• Aucun résultat trouvé

Part 11

N/A
N/A
Protected

Academic year: 2021

Partager "Part 11"

Copied!
11
0
0

Texte intégral

(1)

REFERENCES

(2)

Bibliography

[1] Albanese, C., Peluso, F., Castagnolo, D., Thermal radiation forces in microgravity, the TRUE and TRAMP experiments: results and future perspectives, (Proceedings of the 1st International Symp. on Microgravity Research & Applications in Phys. Sci. & Biotechnol- ogy, p. 755, Sorrento, Italy, 10-15 September (2000)) (ESA SP-454, January 2001).

[2] Ames, W. F., Numerical methods for partial differential equations, Second Edition, ( Aca- demic Press, New York, 52, (1977)).

[3] Anilkumar, A. V., Grugel, R. N., Shen, X. F., Lee, C. P., and Wang, T. G., Control of thermocapillary convection in a liquid bridge by vibration, (J. Appl. Phys. 73, 4165 (1993)).

[4] Aref, H., Stirring by chaotic advection, (J. Fluid Mech. 143, 1 (1984)).

[5] Azumi, T., Nakamura, S., and Hibiya, T., The effect of oxygen on the temperature fluc- tuation of Marangoni convection in a molten silicon bridge, (J. Cristal Growth. 223, 116 (2001)).

[6] Baker, G. L., and. Gollub, J. P, Chaotic Dynamics: an introduction, (2nd ed., Cambridge University Press, (1996)).

[7] B´ enard, H., Les tourbillons cellulaires dans une nappe liquide, (Revue generale des Sciences pures et appliqu´ ees, 11, 1261 (1900)).

[8] Busse, F. H., and Frick, H., Square-pattern convection in fluids with strongly temperature- dependent viscosity, (J. Fluid Mech. 150, 451 (1985)).

[9] Camel, D., Favier, J. J., Thermal convection and longitudinal macro segregation in hori- zontal Bridgeman crystal growth, (J. Crystal Growth, 67 , 42 (1984)).

[10] Canright, L. G., Thermocapillary flow near a cold wall, (Physics of Fluids, 6, 1415 (1994)).

[11] Cao, Z. H., Xie, J. C., Tang, Z. M., and Hu, W. R., Experimental study on oscillatory thermocapillary convection, (Sci. China A, 35, 725 (1992)).

[12] Carotenuto, L., Castagnolo, D., Albanese, C., and Monti, R., Instability of thermocapillary convection in liquid bridges, (Phys. Fluids 10 (3), 555, (1997)).

[13] Castagnolo, D., and Carotenuto, L., Three dimensional numerical simulation of thermo- capillary flows in liquid bridges, (Proceedings of the joint Xth European and Russian Symposium on Physical Sciences in Microgravity, 1, 213, St.Petersburg, (1997)).

[14] Chang, C. E., and Wilcox, W. R., Analysis of surface tension driven flow in floating zone

melting, (Intl J. Heat and Mass Transfer, 19, 355 (1976)).

(3)

[15] Chen, Q. S., and Hu, W. R., Influence of liquid bridge volume on instability of floating half zone convection, (Intl J. Heat and Mass Transfer, 42, 825 (1998)).

[16] Chen, Q. S., Hu, W. R., and Prasad, V., Effect of liquid bridge volume on the instability in small-Prandtl-number half zones, (J. Cryst. Growth, 203, 261 (1999)).

[17] Chen, C. F., and Su, T. F., Effect of surface tension on the onset of convection in a double-diffusive layer, (Physics of Fluids A 4, 2360 (1992)).

[18] Chen, G., Lizee, A., Roux, B., Bifurcation analysis of the thermocapillary convection in cylindrical liquid bridges, (J. Cryst. Growth 180, 638 (1997)).

[19] Chun, Ch.-H., and Wuest, W., Experiments on the Transition from Steady to Oscillatory Marangoni Convection in a Floating Zone Under Reduced Gravity Effect, (Acta Astronau- tica, 6, 1073 (1979)).

[20] Chun, Ch.-H., Marangoni convection in a floating zone under reduced gravity, (J. Crystal Growth, 48 , 600 (1980)).

[21] Chorin, A. J., Numerical solution of the Navier-Stokes equations, (Math Computat, 22, 745-62, (1968)).

[22] Colinet, P., and Legros, J. C., On the Hopf bifurcation occuring in the two-layer Rayleigh- Benard convective instability, (Physics of Fluids 6, 2631, (1994)).

[23] Cowley, S. J., and Davis, S. H., Viscous thermocapillary convection at high Marangoni numbers, (Journal of Fluid Mechanics, 135, 175 (1983)).

[24] Cr¨ oll, A.,Szofran, F. R., Dold, P., Benz, K. W., and Lehoczky, S. L. Floating-zone growth of silicon in magnetic fields 2. strong static axial fields, (J. Crystal Growth, 183, 554 (1998)).

[25] Dold, P., Cr¨ oll, A., and Benz, K. W., Floating-zone growth of silicon in magnetic fields 1.

weak static axial fields, (J. Crystal Growth, 183, 545 (1998)).

[26] Davis, S. H., Thermocapillary Instabilities, (Ann. Rev. Fluid Mech., 19, 403-435 (1987)).

[27] De Vahl Davis, G., Natural convection of air in a square cavity: a benchmark numerical solution, (Int. J. Numer. Meth. Fluids, 3, 249 (1983)).

[28] Dressler, R. F., Transient thermal convection during orbital spaceflight, (J. Crystal Growth, 54, 523 (1981)).

[29] Dressler, R. F., and Sivakumaran, N. S., Non-contaminating method to reduce Marangoni convection in microgravity float zones, (J. Crystal Growth, 88, 148 (1988)).

[30] Evans, D. J., Group explicit methods for the numerical solution of partial differential equations, ( Gordon and Breach Science Publishers, 465 (1997)).

[31] Eyer, A., Leiste, H., and Nitsche, R., Floating zone growth of silicone under microgravity in a sounding rocket, (J. Crystal Growth, 71 , 173 (1985)).

[32] Feigenbaum, M. J., Quantitative universality for a class of nonlinear transformations, (J.

Stat. Physics, 21, 25 (1978)).

(4)

11 References

[33] Fletcher, C. A. J., Computational Techniques for Fluid-Dynamics, ( Springer Verlag, Berlin, Heidelberg, 1988).

[34] Frank, S., and Schwabe, D., Temporal and spatial elements of thermocapillary convection in a liquid zone, (Experiments in Fluids 23, 234, (1997)).

[35] Gaines, G. L., Jr., Insoluble monolayers at liquid-gas interfaces, ( John Wiley & Sons, 1966).

[36] Gatos, H. C., Semiconductor crystal growth and segregation problems on earth and in space, (in Mat’ls Proc. in the Reduced Grav. Env. of Space, G. E. Rindone, ed., Elsevier, 355 (1982)).

[37] Gollub, J. P., and Benson, S. V., Many routes to turbulent convection, (J. Fluid Mech., 100, 449 (1980)).

[38] Gollub, J. P., and Swinney, H. L., Onset of turbulence in a rotating fluid, (Phys. Rev.

Lett.,35, 927 (1975)).

[39] Golovin, A. A., Rabinovich, L. M., Models of Mass transfer in presence of interphase mass transfer, (J. of applied Chemistry, USSR, 64, 388-403 (1977)).

[40] Harlow, F. H., and Welsh, J. E., Numerical calculation of time-dependent viscous incom- pressible flow with free surface, (Physics of Fluids, 8, 2182-9, (1965)).

[41] Higbie, R., The Rate of Absorption of a Pure Gas into a Still Liquid During Short Periods of Exposure, (Trans. AIChE, 31, 365-389 (1935)).

[42] Hoke, Bryan Clair, Jr., Breakdown Phenomena of Evaporating Liquid Film Mixtures, (PhD thesis (1992)).

[43] Hu, W. R., Shu, J. Z., Zhou, R., and Tang, Z. M., Influence of liquid bridge volume on the onset of oscillation in floating zone convection, (J. Crystal Growth, 142, 379 (1994)).

[44] Handbook of Crystal Growth 2. Bulk crystal growth. Part B: Growth Mechanism and Dy- namics, Edited by D.T.J. Hurle. North–Holland, (1994)).

[45] Hurle, D. T. J., M¨ uller, G., Nitsche, R., Crystal growth from the melt, (in Fluid Sciences and Materials Science in Space, ed. H. U. Walter, Springer-Verlag, 313 (1987)).

[46] Kamotani, Y., Masud, J., and Pline, A., Oscillatory convection due to combined buoyancy and thermocapillarity, (J. Thermophys. Heat Transfer, 10, 102 (1996)).

[47] Kamotani, Y., and Ostrach, S., Theoretical analysis of thermocapillary flow in cylindrical columns of high Prandtl number fluids, (J. Heat Transfer, , 120, 758 (1998)).

[48] Kamotani, Y., Ostrach, S., and Masud, J., Microgravity experiment and analysis of oscil- latory thermocapillary flows in cylindrical containers, (J. Fluid Mech., 410, 211 (2000)).

[49] Kamotani, Y., Wang, L., Hatta, S., Selver, R., Bhunia, P. S., and Yoda, S., Effect of cold wall temperature on onset of oscillatory thermocapillary flow, (39th AIAA Meeting and Exhibit, AIAA-2001-0761, Reno, Nevada (2001)).

[50] Kawaji, M., Otsubo, F., Simic, S., and Yoda, S., Marangoni Convection Modeling Research,

(Annual Report, NASDA-TMR-000006E, 75-114 (2000)).

(5)

[51] Kawamura, H., Ueno, I., Tanaka, S., and Nagano, D., Oscillatory, chaotic and turbulent thermocapillary convections in a half-zone liquid bridge, (Proc. of the 2nd Symp. Turbu- lence and Shear Flow Phenomena (TSFP2), Stockholm, Sweden, 375, (2001)).

[52] Kozhoukharova, Zh., Kuhlmann, H. C., Wanschura, M., and Rath, H. J., Influence of variable viscosity on the onset of hydrothermal waves in thermocapillary liquid bridges, (Z.

Angew. Math. Mech., 79, 8, 535, (1999)).

[53] Kozhoukharova, Zh., and Slavchev, S., Computer simulation of the thermocapillary con- vection in a non-cylindrical floating zone, (J. Crystal Growth, 74, 236 (1986)).

[54] Kudrolli, A., and Gollub, J. P., Patterns and spatiotemporal chaos in parametrically forced surface waves: a system survey at large aspect ratio, (Physica D, 97, 133 (1996)).

[55] Kuhlmann, H. C., Thermocapillary Convection in Models of Crystal Growth, (Springer Tracts in Modern Physics, Vol.152, Springer, New York, (1999)).

[56] Kuhlmann, H. C., and Nienh¨ user, C., Dynamic free-surface deformations in thermocapil- lary liquid bridges, (Fluid Dynamic Research, 31, 103 (2002)).

[57] Landau, L. D., and Lifshitz, E. M., Fluid Mechanics, ( Pergamon, Oxford (1959)).

[58] Landau, L. D., and Lifshitz, E. M., Hydrodynamics, ((in russian), Nauka (1976)).

[59] Lappa, M., Combined effect of volume and gravity on the three-dimensional flow instabil- ity in non cylindrical floating zones heated by an equatorial ring, (Phys. Fluids, 16, 331 (2004)).

[60] Lappa, M., Savino, R., and Monti, R., Influence of buoyancy forces on Marangoni flow instabilities in liquid bridges, (Int. J. Num. Meth. Heat Fluid Flow, 10, 721, (2001)).

[61] Lappa, M., Savino, R., and Monti, R., Three-dimensional numerical simulation of Marangoni instabilities in liquid bridges: influence of geometrical aspect ratio, (Int. J.

Num. Meth. Fluids, 36, 53 (2001)).

[62] Lappa, M., Savino, R., and Monti, R., Three-dimensional numerical simulation of Marangoni instabilities in non-cylindrical liquid bridges in microgravity, (Int. J. of Heat Mass Transfer, 44, 1983 (2001)).

[63] Lavalley, R., Amberg, G., and Alfredsson, H., Experimental and numerical investigation of nonlinear thermocapillary oscillations in an annular geometry, (Eur. J. Mech. B. / Fluids, 20, 771 (2001)).

[64] Levenstam, M., and Amberg, G., Hydrodynamical instabilities of thermocapillary flow in half-zone, (J. Fluid Mech. 297, 357 (1995)).

[65] Levenstam, M., Amberg, G., and Winkler, Ch., Instabilities of thermocapillary convection in half-zone at intermediate Prandtl numbers, (Submitted to Phys. Fluids).

[66] Levich, V. G., Physiochemical Hydrodynamics, ( Prentice-Hall, Inc. , Englewood Cliffs, N.J. 1962).

[67] Lewis, W. K., Whitman, W. G., Principles of Gas Absorption, (Ind. Engng. Chem., 16,

No. 12, 1215-1220 (1924)).

(6)

11 References

[68] Leypoldt, J., Kuhlmann, H. C., Rath, H. J., Three-dimensional numerical simulations of thermocapillary flows in cylindrical liquid bridges, (J. Fluid Mech., 414, 285 (2000)).

[69] Liang, S. F., and Acrivos, A., Experiments on buoyancy-driven convection in non- Newtonian fluid, (Rheol. Acta, 9, 447 (1970)).

[70] Lizee, A., and Alexander, J. I. D., Chaotic thermovibrational flow in a laterally heated cavity, (Phys. Rev. E 56, 4152 (1997)).

[71] Marangoni, C., ¨ U ber die Ausbreitung der Tropfen einer Fl¨ ussigkeit auf der Oberfl¨ ache einer anderen, (Ann. Phys. (Leipzig) 143, 337 (1871)).

[72] Masud, J., Kamotani, Y., and Ostrach, S., Oscillatory thermocapillary flow in cylindrical columns of high Prandtl number fluids, (AIAA J. Thermophys. Heat Transfer, 11, 105 (1997)).

[73] Melnikov, D. E., Shevtsova, V. M., and Legros, J. C., Onset of temporal aperiodicity in thermocapillary convection in high Prandtl number liquid bridge under terrestrial condi- tions, (The World Space Congress, 20002, Houston, IAC-02-0J.4.03, (2002)).

[74] Melnikov, D. E., Shevtsova, V. M., and Legros, J. C., Onset of temporal aperiodicity in high Prandtl number liquid bridge under terrestrial conditions, (to appear in Physics of Fluids, 16, 12 pages(2004)).

[75] Monti, R., Fortezza, R., Castenuto, D., and Desiders, G., The telemaxus experiment on oscillatory Marangoni flow, (ESA SP 1132, 4, 44 (1994)).

[76] Monti, R., Lappa, M., Savino, R., Flight results of Marangoni flow instability in liquid bridge, (IAF-1999-J.3.01).

[77] Muehlner, K. A., Schatz, M., Petrov, V., McCormic, W. D., Swift, J. B., and Swinney, H.

L., Observation of helical traveling-wave convection in a liquid bridge, (Physics of Fluids, 9, 1850 (1997)).

[78] Napolitano, L. G., Marangoni boundary layers, (Proc. of the 3rd European Symposium on Materials Science in Space, ESA SP-142, 349 (1979)).

[79] Neitzel, G.P., Chang, K.T., Jankowski, D.F., and Mittelmann, H. D., Linear stability of thermocapillary convection in a model of the float-zone, crystal-growth process, (Phys.

Fluids A, 5 (1), 108 (1993)).

[80] Net, M., Alonso, A., and Sanchez, J., From stationary to complex time-dependent flows at moderate Rayleigh numbers in two-dimensional annular thermal convection, (Physics of Fluids 15, 1314 (2003)).

[81] Newhouse, S., Ruelle, D., and Takens, F., Occurrence of strange axiom A attractors near quasi–periodic flows on T

m

, m 3, (Commun. Math. Phys., 64, 35 (1978)).

[82] Nienh¨ user, C., and Kuhlmann, H. C., Stability of thermocapillary flows in non-cylindrical liquid bridges, (J. Fluid Mech., 458, 35 (2002)).

[83] Ohtaka, M., Takagi, K., Natsui, H., Arai, T., and Yoda, S., Marangoni Convection Mod-

eling Research, (Annual Report, NASDA-TMR-010015E, 147-179 (2001)).

(7)

[84] Ostrach, S., Convection phenomena of importance for materials processing in space, (Cospar Symposium on Materials Sciences in Space, Philadelphia, Pa., June 9-10, (1976)).

[85] Ostrach, S., Motion induced by capillarity, (In Physico-Chemical Hydrodynamics. V. G.

Levich Festschrift, Spalding (ed.), Advance Publications, London, 2 (1997)).

[86] Ottino, J. M., The Kinematics of Mixing: Stretching, Chaos and Transport, ( Cambridge University Press, Cambridge, 1989).

[87] Peacemen, D. W., and Rachford, H. H., The numerical solution of parabolic and elliptic differential equations, (J. SIAM, 1980, 3, 28 (1955)).

[88] Pearson, J. R. A., On convection cells induced by surface tension, (Journal of Fluid Me- chanics, 4, 489 (1958)).

[89] Pertler, M., H¨ aberl, M., Rommel, W., Blaβ, E., Mass Transfer Across Liquid-Phase Boundaries, (Chem. Engng. Proc., 34, 269-277 (1995)).

[90] Petrov, V., Muehlner, K. A., Van Hook, S. J., and Swinney, H. L., Model-independent nonlinear control algorithm with application to a liquid bridge experiment, (Phys. Rev. E 58, 427 (1998)).

[91] Petrov, V., Schatz, M. F., Muehlner, K. A., Van Hook, S. J., McCormic, W. D., Swift, J. B. and Swinney, H. L., Nonlinear control of remote unstable states in a liquid bridge convection experiment, (Phys. Review Lett. 77, 3779 (1996)).

[92] Peyret, R., and. Taylor, T. D, Computational Methods for Fluid Flow, ( Springer Verlag, Berlin, Heidelberg, 1990).

[93] Pomeau, Y., and Manneville, P., Intermittent transition to turbulence in dissipative dy- namical system, (Commun. Math. Phys., 74, 189 (1980)).

[94] Preisser, F., Schwabe, D., Scharmann, A., Steady and oscillatory thermocapillary convec- tion in liquid columns with free cylindrical surface, (J. Fluid Mech., 126 , 545 (1983)).

[95] Riley, R. J., and Neitzel, G. P., Instability of thermocapillary-buoyancy convection in shallow layers. Part 1. Characterization of steady and oscillatory instabilities, (J. Fluid Mech. 359, 143 (1998)).

[96] Ruckenstein, E., Mass transfer in the case of interfacial turbulence induced by the Marangoni effect, (Int. J. Heat Mass Transfer, 11, 1753-1760 (1968)).

[97] Ruelle, D., Dynamical systems with turbulent behavior, (Lecture Notes in Physics Mathe- matical Problems in Theoretical Physics, 80, 341 (1978)).

[98] Ruelle, D., Sensitive dependence on initial condition and turbulent behavior of dynamical systems, (Ann. N.Y. Acad. Sci., 316, 408 (1979)).

[99] Ruelle, D., and Takens, F., On the nature of turbulence, (Commun. Math. Phys., 20, 167 (1971)).

[100] The Theory of Difference Schemes, (Monographs and Textbooks in Pure and Applied

Mathematics, Marcel Dekker, Inc., New York, (2001)).

(8)

11 References

[101] Samarskii, A. A., and Goolin, A. V., Stability of Difference Schemes. ( Nauka, Moscow.

(1973)) (in Russian).

[102] Saβ, V., Kuhlmann, H. C., and Rath, H. J., Investigation of three-dimensional thermocap- illary convection in a cubic container by a multi-grid method, (Int. J. Heat Mass Transfer, 39, No. 3, 603 (1996)).

[103] Savino, R., and Monti, R., Oscillatory Marangoni convection in cylindrical liquid bridges, (Physics of Fluids, 8, 2906 (1996)).

[104] Schatz, M. F., and Howden, K., Purification of silicone oils for fluid experiments, (Exp.

Fluids, 9, 1850, (1997)).

[105] Schatz, M. F., and Neitzel, G. P., Experiments on thermocapillary instabilities, (Ann. Rev.

Fluid Mech. 33, 93 (2001)).

[106] Schatz, M. F., VanHook, S. J., McCormick, W. D., Swift, J. B., and Swinney, H. L., Onset of surface-tension driven B´ enard convection, (Phy. Rev. Lett, 75, 1938 (1995)).

[107] Schwabe, D. and Frank, S., Transition to oscillatory thermocapillary convection in a hollow floating zone, (J. Jpn. Soc. Microgravity Appl., 15, Supplement II, 431 (1998)).

[108] Schwabe, D., Hintz, P., and Frank, S., New features of thermocapillary convection in floating zones revealed by tracer particle accumulation structures (PAS), (Microgravity Sci. Technol., 9, 163 (1996)).

[109] Schwabe, D., M¨ oller, U., Schneider, J., and Scharmann, A., Instabilities of shallow dynamic thermocapillary liquid layers, (Phys. Fluids A 4, 2368 (1992)).

[110] Schwabe, D., and Scharmann, A., Some evidence for the existence and magnitude of a critical Marangoni number for the onset of oscillatory flow in crystal growth melts, (J.

Crystal Growth, 46, 125 (1979)).

[111] Selak, R., and Lebon, G., Benard-Marangoni thermoconvective instability in presence of temperature-dependent viscosity, (J. Phys. II France,3, 1185 (1993)).

[112] Sethy, A., Cullinan, H. T., Transport of mass in ternary liquid-liquid systems, Part II:

Mass transfer and interfacial studies, (AIChE J., 21, No. 3, 575-582 (1975)).

[113] Shen, J., A remark on the projection-3 method, (Int. J. Numer. Methods Fluids, 16, 249, (1993)).

[114] Shevtsova, V. M., Ermakov, M. K., Ryabitskii, E., and Legros, J. C., Oscillations of a liquid bridge free surface due to thermal convection, (Acta Astronautica, 41, 471 (1997)).

[115] Shevtsova, V. M., Kuhlmann, H. C., and Rath, H. J., Thermocapillary convection in liquid bridges with a deformed free surface, (Lecture Notes in Physics Materials and Fluids Under Microgravity, Springer, Eds. L. Ratke, H. Walter and B. Feuerbacher, 464, 323 (1995)).

[116] Shevtsova, V. M., and Legros, J. C., Thermocapillary stability of strongly deformed liquid bridges, (Microgravity Q., 7, No. 1 (1998)).

[117] Shevtsova, V. M., and Legros, J. C., Oscillatory convective motion in deformed liquid

bridges, ( Physics of Fluids, 10, 1621 (1998)).

(9)

[118] Shevtsova, V. M., Legros, J. C., and Hirsch, C., Instability of the flow in shallow cavity with differently heated walls, (Computational Fluid Dynamics Journal, Special number, 663 (2001)).

[119] Shevtsova, V. M., Melnikov, D. E., Influence of variable viscosity on convective flow in liq- uid bridge. 3-D simulations of ground based experiments, (Proc. of the 1st Int. Symposium on Microgravity Research&Application in Physical Science & Biotechnology, Sorrento, Italy, 2000 (ESA SP-454, 141 (2001)).

[120] Shevtsova, V. M., Melnikov, D. E., and Legros, J. C., Non-desirable convective motion on board space vehicles, (Proceedings of the Foton/Bion International Conference, Samara, Russia, 25-30 June, p. 101 (2000)).

[121] Shevtsova, V. M., Melnikov, D. E., and Legros, J. C., Thermal convection in rectangular cavity. 3D simulations of TRAMP experiment, (ESA, Noordwijk, Contract Report (March 2000)).

[122] Shevtsova, V. M., Melnikov, D. E., and Legros, J. C., Three-dimensional simulations of hydrodynamical instability in liquid bridges. Influence of temperature-dependent viscosity, (Physics of Fluids, 13, 2851 (2001)).

[123] Shevtsova, V. M., Melnikov, D. E., and Legros, J. C., Peculiarities of three-dimensional flow in liquid bridges at high Prantdl numbers, (Computational Fluid Dynamics Journal, Vol.9, No.1, 653 (2001)).

[124] Shevtsova, V. M., Melnikov, D. E., and Legros, J. C., Change of flow patterns in thermo- capillary convection in liquid bridges, accepted to Acta Astronautica, AA1655.

[125] Shevtsova, V. M., Mojahed, M., and Legros, J. C., The loss of stability in ground based experiments in liquid bridges, (Acta Astronautica, 44, 625 (1999)).

[126] Shevtsova, V. M., Mojahed, M., and Legros, J.C., Ground based experiments about stabil- ity of deformable liquid bridges, (STAIF-2000, Albuquerque, NM , American Institute of Physics, CD ROM ISBN 1-56396-920-3, pp.872-878).

[127] Shevtsova, V. M., Mojahed, M., Melnikov, D. E., and Legros, J. C., The choice of the critical mode of hydrothermal instability by liquid bridges, (Lecture Notes in Physics In- terfacial Fluid Dynamics and Transport Processes, Springer, Eds. R. Narayanan and D.

Schwabe, 628, 241 (2003)).

[128] Shevtsova, V. M., Nepomnyashchy, A. A., and Legros, J. C., Thermocapillary-buoyancy convection in shallow cavity heated from the side, (Physical Review E., 67, 066308 (2003)).

[129] Shivamoggi, B. K., Theoretical Fluid Dynamics, ( John Wiley & Sons, Inc., 1998, ISBN 0-471-05659-6).

[130] Sim, B.-C., and Zebib, A., Effect of free surface heat loss and rotation on transition to oscillatory thermocapillary convection, (Phy of Fluids, 14, 225 (2002)).

[131] Sim, B.-C., Zebib, A., and Schwabe, D., Thermocapillary convection in cylindrical geome-

tries, (Lecture Notes in Physics Interfacial Fluid Dynamics and Transport Processes,

Springer, Eds. R. Narayanan and D. Schwabe, 628, 107 (2003)).

(10)

11 References

[132] Smith, M, K., and S. H. Davis, Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities, (J. Fluid Mech., 132, 119 (1983)).

[133] Smith, M, K., Instability mechanisms in dynamic thermocapillary liquid layers, (Phys.

Fluids, 29, 3182 (1986)).

[134] Smith, K. A., On convective instability induced by surface-tension gradients, (Journal of Fluid Mechanics, 24, part 2, 401 (1966)).

[135] Smith, M. K., The nonlinear stability of dynamic themocapillary liquid layers, (J. Fluid Mech., 194, 391 (1988)).

[136] Sternling, C. V., Scriven, L. E., Interfacial turbulence: Hydrodynamic instability and the Marangoni effect, (AIChE J., 5, No. 4, 514 (1959)).

[137] Sumiji, M., Nakamura, S, and Hibiya, T., Two-directional observation of solid-melt inter- face fluctuation induced by Marangoni flow in a silicon liquid bridge, (J. Crystal Growth, 235, 55 (2002)).

[138] Sumner, L. B. S., and Neitzel, G. P., Oscillatory thermocapillary convection in liquid bridges with highly deformed free surface: Experiments and energy-stability analysis, (Phys.

Fluids, 13, 107 (2001)).

[139] Tang, Z. M., Hu, W. R., and Imaishi, N., Three-dimensional numerical simulation of Marangoni instabilities in non-cylindrical liquid bridges in microgravity, (Int. J. of Heat Mass Transfer, 44, 1299 (2001)).

[140] Tanny, J., Chen, C. C., and Chen, C. F., Effects of interaction between Marangoni and double-diffusive instabilities, (Journal of Fluid Mechanics, 393, 1 (1995)).

[141] Temam, R., On an approximate solution of the Navier-Stokes equations by the method of fractional steps. Part I, (Archiv Ration Mech Anal, 32, 135-53, (1969)).

[142] Thomas, L. H., Elliptic problems in linear difference equations over a network, (Watson Sci. Comput. Lab. Rept., Columbia University, New York, (1949)).

[143] Thom´ ee, V, Stability theory for partial difference operators, (SIAM Review, 11(2), 152 (1969)).

[144] Thom´ ee, V, Finite difference methods for linear parabolic equations, (In Ciarlet, P. G.

and Lions, J. L., editors, Handbook of Numerical Analysis, volume I of Finite Difference Methods 1, pages 8193. North-Holland, Amsterdam (1990)).

[145] Thomson, J., On certain curious motions observable at the surfaces of wine and other alcoholic liquors, (Phil. Mag. 10, No. 4, 330 (1855)).

[146] Trompert, R. A., and Hansen, U., On the Rayleigh number dependence of convection with a strongly temperature-dependent viscosity, (Phys. Fluids 10, 351 (1998)).

[147] Ueno, I. (Tokio University) Priv. communication, 2002

[148] Ueno, I., Tanaka, S., and Kawamura, H., Oscillatory and chaotic thermocapillary convec-

tions in a half-zone liquid bridge, (Physics of Fluids, 15, 408 (2003)).

(11)

[149] Velten, R., Schwabe, D., and Scharmann, A., The periodic instability of thermocapillary convection in cylindrical liquid bridges, (Physics of Fluids, A 3, 267 (1991)).

[150] Wanschura, M., Kuhlmann, H. C., and Rath, H. J., Linear stability of two-dimensional combined buoyant-thermocapillary flow in cylindrical liquid bridges, (Physical Review E,, 55, 55 (1997)).

[151] Wanschura, M., Kuhlmann, H. C., and Rath, H. J., Instability of thermocapillary flow in symmetrically heated full liquid zones, (Proceedings of the Joint Xth European and VIth Russian Symposium on Physical Science in Microgravity, Russia, St.Petersburg eds. by V.S. Avduevsky, V.I. Polezhaev, 1, 172 (1997)).

[152] Wanschura, M., Shevtsova, V. M., Kuhlmann, H. C., and Rath, H. J., Convective insta- bility mechanisms in thermocapillary liquid bridges, (Physics of Fluids 5, 912 (1995)).

[153] Weber, E. H., Mikroskopische Beobachtungen sehr gesetzm¨ aβiger Bewegungen, welche die Bildung von Niederschlgen harziger K¨ orper aus Weingeist begleiten Berichte uber die Ver- ¨ handlungen der K¨ oniglich Schsischen Gesellschaft der Wissenschaften, (Mathematisch- Physische Classe, 57 (1854)).

[154] Wiggins, S., Introduction to applied nonlinear dynamical system and chaos, ( Springer, New York, 1990).

[155] Camassa, R., Wiggins, S., Chaotic Advection in a Rayleigh-B´ enard Flow, (Phys. Rev. A, 43, 774 (1991)).

[156] Xu, J.-J., and Davis, S. H., Convective thermocapillary instabilities in liquid bridges, (Phys.

Fluids 27, 1102 (1984)).

[157] Zebib, A., Homsy, G. M., and Meiburg, E., High Marangoni number convection in a square

cavity, (Physics of Fluids, 28, 3467 (1985)).

Références

Documents relatifs

In this paper, instead of conducting time-dependent simulation and directly com- puting the eigenvalues that characterize a regular (stationary) or a Hopf (oscillatory) bifurcation,

From the computed surface temperature gradient, it is concluded that the boundary layers developed at both solid ends of liquid bridges strengthen the stability of basic

Hence, evaporation plays a twofold role: on the one hand, the evaporative cooling creates locally higher radial interfacial temperature gradient (near the sidewall) which enhances

In this paper, we see the dependance of entropy gradient is necessary for isentropic waves of acceleration along the interfaces: the fact the internal energy depends not only on

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

We investigate the drainage of a 2D microfoam in a vertical Hele-Shaw cell, and show that the Marangoni stress at the air-water interface generated by a constant temperature

In the present work, we are interested in the thermal convection induced by an electric field and a temperature gradient applied to dielectric fluids.. The latter convection is

A radial temperature gradient and a high alternating electric field imposed over the gap induce an effective gravity that can lead to a thermal convection even in the absence of