r t h e r r n o r e we m a y assume that X m { X ) is totully real, that is ail zéros of x m ( X ) are real.

Proof. Let N = ( X j j ) b e t h e s y m m e U i c u x n m a t r i x where t h e coefficients X i j = X j i are new i n d e t e r m i n a t e s . Choose C G G L ( n , Q) such t h a t ClB C is a diagonal m a t r i x . Since we m a y view C ~lN { C ~1) ' as a. s y m m e t r i c m a t r i x with i n d e p e n d e n t indetermi- n a t e s as coefficients, by [S] or [W] tlu- chanicteristic p o l y n o m i a l of ( CtB C ) C ~1N ( C ~l)t is irreducible a n d it is also t h e e h u r a c t r i i s l i e p o l y n o m i a l of B N . By H i l b e r t ' s irre- ducibility t h e o r e m , t h e r e exist «t ï = a G Q such t h a t x/s ( ai j) ( ^ ) is irreducible. If we choose a G ZSsuch t h a t ail <i<itJ G ZS, then \B(uat J){X) = anXB(a,J)(<1~1X) is irreducible.

Hence we set M : = B ( u a{ J) . We have B M ' = £ ( « « , , ) ' £ < = M B .

By [S], we m a y choose t h e above, such t h a t Xfî(a,J)(^) is totally real. B u t t h e n XB(uai })\X) is t o t a l l y real as well. •

Using t h e above n o t a t i o n s we have shown:

T h e o r e m . Let ( M , b ) be a biliutur f o r m over ZS such that d e t ( M , b ) 0. Then there exist a monte, ir rtdacible / ( X ) G Z [ X ) , some idtal 1 C A : = 2 S [ X } / ( f ( X ) ) , and c G {Z2)* such that ( M , b) = ( J , T rc) . W<-: m a y a s s u m e that f { X ) is totally real.

R e m a r k s , (a) T h e resuit holds m o r e generally for ( M , b) over R , d e t ( M , b) ^ 0 where R is t h e intégral x l o s u r e of in some finite field extension F / Q and M is finitely g e n e r a t e d free. W e can also choose f l = k[X] w h e r e k is a field.

(b) Let B G S y m ( n , Z ) such t h a t det B 0 a n d t h e r e exists s o m e c G A q and b i , . . . , bn G A such t h a t B = (Tr(eb;bj)}. Let B ' G S y m ( n , ZS) such t h a t t h e r e exists C G M a t ( n , Z ) with d e t . 0 = ± 1 and B1 = 0 * 8 0 . T h e n t h e r e exists some d G A q a n d « ! , . . . , « „ G A such t h a t B ' = (TV(c'm,-«,-)). F u r t h e r r n o r e , for t h e ideals we have ZSbi-(-... + ZSbn = Z u i + . . . -f 7Zan.

Proof. By [CP] III 5.2, t h e r e exists M G M a t { n , Z ) such t h a t B M * = M B and /I = Z [ X ] / ( x m ( X ) ) . T h e n

(6, tyW(6, É)-1)(C, <56') = C ' B M ' O = ( Ct5 C ) ( CtA / ( C<) "1)<.

(5)

Q u e s t i o n . Let ( M , l>) be a bilim-ar form over R, where R. is the intégral closure oi 2Z 'm s o m e finite fiel cl extension F / Q , such tliat M is uot; a free but a p r o j e c t i v e /2-module.

C a n we realize ( M , b) as scaled trace l'onn of s o m e /?-algebra A?

R E F E R E N C E S

[CP] C o n n e r , P. E. , Perlis, R. , A survey of trace f o n n s of algebraic n u m b e r fields.

World Scientific, Singapore, 1984.

[CS] Conway, J . H. , Sloane, N. J . A . Spliere packings, lattices a n d groups. Berlin, Heidelberg, New York, Springer 1988.

[IS] Ischebeck,' F. , Scha,rlau, W. , H e n n i t esche uncl o r t h o g o n a l e O p e r a t o r e n ûber k o m m u t a t i v e n Ringen. M a t h . Ami. 200, 327-334 (1970).

[L] Lang, S. , Algebraic n u m b e r tlieory. fteading, M a s s a c h u s e t t s , Addison Wesley 1970.

[S] Scharlau, W . , On trace f o n n s of algebraic n u m b e r fields. M a t h . Z. 196, 125-127 (1987).

[T] Taussky, O. , On t h e shnilarity t r a n s f o r m a t i o n between an intégral m a t r i x with irreducible characteristic polyuomial and its transpose. M a t h . A n n . 166, 60-63 (1966).

[W] W a t e r h o u s e , W . C. , Scaled trace f o n n s over n u m b e r fields. Arch. M a t h . 47, 229-231 (1986).

F e b r u a r y 1997

M a t h e m a t i s c h e s I n s t i t u t der Universitat, Einsteinstralie 62

D-48149 M u n s t e r

e - m a i l - a d r e s s : kruskeiu(y>maUi. uni-muetister.de

-i

Références

Documents relatifs

 Berlin  Heidelberg:  Springer

En plus de cela, nous avons besoin de calculer la masse de divers genres de formes hermitiennes connaissant le système d'invariants du théorème 1.5.5.. Le troisième chapitre est un

Si l'on veut démontrer que les 2-groupes extra-spéciaux se réalisent comme groupes de Galois d'extensions régulières sur Q (T) sans demander une construction explicite de ces

[r]

[r]

( Rappelons que le polynome fondamental f étudié dans la suite est le polynome donné par la formule ( III — 1 &gt; )... Comme dans la démonstra- tion de la

Nathan Sivin, Health Care in Eleventh-Century China (Cham, Heidelberg, New York, Dordrecht, London:..

After recalling some lemmas in section 2, it is proved in Theorem 3.1 that if θ 6≡ 0( mod pA) and p|i(θ /p k ), for some positive integer k, then the p-adic valuation of the