• Aucun résultat trouvé

About nuclear fuels on MARS

N/A
N/A
Protected

Academic year: 2021

Partager "About nuclear fuels on MARS"

Copied!
26
0
0

Texte intégral

(1)

HAL Id: cea-02506792

https://hal-cea.archives-ouvertes.fr/cea-02506792

Submitted on 12 Mar 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

About nuclear fuels on MARS

P. Martin, R. Bes, E. Geiger, V. Pennisi, P. Matheron, Yves Pontillon, B.

Arab-Chapelet, M. Rivenet, P.-L. Solari, S. Schlutig, et al.

To cite this version:

P. Martin, R. Bes, E. Geiger, V. Pennisi, P. Matheron, et al.. About nuclear fuels on MARS. SUM2015 - Soleil User Meeting 2015, Jan 2015, Palaiseau, France. �cea-02506792�

(2)

www.cea.fr

ABOUT NUCLEAR FUELS ON MARS

2015 SOLEIL USER MEETING

P. Martin1, R. Bès1,4, E. Geiger1, V. Pennisi1, P. Matheron1, Y.

Pontillon1, B. Arab-Chapelet2, M. Rivenet3, P.-L. Solari4, S.

Schultig4, C. Martial1, M. Strach1, R. Belin1, D. Prieur5

1CEA, DEN, DEC, Centre d’études nucléaires de Cadarache, Saint Paul Lez Durance, 13108, France

2CEA, DEN, DRCP, Centre d’études nucléaires de Marcoule, Bagnols-sur-Cèze, 30207, France

3Univ. Lille Nord de France, Unité de Catalyse et de Chimie du Solide, UCCS, UMR CNRS 8181, ENSCL-USTL, BP 90108, 59652 Villeneuve d'Ascq Cedex, France

4Synchrotron SOLEIL, Ligne de lumière MARS, L’Orme des Merisiers, Saint Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France

5European Commission, Joint Research Centre, ITU, P.O. Box 2340, 76125 Karlsruhe, Germany

(3)

CONTEXT

The MARS beamline is dedicated to the study of radioactive materials

⇒ in the future: Active sample ( α , β , γ ) up to 18.5 GBq (185 GBq per experiment)

⇒ Experimental station shielding (OK for XRD)

Characterization (XRD & XAS) of irradiated fuel samples

XAS is a powerful tool to enhance the understanding of processes encountered in nuclear fuels3 examples of studies related to nuclear fuels:

1. Development of advanced nuclear fuel : UO

2

doped with Nb – in situ control of oxygen potential  (Vanessa Pennisi's Ph’d)

2. Mixed oxide samples – application of emission spectrometer

 Study of (U,Pu(Am))O

2+x

samples = GEN IV - Na fast reactor fuel & U- Pu-O phase diagram  (Michal Strach's Ph’d & René Bès's post-doc)

3. Fission products behavior in UO

2

-SIMFUEL samples (E. Geiger's Ph’d).

Soleil User Meeting 2015 | 23 JANUARY 2015 | PAGE 2

(4)

UO

2

DOPED WITH N B - C ONTEXT

Aims : Fuel lifetime and robustness enhancement

Limit fission gas

release from the fuel Limit the formation of corrosive species

Large grains µ-structure PO2 control

Pressurized Water Reactor (2

nd

generation)  Uranium Dioxide fuel

In nuclear oxide fuels, the temperature and the oxygen partial pressure (i.e.

the oxygen potential) are essential parameters governing the thermo-mechanical evolution of the irradiated material.

In-situ control of PO2 thanks to the buffer capacity of an oxido-reductive dopant present under two different oxidation states.

Study of the doping and fission products thermochemistry

Soleil User Meeting 2015 | 23 JANUARY 2015 | PAGE 3

(5)

D ETERMINATION OF THE RANGE OF OXYGEN POTENTIAL

Objective: Fuel operating in the most favorable oxygen potential area.

Two selection criteria :

Main : Minimal gaseous fraction of corrosive Fission Products (FP)

Secondary : Highest FP immobilization

Three areas are delimited : An unfavorable area

 Highest risk of corrosion.

An optimum area

 Minimal fraction of gaseous corrosive FP.

 Maximal immobilization of the FP.

An intermediate area

 Limited risk of corrosion.

Fugacity profiles and speciation of major gaseous

species in a UO2 fuel as a function of oxygen potential 30 GWd/t U, 1500°C (FactSage 6.2)

The reactivity of fission gas depends on PO2

Soleil User Meeting 2015 | 23 JANUARY 2015 | PAGE 4

(6)

C HOICE OF THE REDOX BUFFER

Criteria for the choice of the redox buffer:

Temperature range

Buffering capacity

Limited solubility in the UO2 matrix (~1000- 2000 ppm),

Final properties of the un-irradiated fuel,…

Redox reactions likely to be

thermodynamically activated above 1000°C

Liquid phase Nb2O5 at T > 1500°C ( grain growth)

Niobium buffering systems position compared to the stability areas of the corrosive species

Potential redox buffers

Buffering capacity (mole O / mole Nb) Nb2O5/NbO2 0.5

NbO2/NbO 1

Nb2O5/NbO2/NbO 1.5 Selected dopant : NIOBIUM

Soleil User Meeting 2015 | 23 JANUARY 2015 | PAGE 5

(7)

M ANUFACTURING CONDITIONS

Powders mixture UO2 and NbOx

Forming

(uniaxial pressing, 400 MPa) Reduction (450°C, 2h) then Sintering (1700°C, 4h)

under Ar/5%H2

Annealing

1000, 1200, 1500 and 1700°C 1h, under Ar/5%H2

Batches with different niobium compositions (50/50 %m. for the redox couples) : UO2 + x wt% (NbO2 + NbO)

UO2 + x wt% (Nb2O5 + NbO2) Niobium doped pellets manufacturing process :

Sintering conditions reported in Nb – U – O phase diagram: Sintering conditions = red circles

Soleil User Meeting 2015 | 23 JANUARY 2015 | PAGE 6

(8)

R ESULTS - M ICROSTRUCTURAL ANALYSIS

 Microstructures before annealing

• Healthy pellets (no crack)

• Grain coarsening: grain size about 35 µm (10 µm classical)

• High density: 94.2%Td Ex: UO

2

+ 0.8 wt% (NbO

2

+ NbO) pellets

Elemental EDX maps

• Micrometer size Nb oxides precipitates at grain boundaries and porosities

Soleil User Meeting 2015 | 23 JANUARY 2015 | PAGE 7

(9)

R ESULTS - M ICROSTRUCTURAL ANALYSIS

Objective: Elemental composition of Nb-O precipitates

 SEM + EDX analyzes

 Sample annealed at 1000°C

• Two different color contrasts

• Change of the niobium content from one grey to another (composition line)

Presence of two different niobium/oxide ratio domains

2 phases or more complex system ?

Profile and element contents

25 µm

Same conclusion for annealing at 1200°C (two different niobium oxide phases)

A

A

B

B

U%

Nb%

O%

µ-XAS experiment

Soleil User Meeting 2015 | 23 JANUARY 2015 | PAGE 8

(10)

µ-XRF AND µ-XANES RESULTS

Experiment performed on MARS – 4 days in mid-November

• Nb K edge (18986 eV)

• Micro-focussing using 2 mirrors in K&B geometry  109 ph.s-1 at 19000 eV

• µ-XRF elemental mapping & µ-XAS using a beam 12x13 µm2

 U Lα (13614 eV) & Nb K (16615 eV)

Aims:

• Nb chemical state in precipitates  µ-XANES = buffer effectiveness

• Nb speciation inside UO

2

matrix  µ-XANES + µ-EXAFS

18960 18980 19000 19020 19040 19060 19080

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Nb K edge normalised µ(E)

Energy (eV)

Nb (0) NbO (+2) NbO

2 (+4) Nb2O

5 (+5)

Reference E0 (eV)

Nb(0) 18986.0

NbO - Nb(+2) 18994.1 NbO2 - Nb (+4) 19001.7 Nb2O5 - Nb (+5) 19004.0

Soleil User Meeting 2015 | 23 JANUARY 2015 | PAGE 9

(Transmission )

(11)

µ-XRF AND µ-XANES RESULTS ON PRECIPITATES

Sample S1: UO

2

+ 0.8 wt% (NbO

2

+ NbO) as fabricated

Nb

100 µm

100 µm

U

100 µm

100 µm

Nb-U

100 µm

100 µm

Zone2

140 µm

Nb-U

160 µm

2 precipitates studied

X

18960 18980 19000 19020 19040 19060 19080 19100 19120

Nb K edge normalised µ(E)

Energy (eV)

S1R - zone 2 S1R - zone 3

Nb (0) NbO (+2) NbO2 (+4)

Zone3

X

• Spectra similar

• Similarity with NbO2

Linear combination fit

Soleil User Meeting 2015 | 23 JANUARY 2015 | PAGE 10

(12)

µ-XRF AND µ-XANES RESULTS ON PRECIPITATES

Soleil User Meeting 2015 | 23 JANUARY 2015 | PAGE 11

18960 18980 19000 19020 19040 19060 19080 19100 19120 0.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4

Nobium K-edge normalized µ(E)

Energy (eV)

data fit residual Nb NbO NbO2

Sample S1: UO

2

+ 0.8 wt% (NbO

2

+ NbO)

As manufactured Annealed 1 hour at 1000°C

 E0 systematically between NbO and NbO2 positions

 Shoulder at low energy = metallic Nb ?

 µ-XANES spectra are reproduced by linear combination of Nb + NbO and NbO2

Range -30<E0<+40 eV

18960 18980 19000 19020 19040 19060 19080 19100 19120

Nb K edge normalised µ(E)

Energy (eV)

S1SR - zone 2 S1SR - zone 3

Nb (0) NbO (+2) NbO2 (+4)

18960 18980 19000 19020 19040 19060 19080 19100 19120

Nb K edge normalised µ(E)

Energy (eV)

S1R1 - zone 3 S1R1 - zone 1

Nb (0) NbO (+2) NbO2 (+4)

(13)

µ-XRF AND µ-XANES RESULTS ON PRECIPITATES

Soleil User Meeting 2015 | 23 JANUARY 2015 | PAGE 12

Sample S1: UO

2

+ 0.8 wt% (NbO

2

+ NbO)

As manufactured Annealed 1 hour at 1000°C

Nb NbO NbO2 Rfactor

Zone 2 0.12 0.43 0.45 1.0e-3 Zone 3 0.07 0.27 0.67 4.0e-4

Nb NbO NbO2 Rfactor

Zone 3 0.19 0.19 0.62 1.0e-3 Zone 1 0.14 0.23 0.64 2.0e-3

Uncertainties 0.03

 The two phases NbO

2

/NbO are observed <=> buffering capacity confirmed

 Unexpected metallic Nb signal systematically observed !

18960 18980 19000 19020 19040 19060 19080 19100 19120

Nb K edge normalised µ(E)

Energy (eV)

S1SR - zone 2 S1SR - zone 3

Nb (0) NbO (+2) NbO2 (+4)

18960 18980 19000 19020 19040 19060 19080 19100 19120

Nb K edge normalised µ(E)

Energy (eV)

S1R1 - zone 3 S1R1 - zone 1

Nb (0) NbO (+2) NbO2 (+4)

(14)

µ-XRF AND µ-XANES RESULTS ON MATRIX

Soleil User Meeting 2015 | 23 JANUARY 2015 | PAGE 13

 Different with known Nb oxides  ≠symmetry

 Consistent with Nb inside UO

2

fluorite structure ?

 E

0

position ~ between Nb

+4

/ Nb

+5

18960 18980 19000 19020 19040 19060 19080 19100 19120

Nb K edge normalised µ(E)

Energy (eV)

precipitate Matrix signal

µ-XANES & µ-EXAFS on the matrix :

• same spectra observed on every sample (S1 and S2, annealed or not)

µ-EXAFS results => signal up to 11.5 Å

-1

• Signal from hidden precipitates can not be excluded

• Longer Nb-O distance

(Nb-O ≤ 2.15 Å in Nb oxides)

⇒ U-O distance in UO2 is 2.37 Å.

Work in progress

0 2 4 6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Nb K edge Fourier Transform |χ(k).k3|

R-Φ (Å)

Nb in UO2 matrix NbO2

Nb2O5

2 4 6 8 10 12

-6 -4 -2 0 2

Nb K edge χ(k).k2

k (Å-1) Nb in UO2 matrix

NbO2

Nb2O

5

(15)

HERFD - EMISSION SPECTROMETER

Use of an emission spectrometer with radioactive materials ?

• Remove Bragg peaks and isolate emission lines for diluted elements in fuels: dopant (Cr, Gd), fission products (Xe, Kr, Cs, Ba, …)

• Radioactive background, emission lines due to other elements

Soleil User Meeting 2015 | 23 JANUARY 2015 | PAGE 14

Up to 4 crystals (Si, Ge)

Lifetime broadening reduced  XANES resolution enhancement

L3 edge (17,166 eV) core-hole = 8.13 eV Lα1(3d5/2→2p3/2) => resolution = 3.55 eV

Si(800)

R=0.5m

UO

2

(16)

HERFD - EMISSION SPECTROMETER

First experiment on Mixed oxides samples in july 2014

• UO

2

, U

3

O

8

, PuO

2

containing 1.7 % Am (due to

241

Pu decay)

• Dense sintered (U

0.45

Pu

0.542

(Am

0.008

))O

2

pellets prepared with conventional powder metallurgy process

Context: U-Pu-O phase diagram

| PAGE 15 Soleil User Meeting 2015 | 23 JANUARY 2015

[1] C. Guéneau et al., J. Nucl. Mater. 419 (2011) 145-167 [2] Sari et al. , J. Nucl. Mater. 35 (1970) 267-77

U-Pu-O phase diagram at RT

[1]

The hyper-stoichiometric domain at RT

M

4

O

9

+ hexagonal M

3

O

8

biphasic domain – Boundaries ?

Pu content in M

3

O

8

controversial M

3

O

8

+ MO

2+x

biphasic domain ?

[2]

(17)

HERFD - EMISSION SPECTROMETER

Study of U-Pu-O phase diagram

• HT-XRD experiments performed at the LEFCA facility (CEA Cadarache)

• Hyper-stoichiometric domain : up to 1500°C under air

⇒ (U

0.45

Pu

0.542

(Am

0.008

))O

2+x

domain = MO

2+x

phase at RT

⇒ U, Pu and Am L

3

HERFD XANES

| PAGE 16 Soleil User Meeting 2015 | 23 JANUARY 2015

• (U

0.45

Pu

0.55

)O

2

=> UO

2

= U

+4

• (U

0.45

Pu

0.55

)O

2+x

=> between UO

2

& U

3

O

8

=> Mixed U valence = +4/+5/+6

Sample E0 (eV)

UO2 – U4+ 17170.3

U3O8 – U5++U6+ [1] 17172.2 (U0.45Pu0.55)O2 17170.2 (U0.45Pu0.55)O2+x 17171.5

[1] K.O. Kvashnina et al. Phys. Rev. Lett. 111 (2013) 253002

U

(18)

HERFD - EMISSION SPECTROMETER

Study of U-Pu-O phase diagram

• HT-XRD experiments performed at the LEFCA facility (CEA Cadarache)

• Hyper-stoichiometric domain : up to 1500 °C under air

⇒ (U

0.45

Pu

0.542

(Am

0.008

))O

2+x

domain = MO

2+x

phase at RT

⇒ U, Pu and Am L

3

HERFD XANES

| PAGE 17 Soleil User Meeting 2015 | 23 JANUARY 2015

• No modification = PuO

2

position

• As expected Pu

+4

• Cubic fluorite symmetry around Pu is not modified  different

compared to U

Pu

(19)

HERFD - EMISSION SPECTROMETER

Study of U-Pu-O phase diagram

• HT-XRD experiments performed at the LEFCA facility (CEA Cadarache)

• Hyper-stoichiometric domain : up to 1500 °C under air

⇒ (U

0.45

Pu

0.542

(Am

0.008

))O

2+x

domain = MO

2+x

phase at RT

⇒ U, Pu and Am L

3

HERFD XANES

| PAGE 18 Soleil User Meeting 2015 | 23 JANUARY 2015

• Ref = Am in PuO

2

(

241

Pu decay)

• Reduction to Am

+3

• Am not modified by oxidation process !!

Am

3+

in hyper-stoichiometric MOX

Sample E0(eV)

PuO2 18515.7

(U0.45Pu0.55)O2 18512.1 (U0.45Pu0.55)O2+x 18512.2

Am

(20)

HERFD - EMISSION SPECTROMETER

Study of U-Pu-O phase diagram

• HT-XRD experiments performed at the LEFCA facility (CEA Cadarache)

• Hyper-stoichiometric domain : up to 1500 °C under air

⇒ (U

0.45

Pu

0.542

(Am

0.008

))O

2+x

domain = MO

2+x

phase at RT

⇒ U, Pu and Am L

3

HERFD

Soleil User Meeting 2015 | 23 JANUARY 2015

Conclusion

• Actinides emission line of each actinide was successfully isolated

• The stoichiometric MOX = fluorine structure MO

2

= U

+4

- Pu

+4

+ Am

+3

• The hyper-stoichiometric is more complex than expected compared to XRD

=> mixed valence U

+4

- U

+5

– U

+6

/ Pu

+4

/ Am

+3

 MO

2+x

domain

• Study of different Pu content => M

3

O

8

domain

(21)

FISSION PRODUCTS BEHAVIOR

During a severe accident, irradiated nuclear fuels are submitted to High Temperature (>3000K) + Oxidizing/reducing atmosphere

ex: Fukushima Daiichi (Japan 2011)

The determination of the term source (amount of radionuclide released from the core) is directly connected to the fission products (FP) behavior

• FP chemical state evolution during the accident and identification of intermediary phases

| PAGE 20 Soleil User Meeting 2015 | 23 JANUARY 2015

Burnup (GWd/t)

Composition (At. %)

Ba Ce La Mo Sr Y Zr Rh Pd Ru Nd

76 0.26 0.61 0.20 0.51 0.13 0.06 0.60 0.03 0.42 0.64 0.91

Sample composition

Sample annealed 1 hour at 1700°C under Ar/H

2

UO

2

sample doped with stable non volatile FP during manufacturing

 Preparation of future experiment on spent fuels

(22)

FISSION PRODUCTS BEHAVIOR

First µ-XANES experiment on MARS = 11/2014 Focused on Mo behavior

⇒ Mo K edge (20000 keV)

⇒ µ-XRF & µ-XANES  6x7 µm

2

with 5.10

8

ph.s

-1

at 20 keV

| PAGE 21 Soleil User Meeting 2015 | 23 JANUARY 2015

SEM picture SEM/EDS Mo L

α

map UO

2

spent fuel

(23)

FISSION PRODUCTS BEHAVIOR

First µ-XANES experiment on MARS = 11/2014

Focused on Mo behavior => µ-XRF & µ-XAS (6x7 µm

2

5x10

8

Ph/s at 20 keV)

| PAGE 22 Soleil User Meeting 2015 | 23 JANUARY 2015

160 µm

Mo is mostly metallic but difference observed most probably due to association with other fission products (Ru, …)

=> More details during Ernesto Geiger presentation (Chemistry session at

10h30)

(24)

Thank for your attention

Soleil User Meeting 2015 | 23 JANUARY 2015 | PAGE 23

(25)

Petit-déjeuner scientifique, SOLEIL synchrotron- 12/05/2014

FISSION PRODUCT CHEMISTRY ON NUCLEAR FUEL

Ruthenium K-edge

 Form clusters (with Mo)

 1 transition collected (K-L

3

)

 [Ru] @ 0,64 at. %

MEB EDX (transition L

3

M

5

)

 No evolution of Ru local environment

 Metallic Ru

 Probable mixing of Mo/Ru metals

 Ab initio calculations under progress

Soleil User Meeting 2015 | 23 JANUARY 2015 | PAGE 24

(26)

HERFD - EMISSION SPECTROMETER

Use of an emission spectrometer with radioactive materials ?

• Remove Bragg peaks and isolate emission lines for diluted elements in fuels: dopant (Cr, Gd), fission products (Xe, Kr, Cs, Ba, …)

• Radioactive background, emission lines due to other elements

Soleil User Meeting 2015 | 23 JANUARY 2015 | PAGE 25

Up to 4 crystals (Si, Ge)

Lifetime broadening reduced  XANES resolution enhancement

L3 edge (17,166 eV) core-hole = 8.13 eV Lα1(3d5/2→2p3/2) => resolution = 3.55 eV

Si(800) R=0.5m UO

2

Sample Rowland circle

Références

Documents relatifs

At 900°C, the protective behaviour of HR-120 alloy in presence of sodium chloride under syngas atmosphere can then be attributed to the association of two factors: fast evaporation

32.. The behavior of large, flexible orbital structures under the influence of gravity gradient forces has been treated in Ref. For a nonspinning flat membrane at

Increasing power leads to higher fuel temperature and hence to fuel swelling with max- imum diameter in front of pellet ends. Thermal deformation of fuel leads to thermal stresses

Analyse des patrimoines de données géographiques nationaux : Comparaison de trois infrastructures nationales de données géographiques (France, Brésil, Bolivie)3. SAGEO (Spatial

In this study, we will compare systematically via MD simu- lations structural properties (lattice parameter, thermal expan- sion), thermodynamic properties (heat capacity,

The bearings vibration signal is obtained from experiment in different conditions: normal bearing, bearing with inner race fault, bearing with outer race fault and bearings

Etant donné que les widgets de type List évoluent dynamiquement (on ajoute et on enlève des éléments de la liste pendant l’exécution de l’application), il peut être nécessaire

A défaut, même si ce n’est pas totalement satisfaisant, nous avons choisi ici de commencer par exposer notre méthodologie, car c’est bien à partir des premières