• Aucun résultat trouvé

Observation of isoscalar multipole strengths in exotic doubly-magic $^{56}$Ni in inelastic α scattering in inverse kinematics

N/A
N/A
Protected

Academic year: 2021

Partager "Observation of isoscalar multipole strengths in exotic doubly-magic $^{56}$Ni in inelastic α scattering in inverse kinematics"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: in2p3-01222563

http://hal.in2p3.fr/in2p3-01222563

Submitted on 20 Oct 2016

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Observation of isoscalar multipole strengths in exotic

doubly-magic

56

Ni in inelastic α scattering in inverse

kinematics

S. Bagchi, J. Gibelin, M.N. Harakeh, N. Kalantar-Nayestanaki, N.L. Achouri,

H. Akimune, B. Bastin, K. Boretzky, H. Bouzomita, M. Caamano, et al.

To cite this version:

S. Bagchi, J. Gibelin, M.N. Harakeh, N. Kalantar-Nayestanaki, N.L. Achouri, et al.. Observation of

isoscalar multipole strengths in exotic doubly-magic

56

Ni in inelastic α scattering in inverse kinematics.

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Observation

of

isoscalar

multipole

strengths

in

exotic

doubly-magic

56

Ni

in

inelastic

α

scattering

in

inverse

kinematics

S. Bagchi

a

,

,

J. Gibelin

b

,

M.N. Harakeh

a

,

N. Kalantar-Nayestanaki

a

,

N.L. Achouri

b

,

H. Akimune

c

,

B. Bastin

d

,

K. Boretzky

e

,

H. Bouzomita

d

,

M. Caamaño

f

,

L. Càceres

d

,

S. Damoy

d

,

F. Delaunay

b

,

B. Fernández-Domínguez

f

,

M. Fujiwara

g

,

U. Garg

h

,

G.F. Grinyer

d

,

O. Kamalou

d

,

E. Khan

i

,

A. Krasznahorkay

j

,

G. Lhoutellier

b

,

J.F. Libin

d

,

S. Lukyanov

k

,

K. Mazurek

l

,

M.A. Najafi

a

,

J. Pancin

d

,

Y. Penionzhkevich

k

,

m

,

L. Perrot

i

,

R. Raabe

n

,

C. Rigollet

a

,

T. Roger

d

,

S. Sambi

n

,

H. Savajols

d

,

M. Senoville

b

,

C. Stodel

d

,

L. Suen

d

,

J.C. Thomas

d

,

M. Vandebrouck

b

,

d

,

i

,

J. Van de Walle

a

aKVI-CART,UniversityofGroningen,NL-9747AA,Groningen,TheNetherlands bLPCCaen,ENSICAEN,UniversitédeCaen,CNRS/IN2P3,Caen,France cDepartmentofPhysics,KonanUniversity,Kobe568-8501,Japan

dGrandAccélérateurNationald’IonsLourds(GANIL),CEA/DSM-CNRS/IN2P3,BvdHenriBecquerel,14076Caen,France eGSIHelmholtzzentrumfürSchwerionenforschungGmbH,64291Darmstadt,Germany

fUniversidadedeSantiagodeCompostela,E-15706SantiagodeCompostela,Spain gResearchCenterforNuclearPhysics,OsakaUniversity,Osaka567-0047,Japan hPhysicsDepartment,UniversityofNotreDame,NotreDame,IN 46556,USA

iInstitutdePhysiqueNucléaire,UniversitéParisSud,IN2P3-CNRS,F-91406OrsayCedex,France jInstituteofNuclearResearch(ATOMKI),Debrecen,P.O.Box51,H-4001,Hungary

kG.N.FlerovLaboratoryofNuclearReactions,JointInstituteforNuclearResearch,Dubna,Moscowoblast,144980,Russia lInstituteofNuclearPhysicsPAN,ul.Radzikowskiego152,31-342Kraków,Poland

mNationalResearchNuclearCenter,MoscowEngineeringPhysicsInstitute,Kashirskoesh.31,Moscow,115409,Russia nInstituutvoorKern- enStralingsfysica,KULeuven,B-3001Leuven,Belgium

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received8May2015

Receivedinrevisedform10October2015 Accepted23October2015

Availableonline28October2015 Editor:V.Metag

The Isoscalar Giant Monopole Resonance (ISGMR) and the Isoscalar Giant Dipole Resonance (ISGDR) compressionmodeshavebeenstudiedinthedoubly-magicunstablenucleus56Ni.Theyweremeasured

by inelastic

α

-particle scattering ininverse kinematics at 50 MeV/u with the MAYA active target at theGANILfacility.ThecentroidoftheISGMRhasbeenobtainedatEx=19.1±0.5 MeV.Evidencefor thelow-lying partoftheISGDRhasbeenfoundatEx=17.4±0.7 MeV.The strengthdistributionfor thedipolemodeshowssimilaritywiththepredictionfromtheHartree–Fock(HF)basedrandom-phase approximation(RPA)[1].Thesemeasurementsconfirminelastic

α

-particlescatteringasasuitableprobe forexcitingtheISGMRandtheISGDRmodesinradioactiveisotopesininversekinematics.

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

Recentdevelopmentsin nuclearphysics involvethe studiesof short-livedexoticnuclei.Newphenomena,suchas,neutronhalos, neutronskins, andmodification ofthe magic numbers, occur for largeneutron-to-proton(N/Z)ratiosfarfromstability.Thestudyof collective modes, the so-called giant resonances, in stablenuclei hasbeenoneoftheimportantphysicsmotivationsthroughoutthe historyofnuclear physics.However, very littleinformation about

*

Correspondingauthor.

E-mailaddress:soumya.bagchi87@gmail.com(S. Bagchi).

thecollectivepropertiesofexoticnucleiisavailable.Amongthese

collective modes, the ISGMR and the ISGDR are of prime

inter-est astheir excitation energies aredirectly relatedto the incom-pressibilityofanucleus,KA[2,3].Theincompressibilityofnuclear matter (K) is defined asthe curvature of the energy per par-ticle atthe saturation density [4], and can be deduced from KA

[4–6].Itisanimportantkeyinputtotheequationofstate(EoS)of nuclearmatterwhich,inturn,isusefulinunderstandingsome as-trophysicalquantities, suchas, radii andmassesofneutron stars,

and also in understanding the mechanism of supernovae

explo-sions.

http://dx.doi.org/10.1016/j.physletb.2015.10.060

(3)

372 S. Bagchi et al. / Physics Letters B 751 (2015) 371–375

ThevalueofK obtainedfromtheISGMRandtheISGDRdata instablenuclei is240

±

10 MeV[4,6–8]. Theoretical calculations witheffective interactions using thisvalue of K can reproduce wellthecentroidenergiesoftheISGMRfor90Zr,144Sm,and208Pb.

Ontheotherhand,theyoverestimatethecentroidenergiesforthe ISGMRstrengthdistributionsinSn[9,10]andCd[11]isotopes, al-though they can reproduce well the ground-state properties for theseisotopes. Nevertheless,theinvestigationoftheISGMRalong the isotopicchains of Cd [11] and Sn[12] helped determinethe symmetryenergyoftheEoS.Inspiteofsignificanttheoretical ef-fortsto reproducesimultaneouslythe ISGMRcentroidenergiesin

90Zr,208Pb,andinSn/Cdisotopes,theproblemremains astowhy

theisotopesofSnandCdare soft[9–11].Itshouldbementioned thatarecentattempttofitthecentroidenergiesofsoft120Snand

stiff 208Pbsimultaneously [13,14] yielded a smaller value of K withalargeuncertainty,i.e.,230

±

40 MeV.Therefore,itisuseful tostudycompressionmodesforanotherseriesofisotopes to de-termineboth K andthesymmetryenergyparameteroftheEoS. NiisotopesprovidesuchanisotopicserieswidelyrangingoverN/Z ratios.Therefore,effortshavebeenputtostudyindetailthe com-pressionmodesforseveralstableandunstableisotopesofNifrom the neutron-deficient to the neutron-rich regions of the nuclear chart.

Measurementsof giantresonances in unstable nucleiare

par-ticularly challenging. Up to now such measurements have been

mainly performed to study the isovector giant dipole resonance in neutron-rich radioactive oxygen [15], neon [16], and tin [17]

isotopes, and in 68Ni [18]. These studies have been performed throughCoulombexcitationbyscatteringfromaPbtargetat rela-tivistic energies. Onthe other hand, thebest probe to studythe isoscalar modes in a nucleus is either inelastic

α

-particle scat-teringorinelastic deuteronscatteringasboth the

α

particle and deuteronhavezeroisospin. Theisoscalarresponses havebeenso farmeasuredfortheunstabledoubly-magic56Ninucleusby inelas-ticdeuteronscattering[19]andfortheunstableneutron-rich68Ni nucleusby inelastic

α

-particleanddeuteronscattering[20,21].In our experiment, we focused on the study of isoscalar responses in 56Ni via inelastic

α

-particle scattering. The choice was made because ofthe fact that, the56Ni(

α

,

α

)56Ni* reaction has higher

crosssection thanthe 56Ni(d

,

d)56Ni* reactionandtheunwanted

backgrounddueto deuteronbreakupcanbe avoided.Another in-terestingreasontostudythecollectivemodesin56Niisbecauseof

theimportantrole56Niplaysintheastrophysicalscenarios.56Ni,a

doubly-magicclosed-shellnucleus,isoneofthewaitingpoint nu-cleiinthestellarnucleosynthesisanditwasfoundintheejectaof supernova1987A[22].

TheISGMRcrosssectionispeakedat0◦ inthecenter-of-mass (CM)frame,whichcorrespondstothedetectionofverylow-energy recoil

α

particles in the laboratory frame. To measure the exci-tationenergy rangingfrom0 MeV (elastic scattering) to35 MeV ininversekinematics,itis necessarytodetectthe recoil

α

parti-cleshavingenergies upto 4.5 MeV,which correspondsto 8◦ CM angle. Detection of such low-energy recoil

α

particles (including sub-MeV)witha particletelescopewouldnecessitate avery thin target (

30 μg/cm2) toallow the

α

particles toemerge fromthe

targetandtominimizethestraggling.Thiswouldconsequently re-quirethe radioactiveion beamto have an intensityof the order of5

×

106 particles/sorabove inordertohavereasonable yields (

1000countsforthe ISGMR at5.5◦ CM angle fora beamtime runof 5days).Althoughthisisfeasible withastorage-ring facil-ity, such as the Experimental Storage Ring (ESR) at GSI [23–25], anotheralternativeistouseanactive-targetdetector.Anexample ofsuch detectoris IKAR[26],developed atGSI, which was used tostudytheelasticscatteringofexoticbeamsatrelativistic ener-gies. Anotherexampleis MSTPC[27],builtin Japan,for studying

fusion reactions and reactions of nuclear-astrophysics interest at low energies.In ourexperiment, weused theMAYAactive-target detector [28]. Itis a gas target wherethe target gasacts alsoas a detector.Inan active targetsuch asMAYA,the targetthickness can be increased withoutsevere loss of energyresolution by in-creasing the gas pressure. In this Letter, we present the results of thefirst measurementof theisoscalargiant resonancesin the doubly-magic56Niinvestigatedwithinelastic

α

-particlescattering ininversekinematicsusingtheMAYAactive-targetdetector.

A secondary beam of 56Ni at 50 MeV/u was produced at the

GANIL facility by the In-Flight fragmentation technique. The

pri-mary stablebeamof 58Ni at75 MeV/u impinged on a 525.6 μm

thick9BetargetlocatedattheentranceoftheLISE[29]

spectrom-eter.Twodipolemagnetsanda500 μmachromaticdegraderwere usedtopurifythesecondarybeam.Theaveragebeamintensityof

56Niwasoftheorderof2

×

104particles/swithapurityofabout

96%.Aplasticscintillatordetector,followedbytheMAYAdetector, was putatthe endoftheLISEspectrometer.The plastic scintilla-torwasusedtocountthenumberofincomingbeamparticles.The active-targetdetectorMAYA,developedatGANIL,isatime-charge projectionchamberwithanactivevolumeof28

×

25

×

20 cm3.In thepresence ofan electricfield appliedacrossthetarget volume, electrons produced through ionization of thegas by the incident beamorreactionproducts,drifttowardsasetof32amplification wiresthatareparalleltothebeamdirection.Foratwo-body reac-tion, the angle of the reaction plane can be determined by the drift time of the electrons towards the amplification wires. The avalanchesontheamplificationwiresinducesignalsonamatrixof 32

×

32 hexagonalpadsconnectedtoGASSIPLEX[28]chips.MAYA was filledwith95% heliumgasand5% CF4,whichactshereasa

quencher since purehelium cannot beused duetosparking. The pressureofthegas-mixturewasmaintainedat500 mbar.Withthe effectivelengthof20 cm,aluminosityofaround5

×

1024cm−2s−1

wasachieved.Anelectrostaticmask[30]wasplacedjustbelowthe beamtrajectoryinMAYA.Thiselectrostaticmaskhelpsinreducing the chargesduetothe highly-ionizingbeamparticles in compar-ison to those induced by the very low-energy recoil

α

particles, thuseffectivelyincreasingthedynamicrangeforcharge-detection. For each event, two observables are measured to reconstruct thereactionkinematics:therangeandthescatteringangleofthe recoil particle. Since MAYA is a time-charge projection chamber, the projected recoil angleis reconstructed using a “globalfitting method”asdescribedinRefs.[20,21,31].Inthismethod,a straight-linetrajectoryisobtainedbyminimizing theorthogonaldistances of the centers of thepads weighted by the chargeson the pads to the fittedtrajectory line. The intersection ofthe fitted trajec-tories of the beam path and the recoil-particle path determines thevertexofinteraction.From thecharge projectionoftherecoil

α

particle,theBraggpeak isdetermined andthe projectedrange of the recoilparticle is measured from the vertexof interaction. Recoilparticlesfromthequenchinggaswererejectedonan event-by-eventbasis usingthe totalcharge integral versusthe rangeof the ionizing particles. The third dimension is obtained from the drift timesof the electrons towards the amplification wires. The scatteringangleisobtainedfromtheprojectedangleonthepads and themeasured drift times. Afterobtaining the rangein three dimensions, the energy ofthe recoil

α

particleis deduced using range-to-energytablesinSRIM[32].Therange,energy,and scatter-ing angleoftherecoilparticleare deducedonan event-by-event basis.Areliabletrajectoryreconstructionhasbeenachievedfor re-coil

α

particleshavingenergieshigherthan600 keV.

The reconstructedthree-dimensionalscatteringofthe recoil

α

(4)

Fig. 1. (Coloronline.)Scatter plotofthe kineticenergyversusthescattering an-gle,reconstructedfor the recoil αparticles,is shown. Thesolidlinesrepresent theLISE++kinematics[33]calculationsobtainedfor Ex=0 MeV (elastic

scatter-ing),2.7 MeV(first-excitedstate),16 MeV,20 MeV,and30 MeVof56Ni.SeveralCM

anglesaredepictedonthekinematicslines.

linesshow thekinematicscurvesfor Ex

=

0 MeV (elastic scatter-ing),2.7 MeV (first-excited state of56Ni),16 MeV, 20 MeV, and

30 MeVof56Ni.

Data are transformed into the CM frame using two-body rel-ativistic kinematics, and are corrected for geometrical and re-construction efficiencies along with detector acceptances. These

efficiencies are deduced from simulations having inputs from

LISE++ kinematics [33] and SRIM [32] outputs; details are given in Ref. [34]. The peak around Ex

=

0 MeV corresponds to elas-ticscatteringandthefirst-excited state of56Ni. Thefull widthat halfmaximum(FWHM)ofthis“elastic-scattering”peak isaround 4.5 MeV. Thebroadening ofthispeak is dueto trajectory recon-struction of low-energy recoil

α

particles and due to the pres-ence of low-lying states mainly the 2+ state which is situated at Ex

=

2

.

7 MeV [35]. In this context, it is worthwhile to men-tion the detector resolution for different excitation energies, ob-tainedfromsimulations[34].Thedetectorresolutions(FWHM)for Ex

=

0 MeV,10 MeV,20 MeV,30 MeV,and40 MeVareobtainedto be2.24 MeV,2.16 MeV,1.90 MeV,1.38 MeV,and1.23 MeV, respec-tively.Itis,therefore,clearthatastheexcitationenergyincreases, the resolution of the detector improves. This is due to the fact thatwiththe increase ofexcitation energy,theenergy ofthe re-coil

α

particleincreasesforagivenCMangle(ascanbeseenfrom thekinematicslinesinFig. 1)whichleads tobettertrajectory re-constructionoftherecoilproductsinMAYA.Sixexcitation-energy spectra are obtained for the angular bins 3◦–4◦, 4◦–5◦, 5◦–6◦, 6◦–7◦,7◦–8◦,and8◦–9◦.Fig. 2displaystheexcitation-energy spec-trumfor a 1◦ bin centered around 5.5◦ CM angle.The fact that there are several peaks in the excitation-energy range between

5 MeVto 35 MeV points to the presence of severalfragmented

isoscalarmodes.

The data analysis is first performed by fitting the excitation-energyspectraforthedifferentCManglesbelow9◦.Inspectionof thespectrashowedthat atcertainangles somepeaksare promi-nent resulting in a total of nine peaks being prominent at dif-ferent angles for the excitation-energy range 5–35 MeV. There-fore, a 9-peak fit is performed for all excitation-energy spectra usingGaussian functions. This large number of fragmentsof the multipolestrengthhasbeenpreviously observed inthismass re-gion[36,37,39].The backgroundshape is obtainedby firstfitting

the excitation-energy spectra between 5 MeV and 35 MeV with

apolynomialoforder4assumingnogiant-resonancestructuresin thespectra.Concerningthebackgroundshape,wehavedecidedon

Fig. 2. (Coloronline.) Excitation-energyspectrum of56Nifor a 1bincentered

around5.5◦θCMangleisshown.Thegreendashedlinerepresentsthebackground

fittotheexcitation-energyspectrumassumingnogiant-resonancestructures.The redsolidlineistheresultofthefittothedatawithnineGaussianpeaksanda fittedbackground.Thegreensolidlinerepresentsthefinalbackgroundinthe to-talfit.ThenineGaussianpeaksareshownseparatelywiththebrownsolidline, purpledashedline,purplesolidline,bluesolidline,reddashedline,blackdotted line,blackdashedline,magentadottedline,andmagentadashedline,identifiedas peaks#1,2,3,4,5,6,7,8,and9,respectively.Peak#1showsanL=1 behav-iorwhereas,peaks#2and3showanL=2 behavior.Peaks #4and5showL=1 and L=0 behaviors,respectively.Peaks#6to9include L=1 modeandhigher multipoles.

apolynomial oforder4becauseofthefollowing.Simulations for the elasticscatteringpeak showeda tail thatextended to higher excitation energy, resulting from the misidentification of elastic scatteringevents becauseof their very shorttracks inMAYA. On theotherhand,experimentsonstablenucleishowaphysical back-groundathigherenergiesduemainlytothequasi-elasticknockout reaction,whichstarts attheparticleseparationthresholdand in-creasestoalmost aconstant atvery highexcitationenergies.The

sum ofthese two backgrounds justifies the use ofa background

with a trough shape witha broad minimum around 20 MeV. In

the total fit ofthe excitation-energy spectra for a given CM an-gle,i.e.,nineGaussianfunctionsandthebackground,theobtained

background shape is then kept fixed. An extra additive

parame-ter,usedto determinetheheight ofthebackground,iskeptfree. ThewidthofaGaussianfittinganobservedgiant-resonance struc-tureisvariedinthefitfortheCManglewherethecorresponding structureisthemostprominent.Afterobtainingthewidth param-eter in this manner, it has been kept fixed for other CM angles wherethecorrespondingstructureheightislesspronounced.Data upto35 MeVexcitationenergyhavebeenconsidered,abovewhich dataareneglectedbecausetheysufferfromthelow-acceptanceof thedetector.Duetotheuncertaintyinsubtractingthebackground, possiblecontributionsfromthecontinuum duetoknock-out reac-tionscouldalsobepresentatthesehighenergies.

Comparing angular distributions of peaks obtained with this method with results from the calculations using distorted-wave Bornapproximation(DWBA)(seebelow),peaks#2and3inFig. 2

withcentroidpositionsatEx

=

11

.

0

±

0

.

5 MeV and14

.

4

±

0

.

5 MeV, respectively,were foundtohaveangulardistributions characteris-ticofquadrupole(L

=

2)transitions(seeFig. 3).Thecorresponding FWHMsweremeasuredtobe2

.

0

±

0

.

3 MeV and2

.

2

±

0

.

2 MeV, re-spectively.From thequasi-particle RPAwithaSkyrme interaction (SkM*)[38],itcan be seenthat thereexists alow-lying isoscalar

dipole mode (L

=

1) around 16–17 MeV. Evidence forthis

low-lying dipole mode was found in the present analysis (peak #4

in Fig. 2) with the centroid position at Ex

=

17

.

4

±

0

.

7 MeV.

The monopole mode (peak #5 in Fig. 2) was also identified at

(5)

374 S. Bagchi et al. / Physics Letters B 751 (2015) 371–375

Table 1

CentroidsoftheISGMRand thelow-lyingcomponentoftheISGDRin56Niand 58Ni[39]obtainedfrominelasticα-particlescattering.Theresultobtainedforthe

ISGMRin56Niwithinelasticdeuteronscattering[19]isalsoshown.Thecentroid

valueslistedinthetableareobtainedfromthepeakfittingintheexcitation-energy spectra.

ISGMR

Ex[MeV]

Low-lyingcomponentofISGDR

Ex[MeV] 56Ni(α ) (This work) 19.1±0.5 17.4±0.7 56Ni(d,d)[19] 19.5 58Ni(α,α)[39] 18.43±0.15 17.42±0.25 Table 2

Optical-modelparametersusedintheDWBAcalculations.

Nucleus [MeV] VReal [MeV] VImag [MeV] rReal [fm] rImag [fm] aReal [fm] aImag [fm] rC [fm] 58Ni[41] 240 76.6 24.2 1.242 1.435 0.8 0.8 1.3

Fig. 3. (Coloronline.)Experimentalangulardistributionsforthepeakslocatedat 11.0 MeV(a),14.4 MeV(b),17.4 MeV(c),and19.1 MeV(d)areshownasblack datapointswitherrorbars.ThereddashedlinesshowtheDWBApredictionsfor isoscalarresonanceswithmultipolesL=2 (a)and(b),L=1 (c)andL=0 (d).

here. This rather small value compared to those of neighboring nuclei[39],isprobablyduetothelowstatisticsandsmall signal-to-noiseratio.Errors on thecentroidpositions andthewidths of differentmodesareobtainedfromthe fittingofthepeaksinthe excitation-energy spectra with Gaussian functions. The centroid

positions of the monopolemode andthe low-lying dipole mode

obtainedfromthisworkarecomparedwithotherworks[19,39]in

Table 1.

TheangulardistributionsoftheGaussianpeaks#2,3,4,and5 inFig. 2areshowninFig. 3.Errorbarsofthedataarethesquare rootsofthequadraticsumsoferrorsduetostatisticalfluctuations, errorsduetoefficiencycalculations,anderrorsinthebackground heights. These angular distributions are well reproduced by the DWBAcalculationsassumingL

=

2,2,1,and0multipolarities, re-spectively. The theoretical calculationswere performed usingthe codeCHUCK3[40].The optical-potentialparameters(listedin Ta-ble 2) were obtained by fitting the 58Ni(

α

,

α

) elastic scattering data and 58Ni(

α

,

α

) inelastic scattering data of the first-excited

stateof58Ni at60 MeV/ubeamenergy[41].Transitionpotentials areobtainedfromcollectivetransitiondensitiesfollowingthe pro-ceduresdescribedinRefs.[42,43].

Anotherindependentanalysiswas performedusingthe

multi-pole-decomposition analysis (MDA) method to check the

consis-tencyofthe results.Afterbackgroundsubtractionasdescribed in theGaussianpeak-fittingmethod,thedatawerebinnedin2 MeV to improvethe statistics.Angular distributions were obtained for

Fig. 4. (Coloronline.)MDAfittingsoftheexperimentalcrosssections(blackdata points with errorbars)areshown fortwoexcitation-energy ranges;16 MeVto 18 MeV (leftpanel)and18 MeV to20 MeV(rightpanel).Angulardistributions withtheblacksolidline,theblackdashedline,thegreensolidline,andthegreen dashed lineareobtainedfor L=0, L=1, L=2,and L=3 multipoles, respec-tively,fromDWBAcalculationsusingcollectivetransitionpotentials(seetext)and theoptical-potentialparameterslistedinTable 2.Thecalculationsareperformedat theexcitationenergycorrespondingtothebincenterofagivenbinhavingsizeof 2 MeV.Theredsolidlinesrepresentthefitstothedata.

theexcitationenergiesrangingfrom9 MeVto35 MeVwith2 MeV energybinsandwerefittedusingalinearcombinationof theoret-icalangulardistributionsofmultipolaritiesL

=

0,L

=

1,L

=

2,and L

=

3.Since MAYA is phase-spacelimited because ofthe limita-tionsindetectingtheverylow- andhigh-energyrecoil

α

particles, thenumberofdatapointsintheangulardistributionsisalso lim-itedfrom3◦to8◦CMangle.Hence,themultipoleswhichare rele-vantatagivenexcitation-energyintervalhavebeenconsideredin thefittinginsteadofconsideringthecontributionsofallmultipoles atall excitation-energyintervals. Theoreticalangular distributions wereobtainedfromtheDWBAcalculationsasdescribedbefore us-ingtheoptical-potentialparameterslistedinTable 2.FromMDA,it hasbeenfound thatthemonopolemodehasa significant

contri-bution in the excitation-energy region from 18 MeV to 20 MeV

(see the right panel of Fig. 4) with the centroid value of the strength distribution measured at Ex

=

18

.

4

±

1

.

8 MeV and with a root-mean-square widthof 2

.

0

±

1

.

2 MeV. The position of the

monopole mode obtainedfromthe Gaussian peak-fitting method

(19

.

1

±

0

.

5 MeV) andtheMDAare ingoodagreement witheach other.Furthermore,theexcitationenergyofthemonopolemodein

56Niisalsoconsistentwiththevalue E

x

=

19

.

3

±

0

.

5 MeV which isobtainedfrominelasticdeuteronscatteringoff56Ni[19].

Below15 MeV,thereisevidencefortheexistenceofbothL

=

1 and L

=

2 modes. Like in the Gaussian peak-fitting method,

evi-dence for the low-lying L

=

1 mode has also been found in the

MDAatanexcitationenergyofaround17 MeV(seetheleftpanel of Fig. 4).According to Refs.[39,44],thereis evidencefora low-lyingdipolemodein58Niaround16–17 MeVwhichishigherthan

the 1h

¯

ω

componentof theISGDR. Surprisingly, Monrozeau etal.

[19] didnot observe anyisoscalar dipole strength at thisenergy noratanyotherenergyin56Ni.Thisisconsistentwithabi-modal natureoftheISGDRwiththecentroidofthehigh-energy compo-nent appearingaround 30 MeV. Inelasticelectronscatteringfrom

58NihasbeenmeasuredbyKleinetal.[45].Unfortunately,in

elec-tron scatteringitisnotpossibletodisentangleeitherisoscalarE0 andE2, orisoscalar E1andE3. However,the structuresobserved are not in disagreement with results from inelastic

α

scattering dependingonthemultipolarityassumed.

(6)

Fig. 5. (Coloronline.)ComparisonoftheexperimentalISGDRstrengthdistributionin

56Ni(blackdatapointswitherrorbars),obtainedfromtheMDA,isshowntogether

withthepredictionofarecentHF-RPAcalculation(redsolidline)[1].

above35 MeV, there areno datapoints shownabove35 MeVin

Fig. 5.Duetonon-negligibleuncertaintiesindeterminingthe back-groundlevel and the poor statistics of the data, there are large uncertainties in obtaining the absolute values of the exhausted

fractions of the energy-weighted sum rules (EWSR) in the MDA

analysis. Both the MDA andthe direct comparison of the cross-section angular distribution withtheory could, in principle, give

usthestrength exhausted by a giant-resonancemode. The

num-berweobtainforL

=

0 is240

±

120%,whichis,withintheerrors,

in agreement with the value 136

±

27% obtained by Monrozeau

et al. [19]. Due to strong uncertainties in the normalization as-sociatedwithmeasurements withavailable active targetssuchas MAYA,asobserved herefortheelasticscatteringdata,we cannot giveatpresenta morereliablenumber. Asmentioned earlier, er-ror bars ofthe data includestatistical fluctuations, errors dueto efficiencycalculations,anderrorsinthebackgroundheights.

Tosummarize, inelastic

α

-particle scattering off the 56Ni

nu-cleus has been measured in inverse kinematics using the MAYA

active-targetdetector with an average beam intensity of the or-derof2

×

104 particles

/

s.ThecentroidpositionoftheISGMRhas beenfoundtobeat Ex

=

19

.

1

±

0

.

5 MeV.Alow-lyingcomponent oftheISGDRhasalsobeenfoundaround17 MeV.Thisisthefirst

measurement of the compression modes in a neutron-deficient

unstable nucleus with inelastic

α

-particle scattering. In spite of thelowstatistics,thedifficultiesinbackgrounddetermination,the limitationsof our studied energy rangeto 35 MeV, and the low energyresolution, the present experimental setup is suitable for measuringthepropertiesofunstableandexoticnucleiavailableat rare-isotopebeamfacilities worldwide. Efforts are on the wayto develop new active-target detectors [46], which will provide ac-cesstosmall-anglemeasurementswithbetterenergyandangular resolution.

Acknowledgements

Thisworkwas supportedby theEuropeanCommission within

the Seventh Framework Programme through IA-ENSAR (contract

No. RII3-CT-2010-262010)andGSIHelmholtzzentrumfür

Schweri-onenforschungGmbH,Darmstadt,Germany, andtheUnitedStates

National Science Foundation (Grants Number PHY-1068192 and

PHY-1419765). References

[1]N.Auerbach,etal.,Phys.Rev.C89(2014)014335.

[2]S.Stringari,Phys.Lett.B108(1982)232.

[3]J.Treiner,etal.,Nucl.Phys.A371(1981)253.

[4]G.Colò,etal.,Phys.Rev.C70(2004)024307.

[5]J.P.Blaizot,etal.,Nucl.Phys.A591(1995)435.

[6]B.K.Agrawal,S.Shlomo,V.KimAu,Phys.Rev.C68(2003)031304(R).

[7]U.Garg,Nucl.Phys.A731(2004)3.

[8]B.G.Todd-Rutel,J.Piekarewicz,Phys.Rev.Lett.95(2005)122501.

[9]J.Piekarewicz,Phys.Rev.C76(2007)031301(R).

[10]U.Garg,etal.,Nucl.Phys.A788(2007)36c.

[11]D.Patel,etal.,Phys.Lett.B718(2012)447.

[12]T.Li,etal.,Phys.Rev.Lett.99(2007)162503.

[13]E.Khan,J.Margueron,I.Vidaña,Phys.Rev.Lett.109(2012)092501.

[14]E.Khan,J.Margueron,Phys.Rev.C88(2013)034319.

[15]A.Leistenschneider,etal.,Phys.Rev.Lett.86(2001)5442.

[16]J.Gibelin,etal.,Phys.Rev.Lett.101(2008)212503.

[17]P.Adrich,etal.,Phys.Rev.Lett.95(2005)132501.

[18]O.Wieland,etal.,Phys.Rev.Lett.102(2009)092502.

[19]C.Monrozeau,etal.,Phys.Rev.Lett.100(2008)042501.

[20]M.Vandebrouck,etal.,Phys.Rev.Lett.113(2014)032504.

[21]M.Vandebrouck,Premièremesuredesrésonancesgéantesisoscalairesdansun noyauexotiquericheenneutrons:le68NiaveclacibleactiveMAYA,Ph.D.

the-sis,Del’UniversitéParisSud,2013.

[22]H.A.Bethe,Rev.Mod.Phys.62(1990)801.

[23]P.Egelhof,etal.,Phys.Scr.T104(2003)151.

[24]M.vonSchmid,etal.,EPJWebConf.66(2014)03093.

[25]J.C.Zamora,etal.,Phys.Scr.(2015),accepted.

[26]A.A.Vorobyov,etal.,Nucl.Instrum.MethodsPhys.Res.,Sect.A,Accel. Spec-trom.Detect.Assoc.Equip.270(1988)419.

[27]Y. Mizoi,et al.,Nucl.Instrum.MethodsPhys.Res., Sect.A,Accel.Spectrom. Detect.Assoc.Equip.431(1999)112.

[28]C.E.Demonchy,etal.,Nucl.Instrum.MethodsPhys.Res.,Sect.A,Accel. Spec-trom.Detect.Assoc.Equip.573(2007)145.

[29]R. Anne,et al.,Nucl.Instrum. MethodsPhys. Res., Sect.A,Accel. Spectrom. Detect.Assoc.Equip.257(1987)215.

[30]J.Pancin,etal.,J.Instrum.7(2012)01006.

[31]T. Roger,et al.,Nucl. Instrum.MethodsPhys.Res., Sect.A,Accel. Spectrom. Detect.Assoc.Equip.638(2011)134.

[32]J.F.Ziegler,J.Appl.Phys.85(1999)1249.

[33] LISE++code,http://lise.nscl.msu.edu/lise.html.

[34]S. Bagchi,Studyofcompressionmodesin56Niusinganactivetarget,Ph.D.

thesis,UniversityofGroningen,2015.

[35]http://www.nndc.bnl.gov.

[36]D.H.Youngblood,Y.-W.Lui,H.L.Clark,Phys.Rev.C63(2001)067301.

[37]S.Brandenburg,etal.,Phys.Lett.B130(1983)9.

[38]J.Terasaki,J.Engel,Phys.Rev.C74(2006)044301.

[39]Y.-W.Lui,etal.,Phys.Rev.C73(2006)014314.

[40]J.R. Comfort, M.N. Harakeh,Program CHUCK3, University ofColorado, 1979 (ModifiedversionofCHUCKbyP.D.Kunz,unpublished).

[41]H.L.Clark,Y.-W.Lui,D.H.Youngblood,Nucl.Phys.A589(1995)416.

[42]M.N. Harakeh, A. van der Woude, Giant Resonances: Fundamental High-FrequencyModesofNuclearExcitation,OxfordStudiesinNuclearPhysics, Ox-fordUniv.Press,2001.

[43]M.N.Harakeh,A.E.L.Dieperink,Phys.Rev.C23(1981)2329.

[44]B.K.Nayak,etal.,Phys.Lett.B637(2006)43.

[45]R.Klein,etal.,Phys.Lett.B145(1984)25.

Références

Documents relatifs

have measured the cross section for neutron knockout in inelastic γd scattering, γ(d, γ 0 n)p, for quasi-free kinemat- ics at energies around E γ = 110 MeV (the energy bin was..

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

These modes could no longer be resolved in the SmB phase. - a) Schematic representation of the molecular motions for the shear mode propagating in the c* direction with a

Nous presentons des mesures de diffusion inklastique des neutrons, effectukes B 4,2 K sur un monocristal de UN ; la diffusion magnktique est d'intensitt faible et diffbre

The raman active fundamental mode of the XJ molécule (X~ : halogen ion) induces the inelastic light scattering, as is seen by comparison with calculated data on the free

Inelastic neutron scattering of hydrogen trapped in solid

Inelastic neutron scattering investigation of the magnetic excitations in the helimagnetic state of NiBr2... Inelastic neutron scattering investigation of the

The spin wave spectrum of Cr203 has previously been obtained by inelastic neutron scattering measurements [3], and a continuous branch throughout the extended zone was in