• Aucun résultat trouvé

Photoinduced K-shell hollow atoms

N/A
N/A
Protected

Academic year: 2022

Partager "Photoinduced K-shell hollow atoms"

Copied!
9
0
0

Texte intégral

(1)

Photoinduced K-shell hollow atoms

J. Hoszowska

, J.-Cl. Dousse

DepartmentofPhysics,UniversityofFribourg,CH-1700Fribourg,Switzerland

ThemechanismsleadingtotheproductionofhollowKshellatomsviasinglephotonimpactwereinves- tigatedforavarietyoflightelementswith12≤Z≤23.Thedouble1svacancystateswereproducedby irradiatingthesampleswithintensemonoenergeticsynchrotronradiationbeams.Thedouble-to-single K-shellphotoionizationprobabilitiesPKKandtheabsolutedoubleK-shellphotoionizationcrosssections 2+weredeterminedbymeasuringwithahigh-resolutionbentvonHamoscrystalspectrometertheK˛h hypersatelliteX-rayemissionofthesamples.Themeasurementswereperformedoverawiderangeof incomingphotonenergiesfromthresholduptoenergiesbeyondthebroadmaximumofthedouble-to- singlephotoionizationcrosssectionratios.ThePKKand2+weredeterminedfromtherelativeyieldsof theresolvedK˛hhypersatellitelines.ForMg,AlandSi,thetwo-electronone-photon(TEOP)K˛˛htransi- tionswhichrepresentanalternativebutmuchweakerdecaychannelfordouble1svacancystatescould bealsoobserved,usingahighlyefficientflatcrystalwavelengthdispersivespectrometer.Thisobser- vationofsinglephoton-inducedTEOPtransitionshasshownthattheI(K˛h)/I(K˛˛h)branchingratios areverypoorlyreproducedbymostofexistingtheoreticalmodels.Besidestherelativeyieldsofthe hypersatelliteandTEOPtransitions,theenergiesandnaturallinewidthsoftheK˛handK˛˛hX-raylines werealsodetermined.Theenergiesarefoundtobeingoodagreementwithdifferenttheoreticalpredic- tions,whereasthelinewidthsaresignificantlyunderestimatedbythecalculations,exceptifnon-lifetime broadeningeffectssuchastheouter-shellionizationandtheopenvalenceconfigurationaretakeninto consideration.

1. Introduction

Inthelastyearsimportanteffortswereundertakenbydiffer- entexperimentalandtheoreticalgroupstobetterunderstandthe mechanismsinvolvedintheproductionofK-shellhollowatoms viasinglephotonimpactandthesubsequentradiativedecayofthe photoinduceddouble1svacancies.HollowK-shellatomsareatoms thatarecharacterizedbyanemptyinnermostshellandoccupied outershells.SinceinphotoabsorptionorinelasticX-rayscattering processes,theincomingphotoninteractswithasingleelectron,the ejectionofthetwo1selectronsisdrivenbymany-electroninterac- tions.Thelatterplayingakeyroleintheunderstandingofatomic structure(see[1,2]andreferencestherein),single-photondouble ionizationprocesseshavereceivedarenewedinterestinthelast decade.ThesameholdsforthedecayofK-shellhollowatomsin whichelectroncorrelationeffectsdoalsoplayacrucialrole.

Ascomparedtoatomiccollisionsinvolvingheavyions(HI),pho- toionization andinelasticX-rayscatteringcan beconsideredas soft collisionsina perturbationsense.Asaconsequence,rather pure K-shell hollow atoms are obtained, with no or only few

Correspondingauthor.Tel.:+41263009210.

E-mailaddress:joanna.hoszowska@unifr.ch(J.Hoszowska).

additionalvacanciesintheoutershells,whichmakesthecompar- isonwiththeoreticalcalculationseasierandmorereliable.Onthe otherhand,theprobabilityforcreatingdouble1svacancystatesby singlephotonimpactisquitelow,rangingfromafewpercentfor lightelementsdowntoabout10−5forheavyones.Inthisrespect, experimentalstudiesconcerninghollowK-shellatomshavegreatly benefited fromthehighintensityandenergy tunabilityof syn- chrotronradiationsources.Furthermore,therecentadventofvery intensehardX-rayfree-electronlaser(XFEL)beamspermittingto investigatethedynamicsofatomicelectronsinthefemtosecond timescalehavegivenanewboosttothedomain[3].

In single photon absorption, the creation of the second 1s vacancyisgenerallyassumedtobeduetotwocompetitivemech- anisms,namelytheshake-off(SO)andknock-out(KO)processes thatarebothrelatedtotheejectionoftheKphotoelectron.Inthe SOprocess[4,5],thesecond1selectronisexcitedintothecontin- uumduetothesuddenchangeoftheatomicpotentialresulting fromthefastremovaloftheprimaryelectron.TheSOprobability isproportionaltothesquaredoverlapintegraloftheinitialand finalstatewavefunctionsoftheshakenelectron[6],providedthe changeoftheatomicpotentialismuchfasterthantheatomicrelax- ationtime.IntheKOprocess,theoutgoingphotoelectronknocks outthesecond1selectroninan(e,2e)-likeelectronimpacthalf- collision.Althoughthedependenceofthetwomechanismsonthe

Published in "-RXUQDORI(OHFWURQ6SHFWURVFRS\DQG5HODWHG3KHQRPHQD GRLMHOVSHF"

which should be cited to refer to this work.

http://doc.rero.ch

(2)

Fig.1.SchematicoftheTEOP(left)andOEOP(right)transitions.

incomingphotonenergyisverydifferent,inmostcasesitishard todistinguishthecontributionsofthetwoprocessesandattempts toseparatethemhavegivenrisetointensiveresearch[7–13].

HollowK-shellatomscanbeidentifiedeitherbyrecordingthe KhypersatellitetransitionsinAugerelectronspectra(KK-KLL,KK- KLM,etc.)orinX-rayfluorescencespectra(KK-KL;KK-KM,etc.).

ThemostprobableKhypersatellitetransitionsarethoseforwhich oneofthetwoKvacanciesisfilledbyaL-electron,namelyKK-KLX (X=L,M,etc.)hypersatellitesinAugerelectronspectraandKK-KL (usuallynotedK˛h)hypersatellitesinX-rayfluorescencespectra.

Augerspectroscopyismorelikelyusedforlightatomsbecausethe fluorescenceyieldsofthelatterarelow.However,thistechniqueis limitedtogaseoustargets(see,e.g.,[14])orverythinsolidsamples, duetothestrongabsorptionoflow-energyelectronsinmatter.In additiontheanalysisofthemeasuredhypersatelliteAugerspec- trais noteasy becausemultipleAugerfinal statesare possible.

Forthesereasons,inthepresentstudywhichconcernssolidele- ments,thehollowK-shellatomswereinvestigatedbymeansof high-resolutionX-rayspectroscopy.

AsshowninFig.1,theradiativedecayofdouble1svacancystates mayproceedthroughone-electronone-photon(OEOP)andtwo- electronone-photon(TEOP)transitions.TheOEOPprocess,which correspondstotheK˛h(1s−2→1s−12p−1)hypersatellitetransition representstoalargeextentthepredominantradiativedecaychan- nelofhollowK-shellatoms.IntheTEOPK˛˛h (1s−2→2s−12p−1) transition,thetwoK-shellcoreholesarefilledsimultaneouslyviaa correlatedtwo-electronjumpandasinglephotonhavinganenergy whichisapproximatelytwicethatoftheparentK˛diagramlineis emitted.Despitetheirextremelyweakintensitiesascomparedto thoseofhypersatellites,TEOPtransitionsareofinterestbecause theycorrespondtocorrelatedmultielectronprocesses.

ThetheoreticalpredictionofTEOPtransitionsdatesbackto1925 [15]butthefirstexperimentalevidenceforthiscorrelatedtwo- electron decaychannel wasreported onlyabout 50 years later [16].Actually,thisfirstobservationwasdonesomewhatacciden- tallywhileanalyzingaHI-inducedKX-rayspectrum,inwhicha veryweakX-raylinehavingthesameenergy astheoneof the TEOPtransitionwasfound.TheK˛htoK˛˛hbranchingratioisnot expectedtodependontheexcitationmode.However,multiple electronionizationinHIcollisionschangetheelectronicconfig- urationsandaffecttheintensitiesand energiesofthemeasured transitions.ThusdatafromHIcollisionexperimentsshowawide spreadofvalues [17–21],makingcomparisonwiththeoryoften inconclusive. In this respect,photon impact dataprovide more reliable results and a more stringent test for atomic structure

calculations.Incounterpart,single-photondoubleK-shellioniza- tioncrosssectionsare102–103smallerthaninHIcollisions.Thus photoionization experiments are more challenging and, to the best of our knowledge, all attempts to measure photoinduced TEOPtransitionshavebeenunsuccessful(seee.g.,[22])untilvery recently[23].NotethattheTEOPanalogousKK-LLX(X=L,M,etc.) three-electron Auger transitions corresponding to the simulta- neousfillingofthetwoKvacanciesbythecorrelatedjumpoftwo L-electronsandthetransferoftheentiretransitionenergyonthe AugerelectronXhaveneverbeenobservedsofar.However,simi- larthree-electronAugertransitionsofthetypeLL-MMMcouldbe detectedinArasaresultoflow-energycollisionswithseveralheavy ions[24].

In this paper we present an overview of the experimental and theoreticalefforts donein thelast decadein theendeavor ofbringingnewinsightstoelectron–electroninteractionsandin understandingthedoublephotoionizationinmany-bodysystems.

Inparticular,thephotonenergyevolutionofthedouble-to-single photoionizationcrosssectionratiosforseverallightelementswith 12≤Z≤23arereportedforawide photonenergyrange.TheZ- dependenttrendsand scalingpropertiesoftheseratiosand the double photoionization (DPI) cross sections are examined.The energiesandlinewidthsoftheK˛hhypersatelliteX-raytransitions andtheK˛h1/K˛h2intensityratiosarereportedandcomparedtothe- oreticalcalculationsaswellastootheravailableexperimentaldata.

ForMg,AlandSi,thecorrelatedtwo-electronone-photontransi- tionsinsingle-photonK-shelldoubleionizationcouldbeobserved recentlyforthefirsttime[23].TheTEOPenergiesandK˛htoK˛˛h branchingratiosobtainedinthisexperimentarealsopresentedand discussed.

2. Experimentalmethod

InX-rayspectroscopytheKhypersatellitelinescanbeeither observed directly with high resolution wavelength-dispersive spectrometersorindirectlybymeasuringincoincidencetheemit- tedK˛hhypersatelliteandsubsequentK˛LsatelliteX-rays,using twoenergy-dispersivedetectors.Thecoincidencetechnique[12]is preferabletohighresolutionX-rayspectroscopyincaseofheavy elementsforwhichtheK˛hhypersatelliteslieonthehigh-energy tailsofthe∼105strongerparentK˛diagramlines.Thedisadvan- tageofthecoincidencemethodisthat,duetothepoorresolutionof theenergy-dispersivedetectors,onlytheratioofdoubletosingleK- shellionizationcrosssectionscanbeextractedaccuratelyandnot theenergyofthehypersatellitetransitions,northeirnaturalwidth.

Many wavelengthdispersivespectrometers havebeendesigned andconstructedinthelastyears.ForsoftandtenderX-rays,Bragg- type crystal spectrometers areusually employed.Setups based oncylindricallyor sphericallybentcrystalsorarrays ofcrystals arranged in theJohann [25–27], Johansson [28] or von Hamos geometry [29,30]and setups using flat crystalscombined with half-lensepolycapillaryX-rayoptics[31]weredeveloped.Mostof thesecrystalspectrometerswereoptimizedforspecifictechniques such as resonant inelastic X-ray scattering (RIXS), highenergy resolution fluorescence detectedX-ray absorptionspectroscopy (HERFD-XAS)andX-rayRamanspectroscopy(XRS)appliedtosolid, liquid andgaseoussamples.Toa smallerextent,moreversatile and transportable instrumentsdesigned for thehigh-resolution measurementoftheX-rayfluorescenceresultingfromtheatomic core-levels’excitationbyimpactwithphotons,lightchargedpar- ticlesandheavyionswerealsodeveloped[29,28].

The experiments discussed in the present paper were per- formed at the European Synchrotron Radiation Facility (ESRF), using intense, monochromatic and energy-tunable synchrotron radiationbeamstoproducethedouble1svacancystatesinavariety

http://doc.rero.ch

(3)

oflightelements(Mg,Al,Si,Cl,K,Ca,ScandV).Toprobetheevo- lutionofthedouble-to-singlephotoionizationcross-sectionratios over wide photonbeam energyranges upto∼3 times theDPI thresholdenergies,themeasurementsoftheKhypersatelliteand diagramX-raytransitionswerecarriedoutattwoundulatorbeam- lines(ID21andID26),andatabendingmagnetbeamline(BM5).The measurementswereperformedbymeansofhigh-resolutionX-ray spectroscopy,usingforallmeasurementsexcepttheTEOPones theFribourgvonHamosBragg-typecurvedcrystalspectrometer [29,32].High-energyresolutionwasmandatorybecausetheMg,Al andSiKhypersatellitesarepartlyorcompletelyoverlappingwith theL-satellitesofthediagramKˇ(1s−1 →3p−1)lines,andinthe caseofCl,K,andCatheK˛hypersatellitesneedtoberesolvedfrom thecloselyingKMMradiativeAugertransitions[33,34].

TheprincipalelementsofthevonHamosspectrometerofFri- bourgare aneffective X-raysource,a crystalbent cylindrically toanominalradiusof25.4cm,andaposition-sensitivedetector, locatedonthecrystalaxisofcurvature.ThevonHamosgeome- trypermitsatonepositioningoftheelements,datacollectionover anenergybandwidthlimitedprimarilybythedetectorlength.The effectiveX-rayfluorescencesourceviewedbythecrystalisusually definedby arectangularslitwithanadjustablewidth.Alterna- tively,theeffectivesourcesizemaybedefinedbyafocusedbeam spotonthesample,andtheslitisleftwideopen.Thisso-called slit-lessoperationmoderesultsinahigheroveralldetectioneffi- ciency. Thesample,crystaland detectorareallcontainedinan evacuatedstainlesssteelchamber.Inthepresentexperimentsthe vonHamosspectrometerwasequippedwithfourdifferentcrystals, namelyaTlAP(001)(2d=25.772 ˚A),anADP(101)(2d=10.642 ˚A), aLiF(200)(2d=4.028 ˚A),andaGe(200)(2d=4.000 ˚A)crystal.The diffractedX-rayswererecordedwithathermoelectricallycooled (−45 to−50C) back-illuminated charge coupleddevice (CCD) cameraconsistingof1340columnsand400rowswithapixelsize of20␮m×20␮m.Bysettingappropriateenergywindows,theCCD detectorallowsdiscriminationagainsthigher-ordercrystalreflec- tionsandalsoarejectionofbackgroundevents.

AtthebeamlineID21wheretheMgandAlmeasurementswere performedthevonHamosspectrometerwasinstalleddownstream oftheScanningTransmissionX-rayMicroscope(STXM)chamber.

Monochromaticphotonbeamsrangingfrom2.7to8.0keVforMg andfrom3.1to7.0keVforAlwith∼10eVbandwidthwereobtained usingthedoubleNi/B4Cmultilayermonochromator.Forupperhar- monicsrejection,aNi-coatedmirrorwasemployed.Thebeamsize was definedby means of a 1mm in diameterpinhole. For the measurementsofCl,K,CaandV,thespectrometerwasinstalled at theBM5 beamline, in the firstexperimental hutch.The pri- maryX-raybeamwasmonochromatizedbymeansofa[Ru/B4C]70 double-multilayermonochromatorwithanenergyresolutionE/E of∼2×10−2andanharmonicsrejectionrateof1.8×10−4inthe 6–30keVphotonenergyrange.Thebeamsizeonthesamplewas definedbymeansofa2mmhighand5mmwiderectangularslit placedinfrontofthespectrometerbeamport.TheSiandScX-ray spectraaswellasdataathigherbeamenergiesforMg,Al,Caand VwerecollectedatthebeamlineID26.Forphotonenergiesupto 16keVtheSi(111)double-crystalmonochromatorwasemployed, whereasforhigherenergiestheSi(311)monochromatorwasused.

Dependingonthephotonenergy,doubleSi,Cr-andPd-coated,and doublePt-coatedmirrorssuppressedtheupperharmonics,andfor incidentbeamenergiesinthe3–5keVrangethemonochromator crystalswereadditionallydetuned.Theupperharmonicsrejection efficiencywas∼10−4–10−5.Themirrorsservedalsotofocusthe beamhorizontallyonthesampleto∼250␮m,permittingthereby tooperatethespectrometerintheslit-lessgeometry.

The incident photon flux was∼1–3×1012ph/s at the three beamlines.TheexposuretimeoftheCCDwaschosendependingon thecountrate.ForthediagramX-raytransitions,acquisitiontimes

of1sperimagewerechosen,andtoavoidmultiple-hiteventson onepixeltheincomingphotonfluxeswereattenuatedwithappro- priateabsorbers.ThehypersatelliteX-rayspectrawerecollectedin shortsuccessivescansoffewhundredCCDimageswithacquisition timesof2–10sperimage.FortheX-rayhypersatellitespectraof Cl,KandCa,twoorthreeoverlappingCCDregionsweremeasured toincludetheKMMradiativeAugertransitionsand Kˇdiagram lines.Fornormalizationpurposes,thenumberofincomingpho- tonswasdeterminedwithaphoto-diodeatthebeginningandthe endofeachX-rayemissionspectrummeasurement.Thisallowed tomonitorthephotonfluxandtocorrecttheX-rayspectraoff-line foranybeamintensityfluctuations.

TheTEOPmeasurementswereperformedatthebeamlineID21, usingthewavelengthdispersivespectrometer(WDS)[31]which wasinstalledrecentlyattheScanningTransmissionX-rayMicro- scope(STXM)chamber.TheWDSconsistsmainlyofapolycapillary opticsforthecollectionofthesampleX-rayfluorescence,aflatcrys- talandaflowgasX-raydetector.Duetotheultralowintensities oftheTEOPtransitionsandthepresenceofstrongerdiagramX-ray linesfromtraceimpuritiesinthemeasuredspectra,high-efficiency andgoodenergyresolutionwereindeedprerequisiteforthischal- lengingexperiment.FortheMgandAlmeasurements,theWDS spectrometerwasequippedwithaSi(111)crystal(2d=6.271 ˚A), whereas for the Si ones a Ge(220) crystal (2d=4.000 ˚A) was employed.TheenergycalibrationoftheWDSwasdeterminedfrom measurementsofseveraldiagramtransitions(Rh,Ru,Cl,Pd,Ag,Sn, K,andSc),usingfortheenergiesofthereferencetransitionstheval- uesreportedin[35].Thesemeasurementsalsoservedtodetermine thefullwidthathalfmaximum(FWHM)oftheGaussianinstrumen- talresponsefunction.TheFWHMwasfoundtovary,dependingon theenergy,between7and10eV.

Inordertoobtainthehighestpossiblefluxonthesamples,theSR fromtwoundulatorswasused.Theintensebeamwasmonochro- matizedusingthedoubleNi/B4Cmultilayermonochromatorand focusedonthesampleswithaKirkpatrick–BaezopticsforAlandSi, andpolycapillaryopticsforMg.Upperharmonicswererejectedby meansofNi-coatedmirrorssettoanangleof7.5mrad.Themicro- focusedincidentphotonfluxwas∼2–3.5×1012photons/s.Photon beamenergiesof3.364keVforMgand4.620keVforAlandSiwere employedtoproducethesamplefluorescence.Theseenergieswere chosentomatchtheK-shelldoublephotoionizationcross-section maximareportedin[2].Self-supportedmetallicfoilsofMg,Al,and ac-Siwereemployed.TheAlandSisamplepuritywas99.999%, andthatofMg99.9%.TheX-rayspectrawerecollectedinsucces- sivescansof∼0.5–1heach,withtotalacquisitiontimesof∼42h,

∼51h,and∼17h,forMg,AlandSi,respectively.Fornormalization purposesthephotonfluxwasrecordedwithaphoto-diodeatthe beginningandtheendofeachscan.

Since for allthree elements it wasnot possible to measure withthesamecrystalthehypersatelliteandTEOPtransitions,the branchingratiosI(K˛h)/I(K˛˛h)werederivedfromthemeasured intensityratiosbetweentheTEOPandclose-lyingreferenceKX- raydiagramtransitions.Thisapproachbenefitedfromwellknown valuesofthesingle[37]andthedouble[2]K-shellphotoionization cross sectionsand presented theadditionaladvantage tomini- mizethecorrectionsrelatedtotheenergydependentpolycapillary transmission.

3. Resultsanddiscussion

3.1. DoubleK-shellphotoionization

3.1.1. Double-to-singlephotoionizationcrosssectionratios

Thedouble-to-single photoionizationcrosssectionratiosPKK were obtained from the relative intensities of the resolved

http://doc.rero.ch

(4)

Fig.2.Double-to-singleK-shellphotoionizationratiosPKKforAl,Ca,andVversusthephotonbeamenergy.ForCaandVthepresentexperimentaldataarecomparedto thoseofOuraetal.[38]andHuotarietal.[13].ThesolidblacklinescorrespondtothebestfitstoourdatawiththeSO–KOempiricalmodel.

hypersatelliteK˛h(1s−2 →1s−12p−1)tothediagramK˛(1s−1→ 2p−1)X-raytransitions:

PKK= Ih

I

ωK

ωKK, (1)

whereωKandωKK arethefluorescenceyieldsforthesingle-and double-hole states [36],respectively. Theevolution of thedou- bleK-shellphotoionizationratiosPKK withthephotonenergyfor selectedelementsispresentedinFig.2.Itshouldbepointedout, thatincontrasttoL-shellX-raysatellitelines,theM-satellitescan- notberesolved,theirenergyshiftbeingsmallerthanthenatural linewidthsoftheparentdiagramorhypersatellitelines.Theinten- sitiesoftheseM-satellitesarethereforeincludedinthemeasured IandIhyields.AstheM-shellshakeprobabilityisexpectedto behigherforatomswithadouble1svacancyintheinitialstatethan forthosewithasingle1svacancy,thePKKratioscalculatedwithEq.

(1)mightbesomewhatoverestimated.However,thereisnoexper- imentalevidencethattheK-shellshakeortheknock-outprocess takesplacepriortotheM-shellshake,andinfirstapproximationit isreasonabletoconsidertheproductionofthesecond1svacancy andtheM-shellvacancyasquasi-simultaneous.Wearetherefore inclinedtobelievethatthesystematicerrorrelatedtothediffer- enceintheM-shellshakeprobabilitiesresultingfromthesingleand doubleK-shellphotoionizationissmallinourcase.Thisassump- tionseemstobeconfirmedbythefactthat,despiteaverygood instrumentalresolution,noasymmetrywasobservedinthefitted hypersatellitetransitions,indicatingthatthecontaminationofthe hypersatellitetransitionsbyunresolvedM-satellitewasweakfor themeasuredelements.

Becausethephotoninteractswithonlyoneelectronandvan- ishes,insingle-photonK-shelldoublephotoionizationtheremoval ofthetwoinnermostelectronsproducingaK-shellhollowatomis duetoelectroncorrelations.TwomechanismsdominatetheK-shell doublephotoionization, namely,theshake-off(SO)process[39]

andtheinelasticelectron–electronscattering(knock-out).These electron–electroninteractionsareofquantumandclassicalnature.

ThedoubleK-shellphotoionizationviashakeisaconsequenceof thechangeoftheself-consistentfieldandelectron–electroncor- relations[39].Intheknock-out(KO)theoutgoingphotoelectron knocksoutthesecond1selectroninan(e,2e)-likeelectronimpact half-collision[40].Further,ground-stateelectroncorrelationsare importantfortheshake-off,whilstthefinal-stateelectroninter- actionsgovernthedielectronicprocess.Althoughqualitativelythe twomechanismshaveverydifferentphotonenergydependences anddifferentelectroninteractiontimes,theseparationofKOand SOandquantificationoftheinterferencesisnotstraightforward (seee.g.,[7,10,41,42,11,43]).IncomparisontoHeandHe-likeions, muchlesstheoreticalefforthasbeendevotedtotheDPIofneu- tralatoms.Thesingle-photonK-shellDPIwasaddressedwithin thelowestorderperturbationtheory[11],andafirstsystematic studyusinganabinitiononperturbativeclose-couplingapproach

wasperformedbyKheifetsetal.[42]showingdifficultiesofsucha calculationwhichisparticularlydemandingtotheaccuracyofthe groundstatewave-function.Incontrasttoabinitioapproachesin whichtheSOandKOaretreatedcoherently,alternativetheoretical modelsbasedonanincoherentpictureofthe(e,2e)-likeprocessand shake-offwereproposedbySamson[44]andelaboratedbyPattard andBurgdörfer[45].Atheoreticalmodelforanincoherentsepara- tionofSOandKOwasalsodevelopedbySchneideretal.[8,9].The latterisbasedonaquasi-classicalformulationoftheKOandthe purelyquantummechanicalnatureofSO,i.e.,SOisviewedasa quantumcorrectiontothequasi-classicallycalculateddoublepho- toionization.ForHe,anexcellentagreementwiththeexperimental datawasobtained,suggestingthatinterferencesplayonlyaminor role.

In the same spirit, to assess the effect of outer shell elec- tronsand therelative importanceofinitial-state andfinal-state electron–electron correlations to the K-shell DPI, an empirical SO–KOmodelbasedonanincoherentsummationofthedouble- to-singlecrosssectionratiosfortheshakeprocessandknock-out wasproposed[1,2].InourSO–KOmodelthedouble-to-singlepho- toionizationratioasafunctionofthephotonenergyisgivenby:

PKK(E)=PSO(E)+PKO(E), (2) with

PSO(E)=Rexp

− (rE+)2 15.32(E−E2+)

(3a)

and

PKO(E)=PKOmax

cosh

ˇln

E−E2+

EKOmax

−1/ˇ

. (3b)

ThePSO(E)correspondstotheexpressionofThomas[46]forshake- off.Rstandsfortheshake-offasymptotichigh-energylimit,i.e., whenthephotoelectronisinfinitelyfast,E+isthebindingenergy oftheremainingK-shellelectron,rrepresentsthedistancein ˚A traveledbytheKphotoelectronduringthetimetheatomicpoten- tialchanges,andE2+denotestheDPIthresholdenergy.Allenergies areineV.Becausetheshake-offasymptoticnon-relativistichigh- energy limit can be calculated quite accurately for the helium isoelectronicsequenceanditisalmostthesameforneutralatoms andHe-likeions[42,47],forRthevaluesfromForreyetal.[48]

wereused.Fortheknock-outprobabilityPKO(E),theanalyticalform oftheuniversalshapefunctionforelectronimpactionizationofH- likeionsofAicheleetal.[49]wasadopted.Thechoiceoftheshape functionwasbasedonthesimilarityofelectron-impactionization ofaH-likeiontotheKOpartofthedoublephotoionizationofthe correspondingHe-likeion[44,10,9,45].ThePKOmax correspondsto themaximumvalueofKO,EmaxKO totheexcessenergywherethe maximumoccurs,andthepowerˇ=0.4.

http://doc.rero.ch

(5)

Table1

Double-to-singlephotoionizationcrosssectionratiosinthepeakregionofthephotonenergyevolutionPKKmaxandthefittingparametersoftheSO–KOmodel.TheDPIthreshold energyE2+andthePmaxKO werederivedfromthefits,whileE+valuesandthephotoabsorptionasymptoticlimitsRwerekeptfixed.TheeffectivenuclearchargeZ*wasdeduced usingthehydrogenicformulaE+=Z*2Ry,whereRy=13.6eV.ListedarealsotheMCDFpredictionsfortheDPIthresholdenergyE2+MCDF.TheωKKKwerededucedfromthe valuesquotedbyChen[36].Note,thatforClandKtheX-rayemissionspectrawerecollectedatasinglephotonenergyof13.3keVintheregionofthebroadmaximumof thedouble-to-singlephotoionizationcross-sectionratios.TheobtainedPmaxKK is8.61(1.77)×10−4forCl,and9.24(1.23)×10−4forK.

Element Z Z* PmaxKK ωKKK E2+(eV) EMCDF2+ (eV) E+(eV) R PKOmax

Mg 12 10.4 2.03(19)×10−3 1.27 2741(35) 2776.6 1464.8 6.08×10−4 1.74×10−3

Al 13 11.3 1.83(20)×103 1.24 3189(23) 3294.0 1736.8 5.20×104 1.55×103

Si 14 12.2 1.43(14)×103 1.21 3788(42) 3882.5 2032.5 4.47×104 1.20×103

Ca 20 17.8 1.02(10)×10−3 1.08 8039(40) 8357.0 4324.7 2.22×10−4 9.42×10−4

Sc 21 18.8 7.84(74)×10−4 1.075 9060(53) 9297.4 4791.8 2.00×10−4 6.60×10−4

V 23 20.7 6.87(63)×10−4 1.065 11,277(110) 11283.1 5798.7 1.68×10−4 6.10×10−4

Thebestfitstothedouble-to-singlephotoionizationratiosof Mg,SiandScasafunctionofthescaledexcessenergyaredepicted inFig.3andresultsoftheleast-squaresfitstotheexperimentaldata withEq.(2)arelistedinTable1.OninspectionofFig.3thepreva- lenceofKOnearthresholdandforintermediateexcessenergiescan beobserved.AthighexcessenergiesKObecomesnegligibleand thePKKratiosapproachtheSOphotoabsorptionasymptoticlimit.

TheseresultsareinaccordwiththeconclusionsofKanteretal.

[12]andHuotarietal.[13]fortheprevalenceofKOinthenear- thresholdregionandforintermediatephotonenergiesofthePKK photonenergyevolution.Theverygoodagreementbetweenthe experimentaldataforthephotonenergydependenceofPKK and theSO–KOmodelfitsupportsthisphysicalpicturefortheK-shell doublephotoionizationforlow-Zneutralatoms.

Fig.3. Double-to-singleK-shellphotoionizationratiosasafunctionofthescaled excessenergy.ForE2+valuesfromthefitwereused.Resultsofbestfitstoourdata withtheSO–KOempiricalmodelarerepresentedbyblacksolidthicklines,whereas theKOcontributionsaredepictedbythinbluelinesandtheSObyreddashedlines.

(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderis referredtothewebversionofthearticle.)

3.1.2. Double-photoionizationcrosssections

TheexperimentaldoubleK-shellphotoionizationcrosssections 2+asafunctionofthephotonenergyaredepictedinFig.4.The valuesweredeterminedemployingtherelation

2+(E)=PKK(E)+(E), (4) whereEisthephotonenergyand+standsforthesingleK-shell photoionization crosssectiondeducedfromtheXCOMdatabase [37].Forallelementsthecrosssectionsshowacommonshapechar- acterizedbyasharpriseabovethethresholdfordoubleionization tothemaximumandasubsequentrapiddecreasewiththepho- tonenergy.Pattard[50]establishedanuniversalshapefunctionfor multipleionizationbyphotonsthatprovidesanexcellentparam- eterizationofphotoionizationcrosssectionsfordoubleionization ofHe-likeions.Theanalyticalformulareads:

2+(E)=max2+x˛

˛+7/2

˛x+7/2

(˛+7/2)

, (5)

where max2+ denotes thecrosssection maximum,˛=1.056,and x=E/Emax.EandEmaxcorrespondtoexcessenergies.Least- squaresfitstotheexperimentaldatawithEq.(5)demonstratethat theshapefunctionisapplicabletoK-shellhollowatomsaswell(see Fig.4).Thephotonenergiesandtheexcessenergiescorresponding totheDPIcrosssectionmaximascaleasEmax(Z*)=25.03(11)Z*2.08(3) and Emax(Z*)=5.72(0.07)Z*2.00(7),respectively. A power-lawfit tothemaximumvaluesof2+asafunctionofeffectivenuclear charge Z* yieldsa 0.15(5)/Z*3.68(11)fall-off. Further,asshownin Fig. 5, the double photoionization cross sections in the range 2≤Z≤47exhibitanuniversalscalingbehaviorinreducedcoor- dinates2+Z*3.68against(E−E2+)/Z*2andcoincidewiththe2+Z*4 fortheHeisoelectronicseries[1,2].

Fig.4. DoubleK-shellphotoionizationcross-sectionsversusthephotonenergy.

SolidlinesshowthebestfitswiththeuniversalshapefunctionofPattard[50].

http://doc.rero.ch

(6)

Fig.5. ScaledexperimentalDPIcrosssectionsforMg,Al,Si,Ca,ScandVcompared tothescaleddataforHe[40]andexperimentaldataforTi[38],Cu[13]andAg[12]

asafunctionofthescaledexcessenergy.ForneutralatomsthescalingexponentX is3.68.Thecurves(solidlines)werededucedfromtheresultsofthebestfitsofPKK

withtheSO–KOmodel.

3.2. RadiativedecayofdoubleK-shellholestates

3.2.1. One-electronone-photonandtwo-electronone-photon X-raytransitions

FollowingtheK-shellDPI,theatomicdoubly-excitedcorestate decaysin a cascade of non-radiative Auger and radiativetran- sitions.Theradiativede-excitation ofK-shell doubleholestates via the one-electron-one-photon process corresponding to the K˛h(1s−2→1s−12p−1)hypersatellitetransitionisthemaindecay channel.De-excitationthroughtransitionsfromothersubshellsis alsopossible,butlessprobable.ThealternativedecaychannelTEOP inwhichthetwoK-shellcore-holesarefilledsimultaneouslyviaa correlatedtwo-electronjumpofone2sandone2pelectronand onephotonisemittedK˛˛h(1s−2→2s−12p−1)isevenfewordersof magnitudeweaker.

These transitions permit not only to investigate the double ionizationprocess,but alsogiveinsight in fundamentalaspects ofatomicphysicsasBreitinteraction,quantumelectrodynamics (QED)andrelativityeffects.SincetheK˛h1hypersatelliteoriginates fromthespin-fliptransition(3P11S0)whichisdipoleforbiddenin thepureL–S-couplingscheme,theIh

1/Ih

2 intensityratioprobes theintermediacyofthecouplingschemeacrosstheperiodictable andthevariouseffectsthatinfluencethemixing,forinstanceBreit

interactionand relativity.In fact,theTEOPtransitions areeven more sensitivetotheBreitinteractionthan thehypersatellites.

Ofinterestarealsotheradiativelinewidthswhicharerelatedto themeanlifetimesofthedoubly-excitedstatesbytheHeisenberg uncertaintyrelation=,whereisthewidthandisthelife- timeofanexcitedatomicstate.Further,astheTEOPtransitions arecorrelatedmulti-electronprocessestheycanbeonlydescribed bymany-electronmodels.Thus,boththeOEOPandTOEPradia- tivetransitionsprovideastringenttestforthemulti-configuration calculations.

Forillustration,theOEOPandTEOPX-rayemissionspectraof Mg,AlandSiareshowninFig.6.Duetothechangeintheelectronic screeningofthenuclearcharge,theenergiesoftheOEOPtransitions areshiftedwithrespecttotheirparentX-raylinesdecayingsingly- ionizedstates.AlthoughforMgandAltheK˛h1X-raytransitionwas muchtooweaktobeobserved,itwasmeasuredforthefirsttime forSi.TheobtainedEh

1

and K˛h2 hypersatelliteandEK˛˛h 2

TEOP energiesaresummarizedinTable2andcomparedtothefewexist- ingdataandthemostrecenttheoreticalcalculationsfromMartins etal.[52],Costaetal.[51],Natarajan[53]andSahaetal.[56].The energiesoftheK˛h2andK˛˛h2transitionsforlowerZelementsare ingoodtoverygoodagreementwithintheexperimentaluncer- taintieswithdifferenttheoreticalpredictions.AthigherZ,theory underestimatestheexperimentalenergiesforboththeK˛h2 and K˛h1lines,andthedifferencesarefoundtobegreaterfortheK˛h1 hypersatellites.

TheIh 1/Ih

2 intensityratiosarelistedinTable3.For Si,the experimentalratiowasfoundtobeinexcellentagreementwith theMCDFtheoreticalpredictionsofCostaetal.[51]thatinclude boththeBreitandQEDcontributions.Indeed,thesecalculations predictthatforelementsZ<18theintensityratioofthehypersatel- litelinesdoesnotfollowthesameregulartrendasthatobserved forZ≥18,butpeaksatZ=15.Thiseffectisinterpretedasbeingdue totheinteractionbetweentheholeinthe2plevelandthe3pelec- tronsthatopensseveraldecaychannelsandleadstoanincreaseof theIh

1/Ih

2 intensityratio.ForCaandScourdatacomparewell withintheexperimentaluncertaintieswiththeory[51],butinthe caseofVthecalculationsoverestimateourresult.Thepresentratio forV,however,agreesverycloselywiththeexperimentalandthe relativisticMCDF-calculatedvaluesreportedbyDiamantetal.[59].

ThefinitelifetimegivestoanX-raytransitionlineaLorentzian shapewithanaturalwidthequaltothesumofthetotalradiative andnon-radiativewidthsoftheinitialandfinalstatesinvolvedin

a b c

e f d

Fig.6.One-electronone-photon(upperpanels)andtwo-electronone-photon(lowerpanels)transitionsofMg,AlandSi.TheTEOPspectracorrespondtoresidualsofthe measureddatasets.Thesolidlinesarethebestleast-squaresfitstothedatausingVoigtfunctions.

http://doc.rero.ch

(7)

Table2

Energiesoftheone-electron-one-photonandtwo-electron-one-photontransitionscomparedtootherexperimentaldataandtheoreticalpredictions.SinceCostaetal.[51]

presentenergyshiftsrelativetothecorrespondingdiagramlines,thelistedh1andh2transitionenergieswerecalculatedusingtherecommendedvaluesofDeslattesetal.

[35]forthe1and2lines.Thenotation1367.86(9/6)means1367.86±0.09eVwithanincludedstatisticalerrorfromthefitof0.06eV.

Z h2(eV) h1(eV) K˛˛h2(eV)

Experiment Theory Experiment Theory Experiment Theory

[52] [51] [53] [52] [51] [53]

12 1367.86(9/6) 1368.53 1367.71 1367.7 2586.7(4) 2585.45[52]

1367.8(2)[54]

1367.7(6)[55]

13 1610.38(4/2) 1611.75 1610.89 3056.5(9) 3056.54[52]

3057.49[56]

3058.68[57]

3055.99[57]a

14 1874.87(6/4) 1874 1873.99 1874.5 1881.20(12/8) 1880 1879.96 1881.6 3568.3(4) 3566[52]

1873.6(1)[58] 3567.43[56]

3569.37[57]

17 2787.80(10/8) 2785

19 3499.20(9/6) 3498 3497.77

20 3887.50(9/5) 3884.8 3885.93 3884.5 3899.80(15/9) 3896.39 3897.54 3896.3

3883.5(6)[58]

21 4296.31(8/7) 4294.16 4295.24 4309.6(7/6) 4306.27 4307.43

23 5177.65(8/6) 5174 5176.24 5192.0(9/7) 5188 5190.86

5178.1(5)[38]

5176.6(1)[59] 5191.7(1)[59]

aK˛˛hratesincludethecouplingoftheinitialandfinalstatevacancieswiththe3pelectron.

Table3

Linewidthsoftheone-electronone-photonandtwo-electronone-photontransitions,andtheIh 1

/Ih 2

intensityratios.Theh 1

forSi,CaandScwerefixedinthespectra fits.

Z h

2

(eV) h

1

(eV) K˛˛h

2

(eV) Ih

1

/Ih 2

Exp. [51]

12 1.49(8) 2.5(6) 0.00074

13 1.88(7) 2.9(1.7) 0.0087

14 1.86(9) 1.86 3.8(9) 0.03(1) 0.0288

17 2.86(34)

19 3.46(22) 0.0189

20 3.72(18) 3.72 0.035(13) 0.0274

21 3.88(17) 3.75 0.045(9) 0.051

23 5.54(19) 5.6(1.0) 0.077(15) 0.0989

5.5(1)[59] 6.0(6)[59] 0.08(1)[59]

thetransition.ThelinewidthsoftheOEOPandTEOPtransitionscan bethusapproximatedbythesumofthetotalatomiclevelwidthsof theinitial1s−2andfinaldouble-holeconfigurationstates1s−12p−1 and2s−12p−1,respectively:

h KK+(KL−1

2,3+L2,3) (6)

and

K˛˛h KK+(L1+L2,3), (7) whereKKisthedouble-Kholestatewidth[36,53],Listhesingle- Lholestatewidth,andKL−1

2,3 isthereducedKlevelwidthdueto thepresenceoftheL-shellspectatorvacancy[62,63,58].

Presentexperimentalh andK˛˛h linewidthsaresumma- rizedinTable3,andinFig.7theh

2valuesarecomparedtothose calculatedusingEq.(6)andtheoreticalpredictionsofPolasiketal.

[60].Thesingle-anddouble-vacancylevelwidthsandotherexper- imentaldataarealsoshown.ThewidthsKKandKwereobtained byinterpolatingthevaluescorrespondingtotheatomicnumbers selectedbyChen[36].Theaccuracyoftheinterpolationprocedure isatthelevelof∼1–4%.TheKL−1 widthswereestimatedfollow- ingthescalingprocedureofLarkins[62]andusingfortheradiative andAugerKlevelwidthstheinterpolatedvaluesfromChen[36].

FortheL,therecommendedvaluesofCampbellandPapp[61]

wereadopted.

FromFig.7itcanbeseenthatforelementsinthe12≤Z≤30 range the h linewidths calculated with Eq. (6) systemati- callyunderestimatetheexperimentalvalues.Likewise,theTEOP

Fig.7.ExperimentalOEOPlinewidthsandexperimentaldataofDiamantetal.[59]

asafunctionofZ(lefty-axis).PlottedarealsothevaluescalculatedwithEq.(6) andtheoreticalpredictionsofPolasiketal.[60].Ontherighty-axisshownarethe theoreticaltotallevelwidthsKKofChen[36]andCostaetal.[51].TheKandL2

correspond,respectively,tothelevelwidthsKandL2recommendedbyCampbell andPapp[61].

http://doc.rero.ch

(8)

Table4

ThehtoK˛˛hbranchingratiosforMg,AlandSi.Alsolistedaredifferenttheoretical predictions.Thehratesfrom[53]areinthelengthgauge.

Z Experiment Theory

12 1838(258) 667[65]

928[56]

2417[57,53]

13 2115(403) 758[65]

686[68]

999[56]

2617[57,53]

2359[57,53]a

14 2610(370) 833[65]

1126[56]

3007[57,53]

aK˛˛hratesincludethecouplingoftheinitialandfinalstatevacancieswiththe 3pelectron.

linewidthsare foundtobe∼1.6times largerthan thosecorre- spondingto thesumof theinitialand final statewidthsgiven byEq.(7).ForNe,ontheotherhand,themeasuredwidthofthe Auger KK-KLL hypersatellite of1.0(1)eV[14] is consistent with thesumKK+K+2Lof1.08eV.Recentlyanewapproachbased onelaborateMulti-Configuration-Dirac-Fock(MCDF)calculations andtakingintoaccounttheinfluenceoftheeffectofopen-valence configurationand theouter-shell ionizationand excitation was proposedtoresolve thediscrepancies [60].Indeed, forselected elementsinthe20≤Z≤30 range,theoreticalpredictionsof the effective h linewidths werefound tobe in good agreement withtheexperiment(seeFig.7).Thus, itcanbeconcludedthat anaccountofnon-lifetimebroadeningeffectssuchasthecomplex multipletstructureoftheX-rayspectraresultingfromthemulti- configurationstatesandmultiple-vacancies,thesolid-stateeffects, andalsotothemultiplet splittingdue theexchangeinteraction betweenthecore-holesandtheincompletevalence-shellsinthe theoreticalX-rayspectraisprerequisiteforcomparisonwithexper- iment.Onthetheoreticalside,calculationsforlowerZelements andK˛˛htransitionsarecertainlycalledfor.Ontheexperimental side,measurementsofTEOPtransitionsbymeansofhighenergy resolutionX-rayspectroscopytechniquesarealsoneeded.

3.2.2. One-electronone-photontotwo-electronone-photon branchingratios

Theobtainedmeanvaluesofthebranchingratiosaresumma- rizedinTable4andplottedinFig.8alongwithdatafromheavy-ion collisionexperiments[17–21],andtheZ-dependenttrendsofdif- ferenttheoreticalapproaches.Todeterminethebranchingratios (BR)thefollowingexpressionwasemployed:

BR= Ir IK˛˛h

KK

rK n nr

ωKK

ωKr Fexp, (8) whereIK˛˛handIrstandfortheintensitiesoftheK˛˛handtheclose- lyingreferenceKX-raydiagramtransitions,respectively.KKand rK arethedouble-andsingle-K-shellphotoionizationcrosssec- tions,ωKKandωrKarethefluorescenceyieldsforthedouble-and single-holestates,andnandnrdenotethenumberofatomsperunit volume.Fexp istheexperimentalcorrectionfactoraccountingfor therelativedifferencesinthephotonflux,crystalreflectivity,detec- torefficiency,transmissionofpolycapillaryoptics,self-absorption, andrelativetransitionprobabilitiesoftheK-shellemissionlines.

ForωrK,valuesfromRef.[64]wereadopted,andforself-consistency thoseofωKKwererescaledaccordinglyfromtheωKKKratios[2].

Inourapproachwetookadvantageofthewellknownvaluesofthe single[37]andthedouble[2]K-shellphotoionizationcrosssec- tions.ForeachelementtworeferenceKX-raytransitionswereused todeducetheBR,i.e.,forMgtheClK˛ofNaClandKClsamples,for

Fig.8.htoK˛˛hbranchingratiosforMg,AlandSi(opencircles)togetherwith theoreticalpredictionsasafunctionoftheatomicnumberZ.Theplotscorrespondto power-lawfitstothedatasets,whereasthesolidlinerepresentsaZ2-dependence.

ExperimentalresultsfromHIcollisionexperimentsarealsoshownforcomparison.

AltheKK˛andClK˛ofKCl,andforSitheScK˛andKKˇ.The BRvaluesforMgof1880(373)and1800(357),Alof2040(541)and 2208(605),andSiof2625(512)and2594(536),werefoundtobe consistentwithintheexperimentaluncertainties.

Sincethetwo-electronone-photonradiativedecaycorresponds toatransitionbetweencorrelatedmulti-electroninitialandfinal atomicstates,thetransitionratesareverysensitivetoanaccurate theoreticaltreatmentoftheelectroninter-andintra-shellinter- actions.Indeed,theavailablepredictionsforthebranchingratios showimportantdifferences(seeFig.8).Thepredictionsof ˚Aberg etal.[65],GavrilaandHansen[66],Baptista[67],Costaetal.[68], and Sahaet al. [56]underestimate ourexperimentalbranching ratios.TheBRvaluescomparebesttothemostrecentrelativistic configurationinteraction(RCI)calculationsofKadrekarandNatara- jan[57,53]andtothemany-bodyperturbationtheorypredictions [69–71].NoteworthyisthegoodagreementoftheRCIcalculations [57,53]withtheexperimentalbranchingratioforAlwhenthecou- plingbetweentheinner-shellvacanciesandtheouterincomplete subshellsisincluded.Thereportedresultsgiveanimportantpoint of comparison fordifferenttheoretical modelsthataddress the many-bodyproblemanddemonstratethepotentialoftheTEOP radiativedecayofK-shellhollowatomstounravelelectroncorre- lations.

4. Concludingremarksandoutlook

Understandingelectron–electroninteractions isnotonlyone ofthekeyissuesofatomicphysics,butisalsoimportantfor an accuratetheoreticaldescriptionofcomplexsystemsandprocesses in the fields of physics and chemistry. Yet, onthe theoretical side,anexacttreatmentofelectroninteractionsinmany-electron systemsstillrepresentsaformidablechallenge.Single-photondou- ble ionization process producing core–shell hollow atoms and molecules[72,73]isagrowingfield,andthepossibilitytoinves- tigate experimentallyultrafast electron dynamics withinatoms withXFELs opensnewexplorationroutes [74–77].Young etal.

[3]reportedonhollowNeatomscreatedthrougharapidphoto- ejection of inner-shellelectronsin an ultra-intenseXFEL beam andtheintensity-inducedX-raytransparency,whilethenon-linear atomicresponsetointenseX-raypulseswasreportedbyDoumy etal.[78].ThesestudieswereperformedbymeansofAugerand photoelectronspectroscopy.Newaspectsofhollowatomforma- tionanddecaysuchasX-rayemissionfromresonantlypumped double-holeK-shellstatesofAlwereobservedbyVinkoetal.[79].

http://doc.rero.ch

Références

Documents relatifs

of these theoretical values. Since cross-Z interpolation is best performed on individual sub- shells, such detailed calculations have been very useful. Not only does

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

autoionization. In this equation, the following processes are taken into account I) change of the HF field of the remaining atom as a result of autoionization decay of the inner

The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.. L’archive ouverte pluridisciplinaire HAL, est

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

We note that the Is2s2p excitations amount to about 10.5% of single Is ionization and the Is2s3s excitations to about 19% in the high energy limit, which we believe has been

Abstract: Monochromatized synchrotron radiation, atomic beam technique and a TOF spectrometer were used to measure the cross section of single and double photoionization of

Whereas the triplet coupled satellites exhibit a broad shape resonance almost at threshold, the singlet coupled satellites decrease continuously in intensity towards