• Aucun résultat trouvé

A numerical assessment of wall shear stress changes after endovascular stenting

N/A
N/A
Protected

Academic year: 2021

Partager "A numerical assessment of wall shear stress changes after endovascular stenting"

Copied!
22
0
0

Texte intégral

(1)

HAL Id: hal-00908281

https://hal.archives-ouvertes.fr/hal-00908281

Submitted on 22 Nov 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A numerical assessment of wall shear stress changes after endovascular stenting

Franck Nicoud, Hélène Vernhet, Michel Dauzat

To cite this version:

Franck Nicoud, Hélène Vernhet, Michel Dauzat. A numerical assessment of wall shear stress changes after endovascular stenting. Journal of Biomechanics, Elsevier, 2005, 38 (10), pp.2019-2027.

�10.1016/j.jbiomech.2004.09.011�. �hal-00908281�

(2)

A Numerial Assessment of Wall Shear Stress Changes

after Endovasular Stenting

F.Nioud

UniversityMontpellierII -CNRSUMR5149

H. Vernhet&M.Dauzat

UniversityMontpellierI -LaboratoryofCardiovasularPhysiologyEA2992

Manusriptnumber: BIO/2003/003572-2ndrevision

Correspondingauthor: Prof.F.Nioud

UniversityofMontpellierII

CC051

34095MontpellierCedex 5

Frane

tel:+33(0)467144846

fax:+33(0)467149316

E-mail:nioudmath.univ-montp2.fr

Keywords: stenting,

restenosis,

wallshearstress,

ompliane,

numerialmethod

Wordount: 3300

(3)

Abstrat

This theoretial/numerial study aims at assessing the hemodynami hanges indued by

endovasular stenting. Byusing the lassialone-dimensional linearpressure wavestheory in

elasti vessels, we rst show that the modulus of the reetion oeÆient indued by an en-

dovasularprosthesisismostlikelysmallsineproportionaltothestent-to-wavelengthratio.As

adiret onsequene,thewallmotionoftheelasti(stented)arteryanbepresribedapriori

and the oupled uid-struture problem does not have to be solved for assessing the hemo-

dynami hanges due to stenting.Several 2Daxisymetri alulationsare performed to solve

theunsteady inompressible Navier-Stokesequationson moving meshes fordierent typesof

(stented)arteries.Thenumerialresultssuggestthatendovasularstentinginreasesthesysto-

diastolivariationsofthewallshearstress(by35%atthemiddleofthestent,byalmost50%in

theproximal transitionregion).Additional alulationsshowthat over-dilatedstentsprodue

lesshemodynamiperturbations.Indeed,theinreaseoftheamplitudeofthewallshearstress

variationsoverthe ardiayle is only10 % when thestentradius is equalto the radiusof

theelastiarteryatsystole(insteadofbeingequaltothemeanarteryradius).

(4)

1. Motivation& Objetives

Angioplastywithorwithoutendovasularstentingisanestablishedminimallyinvasiveteh-

nique that is used astreatment of olusive disease in medium to large arteries.It has been

appliedextensivelyintheoronary,renal,andperipheralvasularsystems.Theuseofintravas-

ularstentstendsto lowerthe ompliationratealthough restenosisratesashigh as15-30%

after6monthshavebeenobservedinhumanoronaryarteries(Rauetal.1998;Serruysetal.

2002).Coatedstentselutingantimitotiagentssuhassirolimusandpalitaxelinhibitintimal

proliferation.Preliminaryreportshaveshowedextremelylowratesofrestenosisovertheshort

andmid-term(Morie etal.2002; Grubeet al.2003).However,onsideringthelong-standing

hanges in wall mehanis induedby stentplaement,longterm resultsof oated stents are

still required. Besides, a better understanding of the mehanial eets indued by stenting

ouldleadto improvedprosthesiswithlowerfailureratesandsmalleroatingrequirements(if

any).Thisstudyisaontributiontothisquestforbetterstentdesign.

Onepossibleexplanationforthetrendtorestenosisreliesonthehemodynamimodiations

induedby the prosthesis.Changes in wall shear stress indue endothelial dysfuntion(Caro

etal.1969),ultimatelyleadingtointimalhyperplasiaandrestenosis.Daviesetal.(2001)suggest

thatthemagnitudeoftheshear stressisofseondaryimportanetothespatial andtemporal

utuationsofthisquantity.InvivotestingperformedbyRollandetal.(1999);Vernhetetal.

(2000,2001)showthatendovasularstentinginduesalargemodiationofarterialompliane

and thus may modify thepropagation of arterial wavesby introduing additionalreetions.

Therstobjetiveofthisstudyisthentoassesstheamountofpressurewavereetiondueto

stenting(setion2).Anotherexpetedeetoftheomplianemismathinduedbystentingis

tomodifythedetailsofbloodmotioninthestentedarea.Speially,thetime-averaged(over

theardiayle)wallshearstressmightbehanged,aswellasthelevelofitssystolo-diastoli

variations.Theseondgoalofthispaperistolarifytheamountofhangesinbloodmotionthat

(5)

theeetsofstentingat amiro-salelevel,inludingthegeometrialdesriptionofthestruts

shape andspaing (Berry etal. 2000; Benardet al.2003). These studies provideinformation

relevantto the hemodynami hangesimmediately after stenting,before the wires havebeen

integratedwith thesurrounding tissue.Forexample,thenumerialresultsobtainedby Berry

etal.(2000)suggestthattheowmayreattahdownstreamofthewireswhenthestrutspaing

is greater than about six wire diameters. On the ontrary, the present study is dealingwith

theglobaleetsoftheomplianemismath,negletingthedetailsoftheprosthesisstruture.

Insteadofonsideringarigidwallwithamiro-salegeometrialdesriptionofthestrutsshape

(Berryetal.2000;Benardetal.2003),wemodeltheprosthesisasauniformelastitubewithits

ownompliane.Theresultsofthisstudyaremorerelevanttolong-standingstenting,afterthe

wires havebeen integratedwith thesurrounding tissue.Thereason foronsidering thispoint

of view is that intimal hyperplasia is ertainly a long lasting phenomenon ompared to the

integrationofthestentwiresbythevessel:forexample,onlyoneweekafterstenting,Robinson

etal.(1988)observedanearlyontinuousendothelialandpseudo-endothelial elllayeronthe

luminal surfaeof thestentedrabbit aorta while intimal hyperplasiais only ompleted after

six 6to 12 weeks for this model. Therefore, amiro-saleanalysis of theblood ow hanges

inludingthestrutsdetailsisonlyrelevanttoautestentingeets.Inthispaperweonsidera

omplementarypointofviewinordertoproviderelevantinformationaboutthelong-standing

hemodynamieets ofstenting.

2. Pressure waves reetion due to stenting

2.1. Basi equations

Thegeneralone-dimensionalequations desribingthepulsatilebloodowin ompliantarter-

iesare well known sinethe work of Hughes& Lubliner (1973). Theydesribe the evolution

(6)

respetively. FollowingReuderink et al.(1989),thenon-linear termsareoften negleted.Fur-

thermore, onsidering asegmentwhose rosssetion area(A) andompliane (A 0

=dA=dP)

do not depend on the spae variable x and letting P =

^

Pexp( j!t) and u = u^exp( j!t),

where j 2

= 1and ! is thewavepulsation, thefollowingHelmholtz equationanbederived

fromthelassiallinearwaveequation:

d 2

^

P=dx 2

+k 2

^

P=0 (2.1)

The omplexwavenumber is k = p

!(!+jf

v )A

0

=A, where stands for the blood density

and f

v

is relatedto the visousdrag and anbederivedfrom theWomersley veloity prole

(Womersley 1955). The omplex wave speed is = !=k and the general solution within a

homogeneoussegmentis:

^

P =P +

e

jk (x x0)

+P e

jk (x x0)

; u^= k

!+jf

v

P +

e jk (x x0)

P e

jk (x x0)

(2.2)

wherex

0

istheaxialpositionoftheleftboundaryofthesegmentandP +

and P orrespond

totheamplitudeoftheforwardandbakwardpressurewaves.Theirvaluesaredeterminedin

ordertosatisfytheboundaryonditionsatx=x

0

andx=x

0

+LwhereListhelengthofthe

segment.

2.2. Modellingthe endovasularstenting

In the purpose of modelling the wave reetion indued by an endovasular stent plaed in

anelasti artery, three suessivehomogeneoussegments areonsidered,eah having itsown

set ofonstantareaandompliane (seegure1). Eahphysialquantityin segmentnumber

i (i =1;2;3) is denoted with indie i. Conservation of the total ow rate and energyat the

interfaes1 2and2 3requires,forj=1;2:

A

j

^ u

j (x

0

j +L

j )=A

j+1

^ u

j+1 (x

0

j+1 ) ;

^

P

j (x

0

j +L

j )=

^

P

j+1 (x

0

j+1

) (2.3)

Two boundary onditions at x = x

01

= 0 and x = x

03 +L

3

are needed in order to lose

(7)

Figure 1.Shematiofthethreehomogeneoussegmentsusedtobuildamodelofstentedarteryas

regardspropagationandreexion.

presribedatbothsides,leadingtoP +

1

=1andP

3

=0.Thefourremainingwaveamplitudes,

viz.P +

2

;P +

3

;P

1

;P

2

,aredeterminedbysolvingEqs.(2.3)forj=1;2.TheomplexoeÆient

ofwavereetionduetothestentisthendenedasR

stent

=exp( 2jk

1 L

1 )P

1

=P +

1

.Aftersome

algebraonendsout:

R

stent

= A

2 K

2 (A

1 K

1 A

3 K

3 )os(k

2 L

2 ) j(A

1 K

1 A

3 K

3 (A

2 K

2 )

2

)sin(k

2 L

2 )

A

2 K

2 (A

1 K

1 +A

3 K

3 )os(k

2 L

2 ) j(A

1 K

1 A

3 K

3 +(A

2 K

2 )

2

)sin(k

2 L

2 )

(2.4)

where K

i

=k

i

=(!+jf

v

i

). This theoretialresultwill serveasasupport ofthe wall motion

usedinthenumerialstudy.

3. Wall shear stress hanges due to stenting

Thesimple1Danalysisprovidedinsetion2annotbeusedtogaininsightsaboutthedetails

oftheuidmotionmodiationsrelatedto arterystenting.Indeed,noreasonableassumption

regardingtheshapeoftheveloityprolewithinthetransitionareaanbeformulatedapriori

andthemulti-dimensionalNavier-Stokesequationsmustbesolved(assumingNewtonianblood

rheology).The solverused in this study is basedon the projetion method of Chorin (1967)

with nite element disretization and Arbitrary Lagrangian Eulerian formulation to handle

movingboundaries.Thisodehasbeenextensivelyvalidatedbyomputinglassial(Medi&

(8)

Figure2.Shematioftheomputationaldomain.

3.1. Computationaldomain

Sine ourobjetiveis to investigate theglobal eet of the ompliane mismath indued by

stenting, the endovasular prosthesis is modelled as auniform dut (the details of the struts

arenotrepresented)whosewallisnotompliant.Suh"prosthesis"isinsertedwithinanelasti

arterywith ompliantwall, asdepited in gure 2.The omputationaldomain is suÆiently

shorttoassumeonstanthostarteryharateristisandnegletthevisousdampingofwaves.

The ow rate entering the domain is taken as Q(x

inlet

;t) = Q

0 +Q

1

exp(j!(t x

inlet

=)),

where ! is thepulsation,x

inlet

is theaxial position oftheinlet setionand Q

0 and Q

1 stand

for the steady and pulsed parts of the ow rate. The mehanialand geometrial data were

obtained from animal experimentations performed by Vernhet et al. (2001): the pulsation is

! = 8, the mean artery radius is R

0

= 1:5 mm, the distensibility oeÆient of the non-

stented artery is A 0

=A = 20;7:10 6

Pa 1

and the length of the stent is L

stent

= 13 mm.

Afterstenting,autemeasurements(Vernhetetal.2001)showthattheomplianeatthestent

levelisapproximatelythreetimessmallerthaninthenon-stentedvessel.Measurementsmade

three months later (Vernhetet al. 2003) show that long-standing stentingis also responsible

forinreasedomplianevaluesupstreamfromthestent,resultinginalargeromplianeratio

of order 5 to 6. In any ase, the ompliane at the stent level is several times smaller than

that of the host vessel and has been negleted during this numerialstudy (rigid prosthesis

assumption). Note however that there would be nofundamental issues in aounting for the

(9)

Atually,themotionofthevesselboundaryresultsfromtheouplingbetweentheuidand

wallmehanisand theloal radiusis mostlyrelatedto the pressureeld. Suh aouplingis

diÆult to handle sine the density of blood and tissues are of the same order and beause

therheologyofthevesselsisfarfrom wellunderstood.Under thelinearelastiityassumption,

Tortoriello &Pedrizzetti(2004)reentlyused aperturbativeapproah in orderto replaethe

oupled uid-vessel problem by a asade of two simpler weakly oupled problems. In this

approah, the rst problem provides the exat solution into a rigid vessel, the seond one

approximatesthebloodowmodiationsduetotheompliantwall.Sinethewallshearstress

isexpetedtobeverysensitivetothewallmotion,wedidfollowadierentapproahwherethe

theexatuidowequations(andnottheirtrunatedlinearexpansion)aresolvedfor.Sinewe

aremostlyinterestedin theresponseof theuidmehanistowallmotionperturbations, the

uid-wallouplingproblemanbeavoidedbypresribingthewallmotionapriori.Inabsene

of reetion and in the ase of an elasti uniform artery whose mean radius is R

0

, the wall

motioninduedbyapropagativepressurewaveofpulsation! maybewrittenas:

R (x;t)=R

0

1+e j(!t k x)

; k=

!

(3.1)

where thewavenumberk is relatedto thespeedof the(forward)pressurewave.Note that

=max(R (x;t) R

0 )=R

0

,therelativeamplitudeoftheradiusvariations,isasmallparameter

ofthe problem:it iszerofor aperfetly rigidarterywhile theanimalexperimentsof Vernhet

etal.(2001)suggest'0:05.Thespeedofpropagationisxedbystatingthatthenon-stented

arterybeinguniformalong thestreamwisediretion,themassowrateat anysetionx =X

shouldbethetime-laggedversionofthemassowrateatx=x

inlet

.Theonservationofmass

appliedtothearterysetorx

inlet

<x<X then impliesthat (Nioud2002):

= Q

1

2A

0

+O(1); A

0

=R

2

0

; (3.2)

whereO(1)isatermoforderunitywhihanbenegletedsineisoforder1=aordingto

(10)

were usedfortheowrate:Q

0

'2413mm 3

/sand Q

1

'1761mm 3

/s.Eq.(3.2)thenleadsto

'2492mm/s.With!=8,theorrespondingwavelengthis'623mm.Intheasewhere

thevesselisstentedbetweenx

1 andx

2

(seegure2), thewalldisplaementisvirtuallyzeroed

(fullyrigid stent)for x

1

<x<x

2

and thefollowing expressionis valid forany axialposition

andtime:

R (x;t)=R

0

1+f(x)e j(!t k x)

+(1 f(x))ÆR

stent

(3.3)

where the dampingfuntion is f(x) =[1 tanh(x x

1

)℄=2 for x <(x

1 +x

2

)=2 and f(x) =

[1+tanh(x x

2

)℄exp(jk(x

2 x

1

))=2 for x > (x

1 +x

2

)=2 and ÆR

stent

= R

stent R

0 is the

amountof overdilation.Note that the term "overdilation" refers hereto any ase where the

stentradiusisgreaterthanthemeanradiusofthevesselbeforestentingR

0

.Thisissomewhat

dierent from the linialpratie where the term "overdilation"orrespondsto aseswhere

thestentradius(afterreoil)isgreaterthanthemaximum(systoli)radiusofthevessel lose

to the prosthesis (although thedierene between mean andmaximumradius anhardly be

measuredroutinely).

3.2. Numerial results

Several2Daxisymmetrisimulationshavebeenperformedbasedontheomputationaldomain

andwallmotiondesribedin setion3.1.Inallases,thebulkReynoldsnumberbasedonthe

steadypartoftheowrateQ

0

andthemeanradius R

0

isloseto R

b

=102.TheWomersley

numberis W

0

=3:36.Theveloityprole isimposed at theinlet setionx =x

inlet

following

the Womersley solutionin elasti tubesand azeroonstraint onditionis used at theoutlet

setionx=x

outlet

.Inordertoassesstheeet oftheinlet/outletboundaryonditionsonthe

results,omputationaldomainswithtwodierentlengthshavebeenonsidered.Twodierent

spatialresolutionswerealsousedin ordertoassessthespatialdisretizationerrors.Themain

harateristisofthealulationsperformedaregivenintable 1where xisthegridspaing

in thestreamwisediretion in the areax <x <x and r refersto thegrid spaing in the

(11)

radial diretion. Runs R1and R2 orrespond to referene alulations without endovasular

prosthesis,thearterybeingfullyrigid(nowalldisplaement)forR1andelastiforR2.Labels

R3(x) and R4orrespond to runs with stenting,the overdilation being non zeroonly for the

latterwhereÆR

stent

=R

0

(thestentradiusisequaltothearteryradiusatsystole).Reallthat

theterm"overdilation"refersheretoastentwhoseradiusisgreaterthanR

0

(seesetion3.1).

Foralltheasesonsideredintable 1,therelativevariationoftheradiusofthestentedvessel

(ÆR (x;t) R

0 )=R

0

is lessthan5%, whih is onsistentwith thelinearelastiityassumption

usedtoderiveEq.(3.1).Whenpresent,thestentisbetweenx

1

=34mmandx

2

=47mm.Runs

whoselabelontains'a'havebeenperformedwithalongeromputationaldomainthanothers.

Labelsontainingletter'b'orrespondtoruns withnermesh inthestreamwisediretion.In

allases,fourardiayleswererstomputedinordertoreahaperiodistate.Afthyle

wasthenomputedinordertoanalyzetheresultsandomparethedierentphysial/numerial

ongurations.ComparisonsoftherunsR2,R2aandR3,R3a,R3b(notshown)indiate that

thereisnosignianteet ofthenumerisinthestentregion(Nioud2002).Thedierenes

observedbetweenR1,R2,R3andR4arethusrelevanttothestentingeets.

Time evolutions of the ow rate at inlet and outlet setions are displayed in gure 3 for

the ase R2. The onstraint that was introdued in setion 3.1 in order to set the speed of

propagation ofthepressurewaveis fullled satisfatorily. Indeed,theowrateat x =x

outlet

isthe signalat x=x

inlet

with atime laglose to(x

outlet x

inlet

)='80=2492'0:032s. In

abseneofendovasularprosthesis,allthephysialquantitiesareself-similarwiththeonstant

speedofpropagationalongtheomputationaldomain.Duetothewalldisplaement,Eq.(3.1),

thewallshearstress(WSS)isnotuniformoverthestreamwisediretion,asdepitedingure4

atfourdierentinstants.Insteaditisalternativelyinreasinganddereasingalongthedomain

dependingonthephaseonsidered.Intheasewherethevesselisnotompliant,thereshould

be no time lag between shear stress signals at dierent loations sine the exatWomersley

proleisimposed at x=x .Aordingly, theWSSismostlyuniform (not exatlyuniform

(12)

Run Wallmotion ÆRstent xinlet xoutlet x r #ofgridpoints

R1 R (x;t)=R

0

0:0 nostent 0 80 0:075 0:286 3528

R2 Eq.(3.1) 0:05 nostent 0 80 0:075 0:286 3528

R3 Eq.(3.3) 0:05 0:0 0 80 0:075 0:286 3528

R4 Eq.(3.3) 0:05 0:075 0 80 0:075 0:286 3528

R2a Eq.(3.1) 0:05 nostent 30 110 0:075 0:286 4368

R3a Eq.(3.3) 0:05 0:0 30 110 0:075 0:286 4368

R3b Eq.(3.3) 0:05 0:0 0 80 0:050 0:286 5208

Table1.Listoftheaxisymmetrialulations performedwiththeirmainnumerialharateristis.

Lengthsandaxialpositionsareinmillimetres.

500 1000 1500 2000 2500 3000 3500 4000 4500

1 1.05 1.1 1.15 1.2 1.25

flow rate (mm3/s)

time (s)

Figure3.Timeevolutionsoftheowrateatsetions :x=x

inlet

and :x=x

outlet for

theaseR2.Notethattheoriginoftimeis1ssinethefthyleisanalysed(seetext).

beauseof smallside eetsdue tothe inlet/outletboundaryonditions) overthestreamwise

distaneintheaseR1(seegure4).

The shape of the omputational domain for asesR2, R3 and R4 is shown in gure 5for

times t = nT (orresponding to systole at the inlet setion) and t = (n+1=2)T (diastole).

Références

Documents relatifs

6c demon- strates that here again, (d min /W ) −1 is the physical de- terminant of the wall shear stress behavior observed in Fig. 6b to Figs. 4b and 5b, we see that the maximum

In this study, we have recalled the derivation of wall shear stress, temporal gradient of wall shear stress and peak velocity, for a Poiseuille and subsequently Womersley modeling

2. 2D Numerical simulations of a hot film sensor We first briefly outline some 2D complete numerical simulations in order to point at the effect of the conduction into the substrate

An increase of the particle volume fraction φ plays here two contradictory roles: it hinders settling, which is accounted for by the same hindrance function f (φ) as in Newto-

miR-22 knock-down prevents HO-1 expression and induction by Mox-LDL in HUVECs……..ix miR-22 knockdown reverses MPO-modified LDL effect on tubulogenesis………..ix. HO-1

The experiments, conducted in both attached and separated flow configurations, demonstrate the sensor sensitivity to the wall shear stress up to 2.4 Pa and the ability of the sensor

In this work, the axial and azimuthal components of the instantaneous shear rate on the wall of the outer fixed cylinder are measured in a broad interval of

Sobolik, V., ”Wall shear rates and mass transfer in impinging jets: Comparison of circular convergent and cross-shaped orifice nozzles,” International Journal of Heat and