• Aucun résultat trouvé

SMALL ANGLE SCATTERING AND STRUCTURE FACTOR NEUTRON MEASUREMENTS OF AN AMORPHOUS Al70Si17Fe13 ALLOY

N/A
N/A
Protected

Academic year: 2021

Partager "SMALL ANGLE SCATTERING AND STRUCTURE FACTOR NEUTRON MEASUREMENTS OF AN AMORPHOUS Al70Si17Fe13 ALLOY"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00225215

https://hal.archives-ouvertes.fr/jpa-00225215

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

SMALL ANGLE SCATTERING AND STRUCTURE

FACTOR NEUTRON MEASUREMENTS OF AN

AMORPHOUS Al70Si17Fe13 ALLOY

Jessica Dubois, K. Dehghan, C. Janot, P. Chieux, B. Chenal

To cite this version:

(2)

SMALL ANGLE SCATTERING AND STRUCTURE FACTOR NEUTRON MEASUREMENTS OF AN AMORPHOUS A l7 QS i1 7F e1 3 ALLOY

J.M. D u b o i s , K. Dehghan, C. J a n o t * , P. Chieux* and B. Chenal

Laboratoire de Métallurgie, U.A. 159, Parc de Saurupt, 54042 Nancy Cedex, France

Institut Laue Langevin, 156 X, Centre de Tri, 38042 Grenoble Cedex, France

Résumé -.La structure du nouveau verre métallique Al Si J e , possède un or-dre chimique important0et paraît être significativement ordonnée sur une

dis-tance de l'ordre de 15A. Les échantillons que nous avons étudiés n'étaient pas homogènes puisqu'ils contenaient de 1 à 2 % d'aluminium vraisemblablement pur. On compare nos résultats à des données disponibles pour des structures cristallines ou quasi-cristallines.

Abstract - The structure of the new Al Si _Fe metallic glass possesses quite a strong chemical order and appears to be significantly ordered over radial distances as large as 15 A. The samples studied here were non homogeneous as they contained 1 to 2 % in volume of disordered presumably pure -aluminium. Comparison is made with data available from related crystalline and quasi-crystalline structures.

1 - INTRODUCTION

Up to recent years, only very few aluminium-based alloys were obtained amorphous by rapid quenching. This picture has changed when multi-components aluminium-based bulk amorphous ribbons have been made available by a conventional melt spinning technique /l, 2, 3/. Among these different alloys, the Al 0Si _Fe , glass found by SUZUKI et al. /3/ provides quite an interesting composition for the investigation of the amor-phous structure. It is indeed suitable for local probe experiments (Al NMR, 57Fe

Mossbauer spectroscopy) on the one hand and, because of the larger scattering factor of the minority species (Fe), for diffraction measurements (though some information is lost due to the similarity between Al and Si scattering factors). The present paper deals with these later results and is related to another paper reporting on Mossbauer spectroscopy results/4/,

2 - EXPERIMENTAL

The amorphous ribbons were prepared by quenching a liquid master alloy of nominal composition Al Si J e , using the melt spinning wheel designed by PAVUNA 151.

The structure factor S(Q) (Q = 47Tsin9/A) was obtained from the intensities measured with a 4.2 g sample at the D4-ILL diffTactometer, using a wave length \ = 0.704 A. For the sake of brevity, details about the corrections for background, self absorp-tion, vanadium container, multiple and inelastic scattering will be reported else-where (see also BERTAGNOLLI et al. /6/ and references therein). The crystallisation sequence of this glass was followed with the help of the DIB. 2 axes diffTactometer. The specimen, in a,vanadium cylindrical holder, was heated in vacuum at a constant

1 ° _ i

rate a = 0.5 K mn . A fixed 1.04 £ Q £ 3.93 A ' range of scattering vectors was investigated by using a 400 cells detector and a spectrum was recorded every 6 mn. Finally, the low scattering angles region of the spectrum was explored with the D17-ILL camera. As this metallic glass is very brittle and breaks easily into small par-ticles, an homogeneous specimen was first prepared by grinding gently the ribbons obtained from a single casting. Samples of approximate mass of 0.2 g were extracted from this specimen and were heat treated at 513 K during b : 200 s, c : 20 mn ; d : 1 hour ; e : 3 hours ; g : 12 hours. Sample -a was not treated and sample f was

(3)

C8-462 JOURNAL

DE

PHYSIQUE

o b t a i n e d from a n o t h e r c a s t i n g a t a lower quenching r a t e . The g r i n d i n g p r o c e s s enhan- c e s d r a m a t i c a l l y t h e i n t e n s i t y s c a t t e r e d by t h e s u r f a c e h e t e r o g e n e i t i e s o f t h e par- t i c l e s and t h e r e f r a c t i o n c o n t r i b u t i o n t o t h e s i g n a l . I n o r d e r t o c a n c e l t h i s e f f e c t

171,

each powder specimen was immersed i n a m i x t u r e of 46 % D 0 + 54 % H 0 which h a s

2

t h e same c o h e r e n t c r o s s - s e c t i o n p e r u n i t volume t h a n t h e a l l o y . Using co?d n e u t r g n s of wave l e n g t h

X

= 12 % - I , i n t e n s i t i e s were r e c o r d e d i n t h e range from Q = 0.01 A-1 t o Q = 0.12 i - 1 . Again, d e t a i l s a b o u t t h e d a t a h a n d l i n g p r o c e d u r e a r e t o b e r e p o r t e d i n a n o t h e r p a p e r .

3 - RESULTS

3.1

-

T o t a l s t r u c t u r e f a c t o r

The t o t a l s t r u c t u r e f a c t o r , d e f i n e d a c c o r d i n g t o BHATIA-THORNTON 181, i s shown i n f i g u r e 1 . I t e x h i b i t s a few remarquable f e a t u r e s :

O- I

i - a w e l l d e f i n e d prepeak a t Qp= 1.7 A w i t h a f u l l w i d t h a t h a l f maximum @.Qp = 0.4 A-I

ii

-

a marked s h o u l d e r o n t h e low-Q s i d e of t h e main peak.

iii

-

a s p l i t t e d second peak which a l s o shows a s h o u l d e r o n i t s low-Q s i d e According t o t h e s c a t t e r i n g l e n g t h s of t h e s p e c i e s (bAl = 0.345 ; bSi = 0.415 ; b = 0.954 10-I2cm), s u c h a n i n t e n s e prepeak i s o f t e n t h e s i g n o f a n i m p o r t a n t cffgmical o r d e r . It i s a w e l l known c h a r a c t e r i s t i c of s e v e r a l m e t a l l i c g l a s s e s w i t h t h e l a r g e s t s c a t t e r i n g l e n g t h l o c a t e d on t h e s o l u t e e l e m e n t and s u g g e s t s i n t h e pre- s e n t c a s e t h a t t h e i r o n atoms a r e surrounded o n l y by aluminium ( p o s s i b l y s i l i c o n ) atoms.

To our knowledge, a s i m i l a r s h o u l d e r on t h e main peak ( i i ) i s n o t e n c o u n t e r e d i n t h e more common t r a n s i t i o n metal- m e t a l l i c g l a s s e s . However, i n t e n s i t y p r o f i l e s r e c o r d e d by e l e c t r o n d i f f r a c - t i o n . i n A1-Cu e v a p o r a t e d t h i n f i l m s e x h i b i t s u c h a s h o u l d e r / 9 / a s do t h e X-ray d i f f r a c t i o n p a t t e r n s of t h i s a l l o y o r of s e v e r a l o t h e r aluminium- b a s e d g l a s s forming c o m p o s i t i o n s 121. The t o t a l p a i r c o r r e l a t i o n f u n c t i o n TPCF i s o b t a i n e d by a F o u r i e r t r a n s - f o r m a t i o n t o r e a l s p a c e o f t h e (redu- ced) s t r u c t u r e f a c t o r : 0 2 J'max F i g . 1 - B h a t i a Thornton t o t a l s t r u c t u r e f a c - G(R)= - Q(S(Q)-I) s i n QRdR t o r of amorphous A 1 S i Fe 70 17 13' Qmin which g i v e s t h e r a d i a l d i s t r i b u t i o n f u n c t i o n a s :

RDF(R) = & T R ' ~

+

RG(R) where t h e a v e r a g e number d e n s i t y p = 0.064 a t

i-3

was mea- s u r e d by t h e ~ P c h i m e d i a n method. T h i s l a s t f u n c t i o n i s p r e s e n t e d i n f i g u r e

2.

O s c i l l a t i o n s o f t h e RDF a r e s t i l l n o t i - c e a b l e a t r a d i a l d i s t a n c e s a s l a r g e a s 14 A. T h i s p o i n t i n d i c a t e s t h a t a c o n s i d e r a - b l e d e g r e e of medium r a n g e o r d e r e x i s t s i n t h i s s t r u c t u r e . I t i s a l s o s u p p o r t e d by t h e s h a r p d e f i n i t i o n o f t h e prepeak which y i e l d s an u n s u a l l y I g r g e c o r r e l a t i o n l e n g t h a s s o c i a t e d w i t h t h e chemical o r d e r :

cCc

= P.rr/AQ Q, 12 A. A t c o n t r a s t , ~ i m i - ~ l a r v a l u e s f o r o t h e r m e t a l l i c g l a s s e s a r e s m a l l e r : 5ccP=-5 A i n N i l B 1 9 o r

Ecc=

8 A

/

lo/ though t h e cogresponding TPCF s t i l l p r e s e n t

i n Mg85 5Cu10

3

t .

r e s o l v e a o s c l L a I o n s up t o 10-12 A.

Numerical d a t a r e f e r r i n g t o f i g u r e s 1 and 2 a r e r e p o r t e d i n t a b l e 1 i n which t h e weighted c o o r d i n a t i o n numbers NJ have been c a l c u l a t e d by i n t e g r a t i n g t h e RDF between

(4)

TABLE I

F i g . 2

-

The i n s e r t shows a f i t t o t h e f i r s t peak of t h e RDF w i t h two g a u s s i a n components.

F i n a l l y , some more i n f o r m a t i o n c a n b e e x t r a c - t e d from t h e RDF ( f i g u r e 2 ) w i t h i n t h e f o l l o - wing approximations :

-

s

(Q)

a - due t o t h e low Fe c o n t e n t , o n l y v e r y few Fe-Fe p a i r s c o n t r i b u t e t o t h e f i r s t peak of G(r) ( i n agreement w i t h t h e p r e p e a k ) . RDF Q ( I ) S~ Q l ( 2 ' ) 1 ( ' ) ( % I ) 2 Q:~) Q3 ( 2 ' )

b - a s b

2

bSi, t h e a l l o y behaves l i k e a pseudo-binary a l l o y A 1 Fe13 where A s t a n i s f o r A1 and S i . A d d i t i o n of t h e r e l e v a n t w e i g h t i n g f a g z o r s l e a d s t h u s t o t h e p a i r f u n c t i o n s : A-A = {AX-A1, A1-Si, ~ i - s i ) ; A-Fe = { A l - ~ e , s i - ~ e } and Fe-Fe. I t i s n o n e t h e l e s s w o r t h i n s i s t i n g on t h e a r b i t r a r i n e s s o f t h i s l a t e r as- sumption which i s n o t h i n g e l s e b u t a n ' e r t z a t z ' u n t i l more a c c u r a t e i n f o r m a t i o n i s a v a i l a b l e from o t h e r t e c h n i q u e s ( e . g. anomalous s c a t t e r i n g ) . RI ( i ) N 1 R N:') R 2 ( ) N2 (2) 0 R 3 ( A ) R4 1.7 0.32 3.10 3.30 5.15 5.95 7.90

The f i r s t peak of t h e R D F ( i n s e r t i n f i g u r e 2) c a n b e accounted f o r by two g a u s s i a n components whose mean s c a t t e r i n g v e c t o r s and mean-square d e v i a t i o n s a r e g i v e n i n t a b l e 2. The c o r r e s p o n d i n g c o o r d i n a t i o n numbers, deduced from t h e i r r e s p e c t i v e a r e a s by : 0.87 b2 - 1 2.57 1 1 . 1 (2.1 ; 3.6) 4.40 26.0 5.45 26.0 6.50 8.65 I where bA = (0.7 bA1 + 0.17 b . ) / 0 . 8 7 , a r e a l s o r e p o r t e d i n t a b l e 2. S 1 TABLE 2 I n s p i t e of t h e c r u d e a p p r o x i m a t i o n s u s e d h e r e , the- s e f i g u r e s a r e i n remarquable agreement w i t h t h e c o r r e s p o n d i n g d a t a i n s i m i l a r c r y s t a l l i n e compounds. - For example, = 11.3 a r e found i n

A 1 3 N i , Z

(5)

C8-464 JOURNAL

DE

PHYSIQUE

3.2

-

C r y s t a l l i s a t i o n sequence

The d o t s i n f i g u r e 3 r e p r e s e n t s t h e i n t e n s i t i e s ( a f t e r background s u b s t r a c t i o n ) r e - corded a t t h e t e m p e r a t u r e i n d i c a t e d ( N o t i c e t h a t n o t a l l t h e s p e c t r a a r e d i s p l a y e d ) . From a n i n d e x a t i o n o f t h e Bragg l i n e s which show up i n t h i s f i g u r e , i t t u r n s o u t t h a t t h e c r y s t a l l i s a t i o n of t h e A170Si17Fe13 i s b a s i c a l l y two-stages :

I

-

a-A170Si17Fe13 + f c c A 1 + a-(A1 S i Fe)

c o n f i r m i n g t h u s t h e r e s u l t of SUZUKI e t a l . 131.

The f r a c t i o n of f c c A 1 p r e c i p a t e d d u r i n g t h e f i r s t s t e p i s s m a l l a s r a n b e i n f e r r e d from t h e weak i n t e n s i t y of t h e 1 1 1 and 200 Bragg l i n e s and t h e r e f o r e , t h e change i n c o m p o s i t i o n of t h e r e s i d u a l amorphous phase i s n e g l i g e a b l e . I n t h e mean time, t h e prepeak

-

i . e . presumably t h e chemical o r d e r - of t h i s phase does n o t e v o l v e . I t a p p e a r s t h a t t h e 1 1 1 and 200 l i n e s a r e j u s t l o c a t e d o n t h e s h o u l d e r and on t o p o f t h e main peak, r e s p e c t i v e l y , and i t seems t h a t t h e 1 1 1 l i n e grows a t t h e expense of t h e s h o u l d e r . I n o r d e r t o a s s e s s w h e t h e r t h i s i s t r u e o r n o t , g a u s s i a n f i t s t o t h e s p e c t r a i n f i g u r e 3 were performed e i t h e r by i n c l u d i n g a b r o a d peak a t t h e s h o u l d e r p o s i t i o n ( l e f t column) o r n o t ( r i g h t column). Obviously, a s h o u l d e r i s s t i l l p r e s e n t a t t h e end of t h e f i r s t c r i s t a l l i s a t i o n s t e p ( s p e c t r u m e ' ) ' and i t seems t h a t i t s r e l a - t i v e a r e a h a s d e c r e a s e d by no more t h a n 25 %

g a u s s i a n peaks by t a k i n g t h e s h o u l - The ( c o r r e c t e d ) s m a l l a n g l e i n t e n s i t i e s , norma- d e r i n t o a c c o u n t ( l e f t ) o r n o t l i z e d w i t h r e s p e c t t o t h e s c a t t e r i n g c r o s s s e c - ( r i g h t ) , t i o n of n a t u r a l w a t e r , which were r e c o r d e d f o r specimens a t o g ( s e e s e c t i o n 2) a r e shown i n f i g u r e 4 . Even i n t h e amorphous s t a t e

- sample a

-,

a s i g n i f i c a n t c o n t r i b u t i o n t o t h e SANS i n t e n s i t y i s o b s e r v e d , i n d i c a - t i n g t h a t a l l samples a r e non-homogeneous. As o n l y a weak i n c r e a s e o f t h e SANS i n - t e n s i t y i s a p p a r e n t whereas t h e Xray d i f f r a c t i o n r e v e a l s t h e f o r m a t i o n o f f c c A1 c r y s t a l s ( f i g u r e 5 ) , i t i s n a t u r a l t o assume t h a t t h e SANS i s due t o a c o n t r a s t be- tween r e g i o n s of p u r e aluminium ( o r a t l e a s t s t r o n g l y d e p l e t e d i n Fe) and t h e b u l k o f t h e m a t e r i a l ( w i t h c o m p o s i t i o n v e r y n e a r t o t h e nominal c o m p o s i t i o n ) . G u i n i e r p l o t s o f t h e d a t a i n f i g u r e 4 s u g g e s t t h a t t h e p a r t i c l e s i z e s a r e b r o a d l y d i s t r i b u - t e d whereas t h e i r 44 b e h a v i o u r a t h i g h Q i s i n f a v o u r of p a r t i c l e s w i t h w e l l d e f i - ned b o u n d a r i e s .

D i s t r i b u t i o n f u n c t i o n s of t h e c o r r e l a t i o n d i s t a n c e s p(R) were c a l c u l a t e d a c c o r d i n g t o t h e method o f GLATTER / 1 1 / . On t h e one hand, a f a i t h f u l a p p r o x i m a t i o n of t h e a v e r a g e g y r a t i o n r a d i u s was t h u s o b t a i n e d ( t a b l e 3 ) . I t d i d n o t show any s i g n i f i - c a n t v a r i a t i o n w i t h h e a t t r e a t m e n t i n samples a t o f . On t h e o t h e r hand, t h e s e f i t s p r o v i d e d c a l c u l a t e d i n t e n s i t i e s i n t h e e x p e r i m e n t a l r a n g e which we have l i n e a r l y o - i n t e r p o l a t e d between t h e v a l u e s c a l c u l a t e d f o r Q = 0 / I I / and f o r Q = Q =0.01 A I .

min

(6)

F i g . 5

t +

.-

...

'

1 .

;

.

I

;

L .

2

'..

...

f I -

'

+..

-

... ...

loz -

".--

-e" 1

...

I

'..

...

d

...

--

i F i g . 4

z - -

TABLE 3 1.2 2.7 180 1.5 3 . 3 170 1.7 3.8 180 1

...

".-

...-

....

...

a A" F i g . 4 - SANS i n t e n - s i t y of s e v e r a l sam- p l e s p r e p a r e d a s i n - d i c a t e d i n t h e t e x t . O t , 2, 4

b

B

lo am-= F i g . 5 - X-ray d i f - f r a c t i o n p a t z e r n s ( A = 1.7889 A) cor- r e s p o n d i n g t o f i g u r e 4.

4 - DISCUSSION AND CONCLUSION

An i n t e r p r e t a t i o n of t h e s e d i f f e r e n t r e s u l t s i n terms of a u n i q u e homogeneous phase seems u n r e a l i s t i c . I t l o o k s s a f e r t o c o n s i d e r a two-phase s y s t e m i n t o which a major amorphous phase w i t h s t r o n g chemical o r d e r ( i . e . A 1 p o l y h e d r a c e n t r e d by Fe) form a s t r u c t u r e c o n t a i n i n g s m a l l m i n o r i t y r e g i o n s o f p u r e ( o r n e a r l y p u r e ) alumi- nium. Due t o t h e long r a n g e p o t e n t i a l of aluminium 1121, i t i s r e a s o n a b l e t o assume t h a t t h e A 1 atoms i n t h e s e r e g i o n s may b e s h i f t e d from t h e i r f c c e q u i l i b r i u m p o s i - t i o n s and s t a b i l i z e d by t h e s u r r o u n d i n g amorphous p a h s e . O r d e r i n g of t h e s e r e g i o n s would t h e n r a i s e t h e f c c Bragg l i n e s w i t h o n l y l i t t l e change of t h e SANS i n t e n s i t y . F u r t h e r m o r e , t h e r e i s no obvious r e a s o n t o assume t h e c o r r e s p o n d i n g a c t i v a t i o n e n e r - gy t o b e s m a l l a s s t a t e d i n / 3 / a s m u l t i p l e twinning i s l i k e l y t o o c c u r i n s u c h f c c s m a l l p a r t i c l e s . F i g u r e 6 compares t h e e x p e r i m e n t a l S(Q) f u n c t i o n t o t h e s t r u c t u r e f a c t o r c a l c u l a t e d f o r a n A 1 f c c l a t t i c e i n t o which d i s o r d e r h a s b e e n s i m u l a t e d by b r o a d e n i n g t h e a t o - mic p o s i t i o n s w i t h a g a u s s i a n d i s t r i b u t i o n t h e s t a n d a r d d e v i a t i o n of which i n c r e a s e s w i t h t h e . d i s t a n c e . ( T h i s h a s no p h y s i c a l meaning and i s j u s t i n v o l v e d h e r e t o make

t h e comparison between p o s i t i o n s i n Q-space c l e a r e r ) .

(7)

C8-466 JOURNAL

DE

PHYSIQUE

L I F i g . 6 - E x p e r i m e n t a l s t r u c u t r e f a c t o r ( a ) and s t r u c t u r e f a c t o r s . . c a l c u l a t e d ( s e e t e x t ) f o r a f c c A 1 ( b ) and a A12Cu ( c ) l a t t i c e . I n t e g e r i n d e x e s 1151 on top of t h e f i g u r e a r e f o r a q v a s i c r y s t a l w i t h Qo = 2.9 A-I.

( f i g u r e 6 c ) . I t shows a prepeak due t o t h e Cu atom l o c a t e d i n t h e c e n t e r of t h e A 1 a r c h i m e d i a n a n t i - p r i s m (bCU bAl) and a s h o u l d e r on t h e main peak i n good c o r r e s p o n d e n c e w i t h t h e e x p e r i m e n t a l f i g u r e . O t h e r c a l c u l a t i o n s e s p e c i a l l y w i t h t h e A 1 N i c r y s - 3 t a l s , d i d n o t show t h i s f e a t u r e . T h e r e f o r e , a des- c r i p t i o n o f t h e l o c a l o r d e r o f A1 S i Fe 70 17 1 3 - i f any i s s u i t a b l e

-

would make more s e n s e i n terms o f t h e c r y s t a l l o g r a p h i c s t r u c t u r a l o p e r a t i o n a s s o c i a - t e d w i t h A12Cu 1131.

However, t h e composition s i m i l a r i t y between t h i s g l a s s and t h e r e c e n t l y d i s c o v e r e d q u a s i - c r y s t a l l i n e p h a s e s 1141 p o i n t s toward a n o t h e r t r a c k . We have r e p o r t e d i n f i g u r e 6 t h e p o s i t i o n s i n r e c i p r o q u a l s p a c e o f t h e Bragg peaks e x p e c t e d f o r a q u a s i - c r y s - t a l w i t h long r a n g e o r i e n t a t i o n a l o r d e r ( t h e i n t e - g e r i n d e x e s a r e d e f i n e d w i t h Q =2.9 1 - I a s i n / I S / ) . I n t h i s f i g u r e , o n l y t h e Q-vecFors of t h e Bragg peaks which a r e i n t e n s e enough t o b e observed i n e l e c t r o n d i f f r a c t i o n p a t t e r n s 1141 have been i n d i - c a t e d . The agreement w i t h experiment i s t a n t a l i z i n - g l y good and p r o v i d e s a n e x p l a n a t i o n f o r t h e cha- r a c t e r i s t i c f e a t u r e s of S(Q) p o i n t e d o u t i n s e c t i o n 3. I c o s a h e d r a l s h o r t r a n g e o r d e r /16/ ( b u t exten- d i n g up t o p o s s i b l y more t h a n 15 1 ) seems t h u s t o b e a p o s s i b l e u n d e r l y i n g o r g a n i z a t i o n a l scheme o f t h i s s t r u c t u r e and f u r t h e r work i s i n p r o g r e s s t o o b t a i n more i n f o r m a t i o n s a b o u t i t . Moreover, i t s u g g e s t s t h a t t h e a s y e t unknown s t r u c t u r e of t h e 8-A19Si2Fe2 phase, a c r y s t a l l i s a - t i o n p r o d u c t of t h i s g l a s s , might a l s o b e v e r y c l o s e t o a 3D Pemrose t i l l i n g . Acknowledgements

-

We w i s h , f i r s t o f a l l , t o e x p r e s s o u r g r a t i t u d e toward D r . G. Le Caer f o r h i s i n t e r e s t i n t h i s work and f o r s t i m u l a t i n g d i s c u s s i o n s . During t h e cour- s e of t h e e x p e r i m e n t s , we b e n e f i t e d from t h e k i n d h e l p of Drs. M. Maret, J. Panne- t i e r , R. Meyer and R. May a t ILL. Aknowledgements a r e due t o t h e I n s t i t u t Laue Lan- g e v i n f o r t h e a l l o c a t i o n of beam t i m e and t o t h e Groupe Pechiney f o r t h e f i n a n c i a l s u p p o r t of one o f u s (K.D.).

1 . J.M. DUBOIS, G. LE CAER,C.R.Ac.Sc. P a r i s , p l i c a c h e t 6 du 07.06.1982, i n p r i n t . 2. J . M . DUBOIS, G. LE CAER, K . DEHGHAN, Rapidly Quenched Metals V , Wurzburg 1984,

e d s . S. S t e e b and H. Warlimont, p. 197.

3. R.O. SUZUKI, Y . KOMATSU, K.F. KOBAYASHI, P.H. SHINGU, J . M a t - S c i .

2

(1983)1195. 4. G. LE CAER, R.A. BRAND, K. DEHGHAN, s u b m i t t e d t o t h i s c o n f e r e n c e .

5. D. PAVUNA, R a p i d l y Quenched M e t a l s I V , ~ e n d a ' i 198l,eds.T.i4asumoto and K. Suzuki. 6. H. BERTAGNOLLI, P. CHIEUX, M.D. ZEIDLER, Molecular P h y s i c s

32-3

(1982) 2635. 7. C. JANOT, B. GEORGE, J . Phys. L e t t .

46

(1985) L85.

8. A.B. BHATIA, D.E. THORNTON, Phys. Rev. B

2

(1970) 3004.

9. A. LAMBRECHT, H. LEITZ, J . HASSE, Condensed M a t t e r

5

(1981) 235.

10. S. STEEP, P. LAMPARTER, S t r u c t u r e of Non C r y s t a l l i n e S o l i d s I1 (1982) e d s . P.H. G a s k e l l , J . M . P a r k e r and E.A. Davis, P. 441.

1 1 . 0 . GLATTER, J. Appl. C r y s t .

10 (1977) 415.

12. R.D. MOUNTAIN, D.C. KNAUSS, J . of Research NBS

85-2

(1980), 109.

13. J . M . DUBOIS, P.H. GASKELL, G. LE CAER, P r o c e e d i n g s Royal Soc. Lond. i n ' p r i n t . 14. D. SHECATMAN, I. BLECH, D. GRATIAS, J . W . CAHN, Phys. Rev. L e t .

53-20

(198411951.

15. P.A. BANCEL, P.A. HEINEY, P.W. STEPHENS, A. I. GOLDMAN, P.M. HORN, Phys. Rev. L e t .

54-22

(1985) 2422.

Références

Documents relatifs

Instrumentation for time-resolved small-angle neutron scattering measurements with sub-millisecond time resolution, based on Ga¨hler’s TISANE (time- involved small-angle

Secondly, the detected exponents in the power law of scattering intensity from the HeLa nuclei are similar to those from chicken erythrocyte nuclei (Iashina et al., 2017),

Following Cahn (1961) the additional elastic energy lowers the spinodal phase boundary (inside the spinodal is the unstable region): By this the metastable region

AS a real problem does exist for determining the genuine nature of the heterogeneitjes responsible for the observed small-angle intensity, we have chosen a new way

As the magnetic order is only short range, it seemed interesting to study these alloys by small angle scattering with X-rays and neutrons.. Tb alloys exhibit hish magnetic

Small angle neutron and X-ray scattering study of the formation and structure of micelles of CTAB in formamide..

In particular, for measurements at zero and high, saturating field strength, which are most commonly performed, it is for simplicity assumed that the magnetic moments of the

- The concentric shell model of the micelle with the radial scattering length density profiles expressed in 101° cm- 2.. Upper part : SANS, lower part : SAXS for a