• Aucun résultat trouvé

An Only Knowing Approach to Defeasible Description Logics (extended abstract)

N/A
N/A
Protected

Academic year: 2022

Partager "An Only Knowing Approach to Defeasible Description Logics (extended abstract)"

Copied!
13
0
0

Texte intégral

(1)

Desription Logis (extended abstrat)

EspenH.Lian andArildWaaler

DepartmentofInformatis

UniversityofOslo,Norway,

{elian,arild}ifi.uio.no

1 Introdution

Weproposetheonly-knowinglogiO R

ALC,basedonthedesriptionlogiALC.

Only-knowinglogiswereoriginallydesignedasmodallogisoveralassialon-

sequenerelation fortherepresentationofautoepistemireasoning[17,18℄ and

defaultlogi[15℄.Only-knowinglogisareworthonsideringforseveralreasons:

They are monotoni logis with a lear separation between objet level and

metalevelonepts,andtheyallowfaithfulandmodularenodingsofautoepis-

temianddefaulttheorieswhihdonotinreasethesizeoftherepresentations.

Theenodingsthusprovideautoepistemianddefaultlogiswithformalseman-

tis andoneptuallarity.Besidesbeingompletelyaxiomatized,propositional

only-knowing logis support enodings of propositional autoepistemi and de-

faultlogiswithnieomputationalproperties.

{ There is a simple rewrite proedure that determines extensions. Some of

the rewrite rules are preonditioned by SAT tests, and these are the only

refereneto meta-logialoneptsin theproedure.

{ Theextensionproblem forpropositionalonly-knowinglogishavethesame

omplexityasforpropositionalautoepistemianddefaultlogis.

Toourknowledge,noextensionofonly-knowinglogistodesriptionlogishave

yet beengiven. In thispaperwetakethe desriptionlogi ALC astheunder-

lying logiinsteadof lassialpropositionallogiand generalizethe mahinery

originallydesignedforpropositionallogisofonly-knowing.Thestrengthofthe

proposedonly-knowinglogiis thesimplerewrite proedure that itadmits for

omputing extensions, and thefat that reasoning isnot harderthan in ALC.

ThelogiO R

ALC proposed inthispapersubsumesthepropositionallogithat

weproposedin[20℄and extendsthatworkinanon-trivialway.

The logi ALCK

NF

introdued by Donini, Nardi and Rosati [9℄ is losely

related toO R

ALC.It is onstrutedbyombiningMKNF withALC. It isnot

obvioushowthis should bedone, and in ouradaptation of only-knowinglogi

toALC,wehavebeenguidedbyALCK

NF

.Unlike[9℄,wedonottreatso-alled

subjetivelyquantiedexpressionsinthispaperbutthelogiwepresentisstrong

enoughtorepresent,e.g.,defaulttheoriesforALC.

In[9℄,atableauproedure forALCK

NF

isintrodued. Althoughtheproe-

(2)

to guess extensions and then usethe proof proedure to hekwhether ornot

theguesswasorret.Inontrast,theproedurethatweproposedeterminesall

extensionsdiretly.UnliketheproofsystemforALCK

NF

,weformalizeinferene

stepsthataresuÆientfordeterminingextensionsbutnotforharaterizingthe

wholesemantis.

2 O

R

ALC

Thelanguageof O R

ALC is dened intwosteps:rstaonept language,then

amodalformula language.

Conept Language. ThebasisfortheoneptlanguageisALC [1,29℄:

C ;D !>j?jC

at

j:CjCuDjCtDj9R

at :Cj8R

at :C

whereC

at

isanatomioneptandR

at

anatomirole.WewillallALConepts

objetive onepts.TheoneptlanguageforO R

ALCextendsobjetiveonepts

withmodaloneptformationoperators 1

B(belief) andA(assumption):

C ;D !C

ALC

j:CjCuD jCtDjBC jAC

whereC

ALC

isanobjetiveonept.Amodalonept isoftheformBCorAC;

if C is objetive, the modal onept is prime. A onept is subjetive ifevery

objetivesuboneptiswithinthesopeofamodaloneptformationoperator.

An interpretation I = (;

I

) over onsists of a non-empty domain

andaninterpretationfuntion I

mappingatomioneptsandrolestosubsets

of and resp. Following [9℄ we assume that the domain ontains all

individuals in the language, and that a I

= a for eah individual a. Conept

desriptionsareinterpretedrelativetoapairM=(U;V)andaninterpretation

I; werequirethatU andV areinterpretationsover andthat V U,butwe

donotrequirethatI 2U.ALC oneptsevaluaterelativetoanI asusual,e.g.,

(:C) M;I

=nC M;I

,whilemodaloneptsareinterpretedasfollows:

(BC) M;I

=

\

J2U C

M;J

(AC) M;I

=

\

J2V C

M;J

AnABox Aisanitesetofobjetive membershipassertions,i.e.onept asser-

tions C(a) and role assertions R (a;b) for individualsa andb.O

A

is theset of

individualsexpliitlymentionedinA.Amodalatom isanassertionoftheform

M(a), whereM is amodalonept; M(a) isprime ifM isprime.M satises

C(a) in I if a 2 C M;I

; M satises R (a;b) in I if (a;b) 2 R M;I

. As we will

see,modalatomsplayanessentialroleintherewritesystem.ADBox isanite

setofterminologial axioms,i.e.inlusions CvDforoneptsCandD,while

1

Inthe literature, K is sometimes used instead ofB, and :M: insteadof A. For

intuition about the modalities,onsult the literature about MKNF[9,22,23℄ and

(3)

a TBox is an objetiveDBox. M satises C vD in I if C D . We

dene a knowledge base (KB) asa tuple (T;A;D), where T is aTBox,A an

ABox,and DisaDBox.TheDBoxwill typially(but notneessarily)ontain

representation of default rules. Weassume standardnotionsand notations for

default theories.Let ,

k

for 16k6n and beALC-onepts. Below isan

ALC-default anditsrepresentation(followingKonolige[14℄;notethat [9℄hasa

Bin frontof)asaninlusionstatement:

:

1

;:::;

n

= ; Bu:A:

1

uu:A:

n v

Bdenotesthatisbelieved,while:A: denotesthatisonsideredpossible,

orthat isonsistent withonesbeliefs.BisstrongerthanAin thesense that

everyMsatisesBCvAC in everyinterpretationI.

Interpretation of anobjetive oneptis independentof M, hene we may

write C I

forC M;I

andsay thatI satises C(a),writtenI C(a),ifa2C I

;

similarlyforroles,roleassertionsandinlusionstatements.Henewemaywrite

IAandI T ifeveryelementin therespetiveABoxandTBoxissatised

byI.WealsowriteI (T;A)ifI T andIA.Foranobjetiveassertion,

wewriteT;AifI foreveryI suhthatI (T;A).Similarly,T;AA 0

ifIA 0

foreveryI suhthat I(T;A).

FormulaLanguage. Formulaearedenedasfollows.Coneptandroleassertions,

TandFareatomi formulae.:','^ and'_ areformulaeif'and are.

B, A,

B and O are modal operators. B and A orrespond to their onept

formation operator ounterparts, O is an \only knowing"-operator[17,33,20℄,

while

B isa\knowingatmost"-operator,orrespondingtoC: of[20℄.L'isa

formulaifL isamodaloperatorand 'is aformula withoutanyourreneof

. ' is aformula if'is a subjetive formula, i.e. everyatomi formula that

ours asasubformulain 'is eitherasubjetiveassertionorwithin thesope

ofamodaloperator.NoteinpartiularthatifCisanobjetiveonept,BC(a)

isamodalatom,andheneanatomiformula,whileB(C(a)) isnotanatomi

formula. Abbreviations:') and ', aredened asusual;

3

'is::';

O R

'isO'^:O'. LetL beamodaloperator.A formulaisL-freeifitdoes

notontainL(neitherasamodaloperatornorasaoneptformationoperator)

andL-basi ifitis subjetiveandontainsnoothermodalitythanL.

Relativeto the universal set U of allinterpretations over that satisfyT,

a model is a pair (U;V) suh that V U U. The modality quanties

over models by means of a binary relation >. Let M = (U;V). M 0

> M if

M 0

= (U 0

;U)for someU 0

U; in whih ase we say that M 0

is larger than

M. Truth onditionsaregivenrelativetoaninterpretationI,whihneedsnot

bein V.Atomiformulaeandonnetivesareinterpretedasonewouldexpet,

e.g., Mj=

I

C(a) i a2 C M;I

, Mj=

I

T and M 6j=

I

F.The modal operators

areinterpretedasfollows:

{ Mj=

I

B'iMj=

J

'foreahJ 2U;

{ Mj=

I

A'iMj=

J

'foreah J 2V;

{ Mj=

B'iJ 2U foreah J 2U suhthat Mj= ';

(4)

{ Mj=

I

O'i(Mj=

J

'ifandonlyifJ 2U)foreahJ 2U;

{ Mj=

I

' iM

0

j=

I

'foreveryM 0

>M.

We write Mj= ' ifM j=

I

'for eah I 2 U. Relative to amodelM, k'k M

denotes the truth set of ' in M, i.e. fI 2 U j M j=

I

'g. Note that if ' is

objetive,k'k M

is givenindependentlyofM,asitonlydependsonthepoints

in U. Foranyobjetive':

{ U =k'k i(U;V)j=O';

{ V k'ki(U;V)j=A'.

{ U k'k i(U;V)j=B';

{ U k'k i(U;V)j=

B';

Also note that in the lauses that dene truth for the modal operators, the

interpretation I playsno ativerole in thedenition.When'is subjetive,it

is immediatethat Mj=

I

'i Mj= ',i.e. weansafelyskip thereferene to

I. Thisisalsothereasonwhythefollowingobservationholds.

Lemma1. Foranysubjetive onept M,

either Mj=M(a),>(a) orMj=M(a),?(a).

It is also the asethat Mj= ' orMj= :', for any subjetiveformula '. A

formula' isstrongly valid, written j',if Mj= 'foreverymodelM. There

is also a weaker notionof validity, whih is the notion of validity that we are

primarilyinterestedin.Itisdenedrelativetothesetofweak models:(U;V)is

aweakmodelifU =V.'isvalid,writtenj=',ifMj='foreveryweakmodel

M.Clearly,strongvalidityimpliesvalidity,but notonversely.

Lemma2. jB')A'andj=A')B'.

Proof. Follows from the onditions V U (for arbitrarymodels) and V =U

(forweakmodels). ut

We are interested in models M of O R

', thus wewant M to satisfy O' but

not

3

O',i.e.nolargermodelthanMshouldalsosatisfyO'.Thegurebelow

illustratesthetruthonditionsrelativetoM

2

>M

1

,whereM

1

=(U

1

;V

1 )for

anobjetive'andanarbitraryV

1 U

1

k'k,andM

2

=(U

2

;V

2

)=(k'k;U

1 ).

M

2

j=O'^:

3 O' V

2 U

2

=k'k

M

1

j=:O'^

3 O' U

1 k'k

= Examining M

1

, we see

that U

1

k'k, thus

B'doesnothold inM

1 ,

hene neither does O'.

O' is, however, true in

M

2

, and sine M

2

>

M

1 ,

3

O'istruein M

1 .

Examining M

2

, we see

that U

2

=k'k, thus O'

istrue.Butasthereisno

M>M

2

thatmakesO'true,

3

O'isnottrue.Hene O R

'holdsin M

2 .

2

We ould have dened Oin terms ofB and

B (syntatially),as Mj=I O' ,

(5)

modelM

1

:Anymodelof

3

O'musthavetheshapeofM

1

,inwhihtheremust

be apoint I 62 U

1

at whih ' is true.Note that B' and :

B' are bothtrue

in M

1

. Conversely, any model ofB'^:

B ' must alsohave theshapeof M

1 ,

satisfying

3 O'.

Lemma3. j

3

O',(B'^:

B') if'isobjetive.

ForformulaeintheA-freefragmentofthelanguage,thetwonotionsofvalidity

oinide.Itiseasytoseethat inthisasetheweakmodelsofO R

'areexatly

themodels(U;U)withthelargestbeliefstateU thatsatisfyO'.

Let[℄denotethefuntionthatreplaesAwithB,and(fortheservieofthe

rewrite rules)puts theresultingformulaonnegation normalform,i.e. [A'℄=

B['℄, [:A'℄=:B['℄,[::'℄=['℄,[:('^ )℄=[:'℄_[: ℄,andsoforth.

Lemma4. j

3

')['℄ if'isA-basi.

Proof. Let M = (U;V). If M j=

3

', then M 0

j= ' for some M 0

> M. By

denition,M 0

=(W;U)for someW U.Sine 'is A-basi,itis interpreted

in M 0

onlyrelativeto U.ButifwesubstituteBfor allourrenesof Ain ',

theresultingformula['℄isB-basiandisheneinterpretedinMrelativetoU

in exatlythesamewayas'isinterpretedinM 0

.Hene Mj=['℄. ut

Weemploytheonventionthat whenanitesetofformulaeX oursin plae

of aformula,this isto beread astheonjuntion ofits elements, i.e.

V

X; for

X = ; this amounts to T. Hene we will refer to a onjuntion of objetive

assertions as an ABox. Next we show under whih onditions OA, for some

ABoxA,impliesaprime modalatom oritsnegation.Aswewill see,thisgives

usthesideonditionsfortheollapserulesintherewritesystem.

Lemma5. Let C andR beobjetive.

1. jOA)BC(a) ifT;AC(a);

2. jOA):(BC(a))if T;A6C(a).

Proof. Let M = (U;V) be a model suh that M j= OA. Then U = kAk. 1.

Assume that T;AC(a).Then I C(a) for everyI s.t. I j=T and I j=A.

Hene U kC(a)k. It followsthat Mj=BC(a).2. Assume that T;A6C(a).

Then I :C(a) for some I s.t. I j= T and I j= A, hene there is some

interpretationJ 2U \k:C(a)k.HeneMj=:(BC(a)). ut

Corollary 1. LetC andR beobjetive.

1. jOA)AC(a) ifT;AC(a);

2. j=OA):(AC(a)) if T;A6C(a)

Proof. ByLemmata2and5. ut

Lemma6. Let AandA 0

beABoxes.

1. jOA)

BA 0

ifT;A 0

A.

0 0

(6)

Generalizing the rewrite system for the underlying propositional language in

[20℄, the system in Fig. 1 onsists of two rewrite relations on formulae. The

rulesoftherelationarebasedonstrongequivalenes,whereasthe^ relation

extends with rules whose underlying equivalenes are merelyweak. We say

that 'reduesto if' , where isthereexivetransitivelosure of.

Redutionanbeperformedonanysubformula.Aformula'isonnormalform

wrt.ifthereis noformula suh that' .Thesamenotationisusedfor

the^ relation.Redutionisperformedmoduloommutativityandassoiativity

of ^ and _,and ' is identied with'^T and '_F;this implies that T and

F behaveasemptyonjuntionanddisjuntionresp.Wedenetobetheset

of rules l r in Fig. 1, while ^ is the union of and theset of rules l^ r.

Applyingtherelationexhaustivelybeforethe^isappliedguaranteesaorret

rewriteproess.

Forformulae and , h=i is asubstitution funtion:'h=i denotes the

resultofsubstitutingeveryourreneofin'with.Substitutionisperformed

stritly on the formula level for the reason that assertions do not onsist of

subassertionsin thesense that formulaeonsistof subformulae.A substitution

of avaluefor anassertionC(a) will notapply to, e.g.,theassertionCtD(a)

butwillapplytotheequivalentformulaC(a)_D(a).Thesubstitutionfuntion

hM(a)=V(a)iforaprimemodalatomM(a)andV 2f>;?gisabinding,whih

binds M(a) toV(a).

Theexpandruleworksbybinding prime modalatoms in O',assumingno

subformulaof'isoftheformB orA foranobjetiveformula .Aformula

with this property is objetive if no prime modal atoms our in it. Observe

that theprimemodalatom BC(a) hasthis property,whereasB(C(a))donot.

Bindings might break this property, e.g.,B(BC(a))hBC(a)=>(a)i =B(>(a)).

ForthisreasonwehavetheM

4

ruleswhihregaintheproperty,shoulditbelost

intheourseofabindingoperation,i.e.aftertheexpandrulehasbeenapplied:

B(>(a))(B>)(a).WhentherearenoprimemodalatomsleftinO',onemay

applytheollapserulestoredue(orollapse) O'^M(a) toeitherO'orF.

The last two rules of C

1

are stritly in .^ These do not preserve strong

equivalene and are hene not sound in all ontexts. Applying the relation

exhaustivelytoaformulaO R

'resultsin formulaeofaformwhihreetsthat

thelasttworulesofC

1

havenotbeenapplied.Toharaterizethiswesaythata

formulaissemi-normal ifitisoftheformOA^foranABoxAandapossibly

emptysetofformulaeoftheformAC(a)and:(AC(a))withCobjetiveand

T;A6:C(a).

Lemma7. For eahsemi-normal OA^,

1. OA^ison normalformwrt.;

2. eitherOA^

^

OAorOA^

^

F.

Theprimary funtion of thesystemis to redue formulaeofthe form O'and

R

(7)

Theexpandrule:

(M

1 )

O'(O'hM(a)=>(a)i^M(a))_(O'hM(a)=?(a)i^:(M(a)))

foranyprimemodalatomM(a)ourringin '

Thedominationanddistributionrules:

'^FF (M

2 )

('_)^ ('^ )_(^ ) (M

3 )

Theassertionalrules:

(M

4 )

:(C(a))(:C)(a)

B(C(a))(BC)(a)

A(C(a))(AC)(a)

C(a)^D(a)(CuD)(a)

C(a)_D(a)(CtD)(a)

For

B

=BC(a) and

A

=AC(a):

(C

1 )

OA^

B

OA

OA^:

B F

OA^

A

OA

OA^:

A F

ifT;AC(a)

ifT;AC(a)

ifT;AC(a)

ifT;AC(a)

OA^

B F

OA^:

B

OA

OA^

A

^ F

OA^:

A

^

OA

ifT;A6C(a)

ifT;A6C(a)

ifT;A6C(a)

ifT;A6C(a)

ForanABoxA 0

:

(C

2 )

OA^

BA 0

OA

OA^:BA 0

F

ifT;A 0

A

ifT;AA 0

OA^

BA 0

F

OA^:BA 0

OA

ifT;A 0

6A

ifT;A6A 0

Rulesfor reduing O R

and

O R

'O'^:O' (R

1 )

:('_ ):'^: (R

2 )

:FT

(R

3 )

:(OA^):BA_

BA_[:℄ forsemi-normalOA^ (R

4 )

IfinruleR

4

is empty,weget

:OA:BA_

BA (R

0

4 )

Fig.1:Therules.AisanABox,CandDobjetiveonepts,andRanobjetive

role.TherulesinC

k

arealled ollapserules.R

1

isnotaproperrule,astheleft

hand sideisan abbreviation ofthe right.Weinlude itfor readability reasons.

(8)

a knowledge base,eah disjunt represents aReiter extension of ' (when O R

is used) or anautoepistemi extension (when Ois used). To ahieve this, the

rewritesystemneedsrulesfor reduingformulaeprexed withOand :, and

whatevertheyarereduedto.

Note that an objetive formula may or may not be an assertion. C(a)_

:C(a)is,forinstane,notanassertion,butanbetransformedtoanequivalent

assertionifwe\pushtheaoutward"andhange_ tot.Belowweaddressthe

reverse operation of \pushing the a inward." We do this to get prime modal

atomsassubformulae,sothat theexpandrulemaybeapplied. Thisoperation,

JK,isdenedasfollows.Forroleassertions,JR (a;b)K =R (a;b),andforonept

assertions,JC(a)K =C(a) forC2f>;?goratomi,and

JLC(a)K= (

LC(a) ifCisobjetive

^

LJC(a)K otherwise

forL2f:;B;Ag;

JC?D(a)K= (

C?D(a) ifC?D isobjetive

JC(a)K ^?JD(a)K otherwise

for?2fu;tg;

where

^

u=^and

^

t=_,and

^

L=LforL2f:;B;Ag.Inlusionsareinstanti-

ated andtranslated intoformulaeasfollows:Foran individuala, JC vDK

a

=

JC(a)K)JD(a)K.

Example 1. LetusaddressthedefaultC:>=C,whihisrepresentedasBCv

C. Let ' =JBC v CK

a

=BC(a) ) C(a). To redue O', we rst apply the

expandruleandthen rulesfrom theC

1

group.Thesameredutions alsoapply

inaboxedontext.AstheformulaisA-free,the^ relationwillnotbeneeded.

O(:BC(a)_C(a))(OC(a)^BC(a))_(O>(a)^:BC(a)) (M

1 )

OC(a)_O>(a) (C

1 )

:O(:BC(a)_C(a)):(OC(a)_O>(a))

:OC(a)^:O>(a) (R

2 )

(:BC(a)_

BC(a))^(:B>(a)_

B>(a)) (R

4 )

HavingreduedO'and:O',weredueO R

'.

O R

'O'^:O'

(OC(a)_O>(a))^(:BC(a)_

BC(a))^(:B>(a)_

B>(a))

(OC(a)^(:BC(a)_

BC(a))^(:B>(a)_

B>(a)))_

(O>(a)^(:BC(a)_

BC(a))^(:B>(a)_

B>(a))) (M

3 )

Distributingonjuntions overdisjuntions, usingM

3

,weobtaina formulaon

DNF,whihreduestoO>(a).ThisorrespondstotheuniqueReiterextension.

u t

(9)

TheModalRedutionTheoremforO R

ALCstatesthatwheneveraformulaO R

'

enodesaknowledgebase,itislogiallyequivalenttoadisjuntion,whereeah

disjuntisoftheformOAforsomeABoxA.Infat,eahofthesedisjuntshas

anessentiallyuniqueweakmodel.Itishenepossible,withinthelogiitself, to

deomposeaformulaO R

'intoaformwhihdiretlyexhibitsitsmodels.

Wetranslateanentireknowledgebase =(T;A;D) into aformulaasfol-

lows: JK

J

=A^JDK

J

, where JDK

J

=fJC vDK

a

j a2J &C vD 2Dgfor

somenon-emptyset ofindividualsJ .ObservethattheTBoxT seemingly

disappears.Itdoes,however,reappearinthesideonditionsoftheollapserules.

The Modal Redution Theorem. Foreah=(T;A;D), thereareABoxes

A

1

;:::;A

n

for somen>0, suhthatAA

k

for 16k6n,and

j=O R

JK

O

A

,(OA

1

__OA

n ):

Proof. Byompleteness(Theorem1)andsoundness(Theorems2and3). ut

We dene the extensions 3

of to be exatly the ABoxes A

1

;:::;A

n

in The

ModalRedutionTheorem. Hene thenotionof extensionmakesnoappeal to

theformulalanguage,onlytheoneptlanguage.

The rewrite system is just strong enough for establishing the Modal Re-

dutionTheorem: It issound andomplete forredutions ofO R

-formulaeinto

disjuntions of theappropriatetype. It is, however, notomplete forthe logi

of O R

itself. From the point of view of omputing default extensions this is

enough, beause only a subset of the logi of O R

is atually needed for the

ModalRedutionTheorem.

Example 2. The ALC-defaultEmployee ::Manager =EngineertMathematiian

(adapted from [9℄) is represented as BEmployeeu:AManager v (Engineert

Mathematiian).LetDonsistofthisinlusion,andletJ =fBobg:

O R

(A^JDK

J )

=O R

(A^JBEmployeeu:AManagervEngtMatK

Bob )

=O R

(A^(JBEmployeeu:AManager(Bob)K)JEngtMat(Bob)K)

=O R

(A^(JBEmployee(Bob)K^J:AManager (Bob)K)JEngtMat(Bob)K)

=O R

(A^(BEmployee(Bob)^:AManager (Bob))EngtMat(Bob)))

This formulaanbereduedto asimplerform,dependingontheABoxAand

the TBox. Let T = fManager v Employeeg, and let

1

= BEmployee(Bob),

2

=AManager (Bob)and =EngineertMathematiian(Bob).ForanyAsuh

that AEmployee(Bob),OA^

1

OAandOA^:

1

F,hene

O(A^(

1

^:

2

)))(OA^

1

^

2

)_(O(A^)^

1

^:

2 )_

3

Extensions are here taken inthe sense of defaultlogi, i.e. Reiter extensions; au-

toepistemiextensions(stableexpansions)anbedenedfromtheModalRedution

(10)

1 2 1 2

(OA^

2

)_(O(A^)^:

2 ):

FortheABoxA

1

=fEmployee(Bob)g, theredutisonnormalformwrt.but

notfortheABoxA

2

=fManager(Bob)g:

(OA

1

^

2

)_(O(A

1

^)^:

2 )

^

O(A

1

^)

(OA

2

^

2

)_(O(A

2

^)^:

2

)OA

2

Intheformerase,Bobisanengineer oramathematiian,in thelatterBob is

onlyamanager.ReduingO R

(A^JDK

J

)produesthesameextensions. ut

4.1 Soundness and Completeness

Lemma8. Foreah=(T;A;D),thereisaset

1

=fO(A^A

k )^

k g

16k 6n

of semi-normalformulae for somen>0suhthat for someset

2

1

(a) OJK

J

_

1

and (b) O R

JK

J

_

2 :

Theorem1 (Completeness).Foreah =(T;A;D), forsome n>0,there

are ABoxesA

1

;:::;A

n

suhthat for someset ofsemi-normal formulae,

O R

JK

O

A

_

^

(O(A^A

1

)__O(A^A

n )):

Proof. ByLemmata7and8. ut

Lemma9. If Mj=

I

(,)and does notourwithin thesopeof in',

thenMj=

I

(','h=i):

Thepreviousresultstatetheonditionunderwhihsubstitution ofequivalents

isvalid.Forsubstitutionwithintheontextofweneedthestrongernotionof

validity. From thepointofviewof formularewriting,thesigniane ofstrong

validityisthatitisrequiredforgeneralsubstitutionofequivalents.

Lemma10. j(','h=i)if j(,).

Theorem2 (Soundnessof ). If' thenj', .

Proof. ByLemma10,itissuÆienttoshowthatjl,rforeahrulelr,in

whihasewesaythat theruleis stronglyvalid. RuleR

1

istrivial.R

2 follows

from the fat that j('^ ),('^ ) andDe Morgan'slaw,while R

3

followsfrom the fat that j T. M

2

and M

3

arepropositionally valid, M

4 is

left to thereader. C

1

followsfrom Lemma 5and Corollary1,while C

2

follows

fromLemma 6.Thetworemainingasesaretreatedin detail.

R

4

:We showthat j:(O'^),((B'^:

B'))[:℄)for any semi-

normal O'^. By Lemma 3,j

3

O', (B'^:

B'), henebyLemma 10,

we have to show that j :(O'^) , (

3

O' ) [:℄). ()) Assume that

Mj=(O'):)andMj=

O'.ThenMj=

(O'^:),thusMj=

:,

(11)

:(O'^) for every M. Now there are two ases. If M j= :O', then

Mj=:(O'^).IfMj=[:℄,then Mj=:[℄, thusMj=:byLemma

4,thus Mj=:(O'^).

M

1

:WeshowthatjO',(O'hM(a)=>(a)i^M(a))_(O'hM(a)=?(a)i^

:(M(a))) for any prime modal atom M(a). Let M be an arbitrary model.

Then either M j=(M(a) , >(a)) orMj=(M(a) ,?(a)) by Lemma 1.By

Lemma 9,as'is -free, eitherMj=O',O'hM(a)=>(a)iorMj=O',

O'hM(a)=?(a)i,resp.IneitheraseMsatiseseither(M(a),>(a))^(O',

O'hM(a)=>(a)i) or(M(a) , ?(a))^(O' , O'hM(a)=?(a)i); from whih

theequivalenefollows. ut

Theorem3 (Soundnessof).^ Foranydisjuntion'ofsemi-normalformu-

lae,if '

^

thenj=', .

Proof. Assemi-normal formulaedo notontain, byLemma9,it issuÆient

to showthat j=l,rfor eah rulel^ r,in whihasewesaythatthe ruleis

valid.Thattherulesofarevalidisobvious,giventhattheyarestronglyvalid.

Theremainingrulesarein theC

1

group;validityfollowsfromCorollary1. ut

4.2 Complexity

The extension problem is determining whether aKB has an extension. A re-

deemingfeatureofO R

ALC isthattheextensionproblemisnotharderthanthe

ALC problemofinstane heking.

Theorem 4. The extensionproblem ofO R

ALC is PSpae-omplete.

Proof (Sketh). The translation from to JK

O

A

an be done in polynomial

time: jO

A

jjDj. The orresponding extension problem when the underlying

logiis propositionalisin p

2

=NP NP

asitanbesolvednondeterministially

withapolynomialnumberofallstoapropositionalSATorale[33℄.Themain

dierene here is that instead of a SAT orale, we need an orale that an

do instaneheksin ALC, whihis PSpae-omplete [1℄. Thusthe extension

problemisin NP PSpae

,whihisequaltoPSpae[25℄. ut

5 Future Work

TheunderlyingoneptlanguagedoesnothavetobeALC.Otheroneptlan-

guages with lower omplexity like DL -Lite [4℄ might prove more useful in an

atualimplementation.

Annaturalextensionistointrodueapartialorder(I;4),intuitivelyrepre-

sentingondenelevels,andforeahindexk2I,addingmodaloperatorsB

k ,

A

k ,

B

k ,O

k

, and

k

to thesignatureofthelogi,inordertorepresentordered

defaulttheories.Anotherextensionwouldbeallowingsubjetivelyquantiedex-

pressions,i.e.oneptsof theform 8XR :YC and9XR :YC forX;Y2fB;Ag,

(12)

1. Baader, F., Calvanese, D., MGuinness, D.L., Nardi, D., Patel-Shneider, P.F.

(eds.): TheDesription Logi Handbook: Theory, Implementation,and Applia-

tions. CambridgeUniversityPress(2003)

2. Baader,F.,Hollunder,B.:Embeddingdefaultsintoterminologialknowledgerep-

resentationformalisms. Journal ofAutomatedReasoning14(1),149{180(1995)

3. Brewka, G., Eiter, T.: Prioritizing Default Logi. In:Intelletis and Computa-

tionalLogi,PapersinHonorofWolfgangBibel,AppliedLogiSeries,vol.19,pp.

27{45.KluwerAademiPublishers (2000)

4. Calvanese, D., Giaomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite:

TratableDesriptionLogisforOntologies. In:Proeedings,TheTwentiethNa-

tional ConfereneonArtiialIntelligeneandtheSeventeenthInnovativeAppli-

ationsofArtiialIntelligeneConferene,(AAAI'05),pp.602{607(2005)

5. Chen,J.:MinimalKnowledge+NegationasFailure=OnlyKnowing(Sometimes).

In:LogiProgrammingandNon-monotoniReasoning,ProeedingsoftheSeond

InternationalWorkshop,LPNMR1993,pp.132{150(1993)

6. Delgrande, J.P., Shaub,T.: Expressing Preferenes in DefaultLogi. Artiial

Intelligene123,41{87(2000)

7. Donini, F.M., Nardi,D., Rosati, R.: AutoepistemiDesription Logis. In: Pro-

eedingsof theFifteenthInternationalJoint ConfereneonArtiialIntelligene

(IJCAI'97),pp.136{141(1997)

8. Donini,F.M.,Nardi,D.,Rosati,R.:GroundNonmonotoniModalLogis.Journal

ofLogiandComputation7(4), 523{548(1997)

9. Donini,F.M.,Nardi,D.,Rosati,R.:DesriptionLogisofMinimalKnowledgeand

NegationasFailure. ACMTrans.Comput.Log.3(2),177{225(2002)

10. Engan,I.,Langholm,T.,Lian,E.H.,Waaler,A.:DefaultReasoningwithPreferene

withinOnlyKnowingLogi. In:ProeedingsofLPNMR2005,pp.304{316(2005)

11. Gottlob, G.: Translating Default Logi into Standard Autoepistemi Logi. J.

ACM42(4),711{740(1995)

12. Kaminski,M.:Embeddingadefaultsystemintononmonotonilogis.Fundamemta

Informatiae14(3),345{353(1991)

13. Ke, P., Sattler, U.: Next steps for desription logis of minimal knowledge and

negation as failure. In:availableeletronially at CEUR (ed.)Pro. of the2008

DesriptionLogiWorkshop(DL2008)(2008)

14. Konolige, K.: On the relation between default logi and autoepistemi theories.

ArtiialIntelligene35(3),343{382(1988)

15. Lakemeyer,G., Levesque,H.J.: Only-Knowing: Taking ItBeyond Autoepistemi

Reasoning. In:Proeedings,TheTwentieth NationalConferene onArtiial In-

telligene and the Seventeenth Innovative Appliations of Artiial Intelligene

Conferene,AAAI2005,pp.633{638(2005)

16. Lakemeyer,G., Levesque,H.J.:Towards anaxiomsystemfor defaultlogi (Pro-

eedings,TheTwenty-FirstNationalConfereneonArtiialIntelligeneandthe

Eighteenth Innovative Appliations of Artiial Intelligene Conferene, AAAI

2006)

17. Levesque,H.J.:AllIKnow:AStudyinAutoepistemiLogi.ArtiialIntelligene

42,263{309(1990)

18. Levesque,H.J.,Lakemeyer,G.:TheLogiofKnowledgeBases. MITPress(2001)

19. Lian,E.H.,Langholm,T.,Waaler,A.:OnlyKnowingwithCondeneLevels:Re-

dutionsandComplexity.In:ProeedingsofJELIA'04,Leture NotesinArtiial

(13)

20. Lian, E.H., Waaler, A.: Computing Default Extensions by Redutions on O .

In: Priniples of Knowledge Representation and Reasoning: Proeedings of the

EleventhInternationalConferene,KR2008,pp.496{506(2008)

21. Lifshitz, V.: Nonmonotoni Databases and Epistemi Queries. In: IJCAI, pp.

381{386(1991)

22. Lifshitz,V.:MinimalBeliefandNegationasFailure. Artif.Intell.70(1{2),53{72

(1994)

23. Lin, F., Shoham, Y.: A Logi of Knowledge and Justied Assumptions. Artif.

Intell.57(2-3),271{289(1992)

24. Motik, B., Rosati, R.: A Faithful Integration of Desription Logis with Logi

Programming. In:M.M.Veloso(ed.) Pro. ofthe 20thInt.Joint Conferene on

Artiial Intelligene(IJCAI 2007),pp. 477{482. Morgan KaufmannPublishers,

Hyderabad,India(2007)

25. Papadimitriou,C.M.:ComputationalComplexity.Addison-Wesley,Reading,Mas-

sahusetts(1994)

26. Reiter, R.: A logi for default reasoning. Artiial Intelligene 13(1{2), 81{132

(1980)

27. Rosati, R.:Onthedeidabilityand omplexityofreasoningaboutonlyknowing.

Artif.Intell.116(1{2),193{215(2000)

28. Rosati, R.:A Sound and CompleteTableau Calulus for Reasoning aboutOnly

KnowingandKnowingatMost. StudiaLogia69(1),171{191(2001)

29. Shmidt-Shau, M., Smolka,G.: Attributive onept desriptions with omple-

ments,. ArtiialIntelligene48,1{26(1991)

30. Segerberg, K.: Some modal redution theoremsin autoepistemi logi. Uppsala

PrintsandPreprintsinPhilosophy.UppsalaUniversity(1995)

31. Waaler,A.:LogialstudiesinomplementaryweakS5. Dotoralthesis,University

ofOslo(1994)

32. Waaler,A.:Consistenyproofsforsystemsofmulti-agentonlyknowing.Advanes

inModalLogi5,347{366(2005)

33. Waaler,A., Kluwer, J.W.,Langholm,T.,Lian,E.H.:Onlyknowingwithdegrees

ofondene. J.AppliedLogi5(3),492{518(2007)

Références

Documents relatifs

Hence, it is not necessary to consider the case where only role names can be (interval-)rigid. The fact that N Rig and N IRig are finite is not a restriction, as formulae can only

Our results for rational closure are published at the 14th International Confer- ence on Logic Programming and Nonmonotonic Reasoning (LPNMR 2017) and the results for relevant

This construct has been advocated for querying RDF graphs in the extension of SPARQL called nSPARQL [17], and it has been added to RPQs in the language of nested regular expressions

We have defined a rational closure construction for the Description Logic ALC extended with a typicality operator and provided a minimal model semantics for it based on the idea

Note that if we are confronted with a strict query (classical inclusion axiom C v D), one can determine if it is in the Rational Closure of the KB by checking if it is

In the present section we shall proceed in the following way: first, we define the notion of rational consequence relation (see e.g. [17]) and we present the notions of ra- tional

Thus, this backtracing is qualified to identify all involved non-deterministic branching points for the dependency directed backtracking and also to identify small unsatisfiable sets

The method follows the machine learning approach known as Inductive Logic Programming (ILP) by adapting known results in ILP concerning crisp rules to the novel case of fuzzy