• Aucun résultat trouvé

Generalized method for determining fluoroacidity by electrochemical diffusion coefficient measurement (application to HfF4)

N/A
N/A
Protected

Academic year: 2021

Partager "Generalized method for determining fluoroacidity by electrochemical diffusion coefficient measurement (application to HfF4)"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: hal-01713243

https://hal-univ-tlse3.archives-ouvertes.fr/hal-01713243

Submitted on 16 Jul 2018

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Generalized method for determining fluoroacidity by

electrochemical diffusion coefficient measurement

(application to HfF4)

Mickaël Kergoat, Mathieu Gibilaro, Laurent Massot, Pierre Chamelot

To cite this version:

Mickaël Kergoat, Mathieu Gibilaro, Laurent Massot, Pierre Chamelot. Generalized method for

deter-mining fluoroacidity by electrochemical diffusion coefficient measurement (application to HfF4).

Elec-trochimica Acta, Elsevier, 2015, 176, pp.265 - 269. �10.1016/j.electacta.2015.06.124�. �hal-01713243�

(2)

To cite this version :

Kergoat, Mickaël

and Gibilaro, Mathieu

and

Massot, Laurent

and Chamelot, Pierre

Generalized method for

determining fluoroacidity by electrochemical diffusion coefficient

measurement (application to HfF4). (2015) Electrochimica Acta, 176.

265-269. ISSN 0013-4686

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 20336

To link to this article: Doi :

10.1016/j.electacta.2015.06.124

URL :

http://doi.org/10.1016/j.electacta.2015.06.124

Any correspondence concerning this service should be sent to the repository

(3)

Generalized

method

for

determining

fluoroacidity

by

electrochemical

diffusion

coefficient

measurement

(application

to

HfF

4

)

M.

Kergoat,

M.

Gibilaro

*

,

L.

Massot,

P.

Chamelot

UniversitédeToulouse,UPS,CNRS,LaboratoiredeGénieChimique,118RoutedeNarbonne,F-31062Toulouse,France

Keywords: Fluoroacidity hafniumfluoride diffusioncoefficient masstransport ABSTRACT

Auniversalmethodforfluoroacidityevaluationwasdevelopedandbasedonamasstransportapproach: itsimplyconsistsinmeasuringthediffusioncoefficientofanelectroactivespeciesinvariousmolten media. Thereductionbehaviour ofHf(IV) ions was investigated inmolten fluoridesand diffusion coefficientsofHf(IV)ions weremeasured. Resultsshowed thatdiffusioncoefficientsdecreasewith fluoroacidity,due totheeffectof solventviscosity(whichis linked tobridgedfluorines). Aglobal approachofmasstransportinsolutionwasthenproposed,takingintoaccountbothsoluteandsolvent. TheSchmidtnumber(Sc)definedastheratiobetweensolventviscosityandsolutediffusivitywas calculatedinordertotakeintoaccountthesetwoparameters.ResultsshowedthatScincreaseswith fluoroacidity, in amuch more sensitive way than D. This universal method can extended to all electroactivespeciesandtoallbathfluoroacidity.

1.Introduction

Byanalogywithaqueoussolutions,notionofacidityinmolten fluoridesolventsisdefinedbyfluoroacidity(pF)andbasedonthe freefluoridesexchangeinmoltenmixturesasdescribedinEq.(1): fluorobaseÐfluoroacid +nF" (1)

pF="log(aF") (2)

Theactivityoffreefluorides(aF"),which quantifies

fluoroa-cidity, depends on the nature of the cations constituting the solvent,thecompositionandtemperature,andinfluences solva-tion,ionstabilityandprocessesreaction.Itthereforeneedstobe studied and quantified for a better understanding of physico-chemicalpropertiesofsolventsandsolutes.

Usual molten salts solvents are mixtures of alkaline and alkaline-earth fluorides (LiF, NaF, KF, MgF2, CaF2...) and the

amountoffreeF"ionsdependsontheirnatureandcomposition:

themoreamoltensaltcontainsfreefluorides(i.e.fluorodonor),the higheritsbasicityis.Asinaqueousmedia,theacidityisessentialas it influences so many parameters; however pF values are not availableyetsincetheF"activitycan'tbemeasured:onlyarelative

fluoroacidityscalewasestablishedbyindirectevaluations[1–3].

Oneelectrochemicalmethodtosortmoltenfluoridesmixtures inregardoftheirfluoroaciditywasproposedinourlaboratoryby Bieberetal.[4] andKergoat etal.[5].Basedonsilicon[4] and completedwithboron[5],itconsistsinstudyingtheequilibrium betweenadissolvedspeciesandagaseouscompoundsgivenby Eq.(3)forSiandEq.(4)forB:

SiF4+xx"(bulk)ÐSiF4(g)+xF" (3)

BF3+xx"(bulk)ÐBF3(g)+xF" (4)

Thus,bydefinition,afluorobasicbath(high[F"]

free)stabilizesa

speciesinsolution,whileafluoroacidbath(low[F"]

free)promotes

thereactionofgaseousspeciesrelease.

The study of these equilibria, moved by the free fluorides concentration, is then an indicator of fluoroacidity. Indeed the releaseofSiF4(g)orBF3(g)leadstoadecreaseofSi(IV)andB(III)ions

concentrationsrespectively,controlledbyin-situelectrochemical titrations.

Bycalculatingkineticconstantsofsilicon(kSi)andboron(kB)

releases, ranking of various eutectic mixtures was established (Fig.1a) and a fluoroacidity scale of fluoride compounds was proposed(Fig.1b)[5].

Howeverseverallimitationswerepointedout:

- thechoiceofthesoluteiscriticalasithastoformagaseous speciesandbeinequilibriumwithit,

- thesolutemustnotreactwiththesolvent,

* correspondingauthor:GibilaroMathieuTel.:+33561557219fax:+3356155

6139

(4)

- hastobemoreacidthanthesolventtocapturefreefluorides, - forthemostacidicbaths,thegaseousspeciesreleaseistoofast

todeterminethekineticconstants.

To avoid these drastic conditions, a universal method for fluoroacidity evaluation was developed and based on a mass transportapproach:itsimplyconsistsinmeasuringthediffusion coefficientofaspeciesinvariousmoltenmedia[5].However,small differenceswereobservedbetweenthediffusioncoefficientsand thediscriminationwascomplicatedbyalackofselectivity.Aglobal approachofmasstransportinsolutionwasthenproposed,taking intoaccountbothsoluteandsolvent.

Severalauthorsalreadyshowedthatanincreaseoffluoroacidity directlyimpactsthechemical structureofthemoltensalt[6–8]

and leads to a decrease of the free F" which are involved in

coordinationofonecomplex.Forthemostacidicbaths,complexes shares fluorinesbyforming bridges leading toa structure asa network-likeliquid[9–11].Thischemicalbehaviour(coordination and bridging) affects physico-chemical parameters as solute solubility,vaporpressureandviscosity[12].

BymeasuringthediffusioncoefficientsofSi(IV)andB(III)ions and calculating theSchmidt number(Sc),defined asthe ration between solvent kinematic viscosity

y

(in m2s"1) and solute

diffusivityD(inm2s"1)invariousmolten

fluoridesmixtures,itwas shown thatDdecreasesandSc (Sc=

y

/D)increaseswithacidity

validatingthepreviousscaleobtained.

This novel approach is easier to set up than kinetic rates determination,asanaccuratemeasurementcouldbeperformed by electrochemical techniques; moreover, it could be certainly extendedtoallelectroactivespeciesandtoallbathfluoroacidity. Inordertoconfirmthisassumption,hafniumtetrafluorideHfF4

solutewas selected:itis stablein solution,inerttothesolvent constitutants,anddonotformgaseousspeciesinourexperimental conditions.

OnlyfewstudiesoftheelectrochemicalbehaviourofHf(IV)ions are presented in the bibliography. The available results were mainlyacquiredinmoltenchloridesorchloro-fluoridesmedia.In moltenchlorides,Poinsoetal.[13,14]andAdhoumetal.[15]did notagreeontheonHf(IV)ionreductionmechanisminNaCl-KCl mixture.Spinketal.[16]inCsCl,showedthatHf(IV)ionsreduction is a one step process exchanging 4 electrons leading to the formationofHfmetal.Quitethecontrary,Guang-Senetal.[17]and Serrano [18] demonstrated inNaCl-KClthat reduction ofHf(IV) ionstakesplaceinatwostagesprocess,Hf(IV)toHf(II)toHf(0). However, all theseauthors agree that fluorideions addition in moltenchloridesstabilizes Hf(IV)ionstoformhafniumfluoride complexHfF62"(Eq.(5))inmoltenchloro-fluoridesmedia,asthe

reductionofHf(IV)ionstoHf(0)isperformedinasingle4electrons reversiblestepunderdiffusioncontrol(Eq.(6)):

HfCl62"+6F"ÐHfF62"+6Cl" (5)

HfF62"+4e"ÐHf+ 6F" (6)

Inthefirstpartofthispaper,thereductionbehaviourofHf(IV) ionswasinvestigatedinmolteneutecticLiF-NaF(61–39mol.%)at 750#C by cyclic voltammetry, square wave voltammetry and

chronopotentiometricmethods.Then,diffusioncoefficientsofHf (IV) ionsweredeterminedindifferentconditionsvalidatingthe previousobtainedfluoroacidityscale.

Inasecondpart,measurementsofdiffusioncoefficientsofHf (IV) ionswereperformedintwoothersmoltenmedia:LiF-NaF-KF andLiF-CaF2selectedinregardsoftheirfluoroacidity(thefirstone

is more basic and thesecond one more acid than LiF-NaF:cf.

Fig.1a),inthe800–900#Ctemperaturerange. Resultsobtained

werecorrelatedtosolventviscositythankstotheSchmidtnumber previouslydefined.RelationshipsbetweenD,Scandfluoroacidity previouslydemonstratedwereconfirmedwiththis electrochemi-calspecies.

Thisglobalmasstransportapproachisvalidatedwithasimple determinationofadiffusioncoefficient,andisapowerfultoolin ordertodeterminefluoroacidity.

2. Experimental

The cell consisted in a vitreous carbon crucible placed in a cylindricalvesselmadeofrefractorysteelandclosedbyastainless steellidcooleddownbycirculatingwater.Theinnerpartofthewall wasprotectedagainstfluoridevapoursbyagraphiteliner.Thiscell hasalreadybeendescribedinpreviouswork[19].Theexperiments wereperformed underaninert argonatmosphere. Thecellwas heatedusingaprogrammablefurnaceandthetemperatureswere measuredusingachromel-alumelthermocouple.

Threeeutecticmixtures(CarloErbaReagents99.99%)wereused as electrolyteand selectedaccording totheir fluoroacidityand relativeeasyhandling:

- a basic bath: LiF-NaF-KF (46.5-11.5-42 mol%, melting point 452#C),

- anacidbath:LiF-CaF2(79.2-20.8mol%,meltingpoint767#C),

- an intermediate bath: LiF-NaF (61-39 mol%, melting point 652#C).

Allthe solvents were initially dehydrated by heating under vacuum from ambient temperature up to their melting point during4days.Hafniumionswereintroducedintothebathinthe formofhafniumtetrafluorideHfF4powder(SigmaAldrich99.9%).

Silverwires(1mmdiameter,Goodfellow)wereusedasworking electrode.Thesurfaceareaoftheworkingelectrodewasdetermined aftereachexperimentbymeasuringtheimmersiondepthinthe bath.Theauxiliaryelectrodewasavitreouscarbonrod(V25,3mm diameter)withalargesurfacearea(2.5cm2).Thepotentialswere

referredtoaplatinumwire(0.5mmdiameter,Goodfellow)actingas aquasi-referenceelectrodePt/PtOx/O2"[20].

AlltheelectrochemicalstudieswereperformedwithanAutolab PGSTAT30potentiostat/galvanostatcontrolledbyacomputerusing theresearchsoftwareGPES4.9.

3. Resultsanddiscussion 3.1.Hf(IV)reductionmechanism 3.1.1.Cyclicvoltammetry

Hf(IV)ionsreductionbehaviourwasinvestigatedinmolten LiF-NaFinthe750-900#Ctemperaturerange.Ashafniumandsilver

Fig.1.Fluoroacidity scaleof various eutectic mixtures. Fluoroacidity scaleof

(5)

arenotmiscibleatoperatingtemperature,silverwasselectedasan inertworkingelectrode[21].

Fig. 2 shows typical cyclic voltammogram of LiF-NaF-HfF4

(0.69molkg"1) on silver at 750#C and 100mVs"1. Only one

reduction peak and its corresponding reoxidation peak are observed at -1.43 and -1.25V vs. Pt respectively. The signal crossingbetweenforwardand backwardscansis typicalofthe formationofasolidphaseattheelectrode(crossover).Inaddition, theasymmetricalshapeofthereoxidationpeakischaracteristicsof ametaldepositeddissolutioninthecathodicrun(strippingpeak). AspresentedintheinsetofFig.2,novariationsofpeakpotentialat differentscan rateprovedthatHf(IV)electrochemicalreduction processisreversible[22].Thus,accordingtoequationsofcyclic voltammetryforareversiblesoluble/insolublesystem,thenumber of exchanged electrons can be calculated by measuring the differencebetweenthepotentialpeakandthehalfpeakpotential

[22]: jEp" Ep 2j¼ 0:77 RT nF (7)

whereEpisthepeakpotential(V)andEp/2isthehalfpeakpotential

(V),Rtheidealgasconstant(8.314Jmol"1K"1),Tastheabsolute

temperature(K),nthenumberofexchangedelectronsandFthe Faradayconstant(Cmol"1).

In this study, the difference was found to be 18&2mV, correspondingtoavalueof3.8&0.3exchangedelectrons.

ThelinearrelationshipbetweenHf(IV)reductionpeakcurrent density at -1.43V vs. Pt and the square root of the scan rate presented in the inset of Fig. 2, proved that electrochemical reductionprocessiscontrolledbyHf(IV)diffusion[22].Diffusion coefficients were determined using Berzins-Delahay equation (Eq.(8))forareversiblesoluble/insolublesystem[23]:

Jp¼0:61nFCðnFDv RT Þ

1=2 (8)

where Jp is the peak current density (Am"2), C the solute

concentration (mol m"3), D the diffusion

coefficient (m2 s"1)

and

y

thepotentialscanrate(Vs"1).

At750#C,avalueof(3.5&0.3)x10"9m2s"1forDwasfound.

Serrano [18] and Poinso [13] found a Hf(IV) ions diffusion coefficientinNaCl-KCl-NaFat750#Cequalto2.2and4.9)10"9

m2s"1respectively.

DiffusioncoefficientsweredeterminedinLiF-NaFinthe800– 900#C temperaturerangeand are presentedinTable 1. Results

showedthatDandTfollowanArrheniuslawtype,therelationship isexpressedasfollows:

InD¼"EA

RTþInDo¼" 7863:4

T "11:8 (9)

FromEq.(9),theactivationenergyisfoundtobe65.4&0.7kJ mol"1.Thisvalueisbythesameorderofmagnitudewithprevious

studies,asforinstance213kJmol"1forSi(IV)ions[4]or48.9kJ

mol"1forNd(III)ions[24].

3.1.2.Squarewavevoltammetry

The square wave voltammetry was used to confirm more accuratelythenumberofexchangedelectronsofHf(IV)reduction thancyclicvoltammetry.

Fig.3showsasquarewavevoltammogramoftheLiF-NaF-HfF4

(0.69molkg"1)systemonsilverelectrode at750#C and9Hz.A

singlepeakaround-1.40Vvs.Ptisobserved,inagreementwith cyclicvoltammetryandpresentinganasymmetricGaussianshape characteristicofasoluble/insolublesystem[25].

Theasymmetryofthepeakisduetothecurrentlessnucleation overvoltage needed for the formation of the first crystals of metallichafniumattheelectrodesurface.Thisphenomenondelays theappearanceofthefaradiccurrent,leadingtoasignaldistortion

[26]. The nucleation overvoltage

h

(V) can be determined by

measuringthewidthatmid-height ofthetwohalfpeaksusing Eq.(10):

h

=2(10)(W2-W1) (10)

The obtained value,

h

=32&2mV, is in agreement with previous overvoltage values for metals deposition available in theliterature[27].

After checking in the frequency domain that the reduction reactionofHf(IV)hasareversiblebehavior(linearvariationofthe peakdifferentialcurrentdensitywiththesquarerootoffrequency (cf. inset Fig. 3)), the number of exchanged electrons was determinedfrom themeasurement of thewidthat mid-height W1/2(V)carriedoutonanisolatedpeak.

However,togetridofthenucleationprocess,thewidthat mid-heightW1/2measurementhasbeendeterminedbydoublingthe

half-widthatmid-heightW2(V)oftheGaussiancurve(Eq.(11)).

Thismethodologyhasalreadybeenvalidatedinmoltenfluorides fordifferentmetalsstudies[24].

W1=2¼2W2¼3:52 RT nF (11) -0.2 -0.1 0.0 0.1 0.2 0.3 -1.5 -1 -0.5 0 0.5 1 1.5

J/

A

cm

-2

E vs. Pt/V

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0 0.2 0.4 0.6 0.8 Jp /A cm -2 υ1/2/V1/2s-1/2 -1.45 -1.44 -1.43 -1.42 -1.41 -1.4 -1.5 -1 -0.5 0 Ep v s. P t/ V log υ/V s-1

Fig.2.CyclicvoltammogramofLiF-NaF-HfF4(0.69molkg"1)at100mVs"1and

T=750#CWorkingEl.:Ag;AuxiliaryEl.:vitreouscarbon;ReferenceEl.:PtInsets:

LinearrelationshipofHf(IV)reductionpeakcurrentdensityversusthesquareroot

ofthescanningpotentialrate.Hf(IV)reductionpeakpotentialversusthelogarithm

ofthescanningpotentialrate.

Table1

Diffusioncoefficient(D),kinematicviscosity(y)andSchmidtnumber(Sc)ofHf(IV)

ionsfordifferentfluoridemediaatdifferenttemperature.

T(#C) LiF-NaF-KF LiF-NaF LiF-CaF

2 Molarcomp. 46.5–11.5–42 61–39 79.2–20.8 109D(m2s"1) 800 5.34 4.96 1.49 850 9.25 6.80 1.94 900 16.66 9.46 2.48 107y(m2s"1) 800 7.8 12.1 30.2 850 6.5 10.8 29.6 900 5.6 9.7 29.2 Sc=y/D 800 145 245 2028 850 71 158 1528 900 34 102 1178

(6)

82&4mVwasfoundforW1/2,correspondingtoanumberof

exchangedelectronsof3.8&0.2.

Theresultsobtainedbycyclicandsquarewavevoltammetries allowconcludingthatHf(IV)ionsreductioninmoltenfluoridesisa one-stepprocessexchanging4electronsunderdiffusioncontrol. 3.1.3.Chronopotentiometry

To confirm the diffusion-controlled process of the Hf(IV) electrochemicalreduction,chronopotentiogramswereperformed.

Fig.4showsthevariationofthechronopotentiogramsofHfF4with

theappliedcurrentonsilverelectrodeat750#C inLiF-NaF-HfF

4

(0.05mol kg"1). These curves exhibit a single wave, obviously

associatedtothereductionofhafniumionsinthepotentialrange (+-1.4Vvs.Pt)alreadyobservedonvoltammograms.

According to the data plotted in the inset of Fig. 4, Sand's equation(Eq.(12))wasverified[22]:

I

t

1=2

C ¼ nFSD1=2

p

1=2

2 ¼constant

¼0:160&0:004Acm3s"1=2mol"1 (12)

whereIistheappliedcurrent(A),

t

thetransitiontime(s),andS

theimmergedelectrodesurfacearea(m2).

Thushafniumreductionprocesswasconfirmedtobelimitedby the diffusionof Hf(IV) ionsin solution. Its diffusioncoefficient calculated using Eq. (12) and assumingthat n=4 is:(3.3&0.2)

x10"9m2s"1at750#C,inaccordancewithourpreviousresultby

cyclicvoltammetry((3.5&0.3)x10"9m2

s"1).

The reversal chronopotentiogram presentedin Fig. 5 proves thataninsolublecompoundisformedonsilverelectrodeduring thecathodicrun,asthetransitiontimeofthereductionwaveis veryclosetotheoxidationtime(

t

red+

t

ox+0.6s)[28].Thisresult

confirmsonemoretimethatthereactionleadstoHfmetalonthe workingelectrode.

Allthese electrochemical techniques allow to concludethat reductionofHf(IV)ionsaddedasHfF4inmoltenfluorides:

- isaone-stepprocessexchanging4electrons, - iscontrolledbydiffusionofHf(IV)ions, - andleadstotheformationofmetallichafnium.

As it is stated in thelitterature that cations coordinancyis stronglyinfluenced byfluoroacidity,reductionmechanismofHf (IV) ionsinmoltenfluoridescanbewrittenasinEq.(13): HfF4+xx"+4e"ÐHf+(4+x)F" (13)

3.2.Diffusioncoefficientsandmasstransportapproach

The effect of fluoroacidity on Si(IV) and B(III) ions mass transportswaspreviouslydemonstrated[5].Resultsshowedthat anincrease ofthefluoroacidityleadstoa decreaseof diffusion coefficientsduetocoordinancyandbridgingsolventphenomena. Thesephysico-chemicalsparametersleadtoanincreaseofsolvent viscosity with fluoroacidity. As a consequence solutes mass transportbecomemoredifficult.

In order to confirm these resultson a simple electroactive species,investigationonhafniumsolutewasperformedinthree moltensystemswithdifferentfluoroacidities:

- abasicbath:LiF-NaF-KF, - anacidbath:LiF-CaF2,

- andanintermediatebath:LiF-NaF.

Diffusion coefficients of Hf(IV) ions were determined by calculating the average of cyclic voltammetry (Eq. (8)) and chronopotentiommetry (Eq. (11))values. Results are presented inTable1wheresolventsaresortedfromthemorebasictotheleft tothemoreacidtotheright.

ResultsonHf(IV)ionsshowthatdiffusioncoefficientsdecrease with fluoroacidity whatever the temperature.However for the lowesttemperature,theminordifferencesbetweenvaluesandthe -0.18 -0.16 -0.14 -0.12 -0.10 -0.08 -0.06 -0.04 -0.02 0.00 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1.0

δ

j/

A

cm

-2

E vs. Pt/V

W

2

W

1 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0 2 4 6 8 10 δ j/ A cm f1/2/Hz1/2

Fig.3.SquarewavevoltammogramofLiF-NaF-HfF4(0.69molkg"1)atfrequency=

9HzandT=750#CWorkingEl.:Ag;AuxiliaryEl.:vitreouscarbon;ReferenceEl.:Pt

Inset:LinearrelationshipofHf(IV)reductionpeakcurrentdensityversusthesquare

rootofthefrequency.

Fig.4.TypicalchronopotentiogramswiththeintensityofthesystemLiF-NaF-HfF4

(0.05molkg"1) at T=750#C Working El.: Ag; Auxiliary El.: vitreous carbon;

ReferenceEl.:Pt. -1.75 -1.5 -1.25 -1 -0.75 -0.5 0 0.5 1 1.5 2

E

v

s.

P

t/

V

Time/s

τred= 0,591s τox= 0,610s

Fig.5.ReversalchronopotentiogramofHfF4(0.083molkg"1)inLiF-NaF,J=&207

mAcm"2atT=750#CWorkingEl.:Ag;AuxiliaryEl.:vitreouscarbon;ReferenceEl.:

(7)

uncertaintyofmeasurement(&3)10"10m2s"1)donotallowthe

discriminationofsolventsfluoroacidity.

Itisobviousthattheionicradiusoftheelementinsolutionand itscoordinancyaffecttheabilityofthespeciestomovethroughthe solution(representedbyD).Inhighlyacidbaths,wherethecontent offreeF"islow,hafniumcomplexeshavetoshareoneormore

fluorinebybridging,andthenform,bypolymerization,largersizes species,whichslowsdownthemasstransportinsolution.

AsthehaniumHfF4+xx"coordinancyisafunctionof

fluoroa-cidityand cannot bedeterminebyelectrochemistry, thesolute transportresultshavetotakeinaccountthesolventcontribution throughitsviscosity:aviscosityincreaseleadstoamoredifficult solutemasstransport.

Kinematicviscosities

y

(inm2s"1)definedastheratiobetween

dynamicviscosity

m

(inkgm"1s"1)anddensity

r

(inkgm"3)were

calculatedfromtheMoltenSaltsHandbookvalues[29].Notethat data for LiF-CaF2 viscosity at operating temperatures are not

availableinliterature.Then,viscositywasextrapolatedfromthe work of Robelin et al. as thesum of the fluoridescompounds viscosities balanced by their molar fractions in the eutectic mixture[30].ThesevaluesaregatheredinTable1.

It shows that molten fluorides viscosity increase with fluoroacidity, and could be correlated to a bridging phenomen by sharing available free fluorides, modifying the molten salt structure and forming a network-like liquid. This behaviour is particularlyimportantwiththepresenceofcalcium,which was demonstratedasoneofthemoreacidcompounds(Fig.1a).

InordertotakeintoaccounttheeffectoftheviscosityonHf(IV) diffusioncoefficients,theadimensionalSchmidtnumber(Sc=

y

/D)

wascalculated tocharacterizethe soluteglobalmass transport throughitsenvironment.ThecalculatedScnumberaregatheredin

Table1.Atagiventemperature,theresultsshowedthatScforHf (IV) ionsincreaseswithfluoroacidity, allowing tosort melts in regardoftheirfluoroacidity.

Thus relationships between fluoroacidity, bridging fluorines andviscositydirectlyimpactmasstransportofasimplespeciesin solution.Thedeterminationofdiffusioncoefficientsofaspecies, whichisdirectlyaffectedbyacumulativeeffectofviscosityand ionicradiusofthesolute,allowstodiscriminatemoltenfluorides mediaasa function of fluoroacidity.However, ifthe difference betweenD values is very low, the Schmidt number by taking accountviscosityincreasethisdifference,asforinstancebetween LiF-NaF-KFandLiF-NaFat800#Cwherethedifferenceisaround7%

onDand69%onScinthesameconditions. 4. Conclusion

TheHfF4electrochemicalbehaviourwasinvestigatedinmolten

fluorides. By cyclic voltammetry, square wave voltammetry, chronopotentiometry and reversal choronpotentiometry, Hf(IV) ionsreduction mechanism was demonstrated tobe a one step processexchanging4electronsunderHf(IV)ionsdiffusioncontrol leadingtotheformationofhafniummetal:HfF4+xx"+4e"ÐHf+

xF".

Diffusion coefficients of Hf(IV) were determinated in three moltenfluoridessolvents,withdifferentfluoroacidities,between 800 and 900#C. Hf(IV) diffusion coefficients decrease with

fluoroacidity:thisphenomenumisduetoacumulativeeffectof solventviscosity(whichislinkedtobridgedfluorines)andionic radiusofthesolutewithfluoroacidity. Asviscosityreferstothe solventanddiffusioncoefficienttothesolute,theSchmidtnumber wascalculatedinordertotakeintoaccountthesetwoparameters. Resultsshowed that Sc increases withfluoroacidity, in a much moresensitivewaythanD.

Thismasstransportapproachconsistinginthedetermination of thediffusion coefficient and the calculation of the Schmidt number is easier to set up than kinetic rates determination. Moreover,thisuniversalmethodcanextendedtoallelectroactive speciesandtoallbathfluoroacidity.

References

[1]D.Elwell,Electrowinningofsiliconfromsolutionsofsilicainalkalimetal fluoride/alkalineearthfluorideeutectics,Sol.Energ.Mater.5(1981)205. [2]E.W.Dewing,Theeffectsofadditivesonactivitiesincryolitemelts,Metall.

Trans.B20B(1989)657.

[3]B. Gilbert, E. Robert, E. Tixhon, J.E. Olsen, T. Østvold, Structure and ThermodynamicsofNaF-AlF3MeltswithAdditionofCaF2andMgF2,Inorg. Chem.35(1996)4198.

[4]A.L. Bieber, L. Massot, M. Gibilaro, L. Cassayre, P. Chamelot, P. Taxil, Fluoroacidityevaluationinmoltensalts,Electrochim.Acta56(2011)5022. [5]M.Kergoat,L.Massot,M.Gibilaro,P.Chamelot,Investigationonfluoroacidity

ofmoltenfluoridessolutionsinrelationwithmasstransport,Electrochim. Acta120(2014).

[6]C.Bessada,A.-L.Rollet,A.Rakhmatullin,I.Nuta,P.Florian,D.Massiot,Insitu NMRapproachofthelocalstructureofmoltenmaterialsathightemperature, C. R.Chim9(2006)374.

[7]A.-L.Rollet,S.Godier,C.Bessada,HightemperatureNMRstudyofthelocal structureofmoltenLaF3-AF(A=LiNa,KandRb)mixtures,PCCP10(2008) 3222.

[8]C.Bessada,A.Rakhmatullin,A.-L.Rollet,D.Zanghi,HightemperatureNMR approachofmixturesofrareearthandalkalifluorides:Aninsightintothelocal structure,J.FluorineChem.130(2009)45.

[9]C.F.BaesJr.,ApolymermodelforBeF2andSiO2melts,J.SolidStateChem.1 (1970)159.

[10]V.Dracopoulos,J.Vagelatos,G.N.Papatheodorou,Ramanspectroscopicstudies ofmoltenZrF4-KFmixturesandofA2ZrF6A3ZrF7(A=LiKorCs)compounds,J. Chem.Soc.DaltonTrans.(2001)1117.

[11]M.Salanne,C.Simon,P.Turq,P.A.Madden,Conductivity-Viscosity-Structure: UnpickingtheRelationshipinanIonicLiquidy,J.Phys.Chem.B111(2007) 4678.

[12]D.Williams,L.Toth,K.Clarno,AssessmentofCandidateMoltenSaltCoolants for the Advanced High-Temperature Reactor (AHTR), ORNL/TM-2006/12 (2006).

[13] J.Y.Poinso,Ph.DThesis,(1993).

[14]J.Y. Poinso, S.Bouvet, P. Ozil, J.C. Poignet, J. Bouteillon, Electrochemical ReductionofHafniumTetrachlorideinMoltenNaCl-KCl,J.Electrochem.Soc. 140(1993).

[15]N.Adhoum,L.Arurault,J.Bouteillon,A.Cotarta,J.C.Gabriel,J.C.Poignet, ElectrochemistryofRefractoryMetals:Hf,Mo,Cr,in:D.Kerridge,E.Polyakov (Eds.),RefractoryMetalsinMoltenSalts,vol.53,Springer,Netherlands,1998, pp.61–72.

[16]D.R.Spink,C.P.Vijayan,HafniumElectrowinningStudies,J.Electrochem.Soc. 121(1974).

[17]C.Guang-Sen,M.Okido,T.Oki,Electrochemicalstudiesofzirconiumand hafniuminalkalichlorideandalkalifluoride-chloridemoltensalts,J.Appl. Electrochem.20(1990).

[18] K.Serrano,Ph.DThesis,UniversitéToulouseIII-PaulSabatier,(1998).

[19]L.Massot,P.Chamelot,F.Bouyer,P.Taxil,Electrodepositionofcarbonfilms frommoltenalkalinefluoridemedia,Electrochim.Acta47(2002)1949. [20]A.D.Graves,D.Inman,Adsorptionandthedifferencialcapacitanceofthe

electricaldouble-layeratplatinum/halidemetalinterface,Nature208(1965) 481.

[21]H.Okamoto,Ag-Hf(silver-hafnium),J.PhaseEquilib17(1996).

[22]A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications,2ed.,JohnWiley&Sons,NewYork,2001.

[23]T.Berzins,P.Delahay,OscillographicPolarographicWavesfortheReversible DepositionofMetalsonSolidElectrodes,J.Am.Chem.Soc.75(1953). [24]C.Hamel,P.Chamelot,P.Taxil,Neodymium(III)cathodicprocessesinmolten

fluorides,Electrochim.Acta49(2004).

[25]L.Ramaley,M.S.Krause,Theoryofsquarewavevoltammetry,Anal.Chem.41 (1969).

[26]G.J.Hills,D.J.Schiffrin,J.Thompson,Electrochemicalnucleationfrommolten salts—I.Diffusioncontrolledelectrodepositionofsilverfromalkalimolten nitrates,Electrochim.Acta19(1974).

[27]C.Nourry,L.Massot,P.Chamelot,P.Taxil,Dataacquisitioninthermodynamic andelectrochemicalreductioninaGd(III)/Gdsystem inLiF–CaF2media, Electrochim.Acta53(2008).

[28]H.B. Herman, A.J. Bard, CyclicChronopotentiometry.Diffusion Controlled ElectrodeReactionofaSingleComponentSystem,Anal.Chem35(1963). [29]G.J.Janz,MoltenSaltsHandbook,ElsevierScience, 2013.

[30]C.Robelin,P.Chartrand,Aviscositymodelforthe(NaF+AlF3+CaF2+Al2O3) electrolyte,TheJournalofChemicalThermodynamics43(2011).

Figure

Fig. 1a), in the 800 – 900 # C temperature range. Results obtained were correlated to solvent viscosity thanks to the Schmidt number previously de fi ned
Fig. 3 shows a square wave voltammogram of the LiF-NaF-HfF 4 (0.69 mol kg "1 ) system on silver electrode at 750 # C and 9 Hz
Fig. 3. Square wave voltammogram of LiF-NaF-HfF 4 (0.69 mol kg "1 ) at frequency = 9 Hz and T = 750 # C Working El.: Ag; Auxiliary El.: vitreous carbon; Reference El.: Pt Inset: Linear relationship of Hf(IV) reduction peak current density versus the sq

Références

Documents relatifs

Its efficiency in yielding a high contrast in short-T 2 structures using an ultrashort echo time acquisition module (Diff-UTE) is compared to the adiabatically prepared

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

In this section, we give another possible definition of exposure based on flows in a dynamic network. The previous definitions aimed at measuring the exposure of node u by the number

A Simple Method of Determining Diffusion Coefficient by Digital Laser Speckle Correlation.. Giuseppe Spagnolo, Dario Ambrosini, Antonio Ponticiello,

A semigroup argument is used in [2] to solve a Stein equation for Gaussian diffusion approximation.. We prove that, contrary to the claim in [2], the semigroup considered therein is

Das übergeordnete Bildungsziel im Lernbereich der Sprachen Globale Entwicklung besteht darin, grundlegende Kompetenzen für eine zukunftsfähige Gestaltung des privaten und

To determine a surface self-diffusion coefficient by mass transport, two conditions have to be fulfilled : (1) The initial surface shape should be simple in

Cofounder: CardioRenal, a company developing a telemonitoring loop in heart failure (including creatinine, potassium and Hb measurements) Nicolas Girerd: personal fees from