• Aucun résultat trouvé

ELECTRON-PHONON COUPLING IN THE NONTRANSITION METAL CADMIUM

N/A
N/A
Protected

Academic year: 2021

Partager "ELECTRON-PHONON COUPLING IN THE NONTRANSITION METAL CADMIUM"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: jpa-00221165

https://hal.archives-ouvertes.fr/jpa-00221165

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

ELECTRON-PHONON COUPLING IN THE

NONTRANSITION METAL CADMIUM

B. Dorner, A. Chernyshov, V. Pushkarov, A. Rumyantsev, R. Pynn

To cite this version:

(2)

JOURNAL DE PHYSIQUE

CoZZoque C6, suppZe'ment au n o 12, Tome 42, de'cernbre 1981 page C6-365

ELECTRON-PHONON COUPLING I N THE N O N T R A N S I T I O N

METAL

CADMIUM

B . Dorner, A.A. ~hernyshov*, V.V. ~ushkarev*, A.Yu. ~umyantsev* and R. Pynn

ILL GrenobZe, France

*Kurtchatou I n s t . , Moscow, U. S. S. R.

A b s t r a c t .

-

By i n e l a s t i c neutron s c a t t e r i n g we observed s e v e r a l anomalies i n t h e group v e l o c i t i e s of t h e phonon d i s p e r s i o n curves. They could a l l be a l l o c a t e d on t h e Fermi s u r f a c e . S t r e n g t h s and shape of t h e anomalies d i f f e r c o n s i d e r a b l y from t h e o r e t i c a l pre- d i c t i o n s .

A f t e r measuring t h e phonon d i s p e r s i o n curves of Cd a t 80 K by i n e l a s t i c neutron s c a t t e r i n g /I/ we c o n c e n t r a t e d on t h e Kohn anomalies / 2 / i n t h e d i s p e r s i o n curves. S e v e r a l anomalies ( A N ' S ) l i k e Fig. 1 were de- t e c t e d and a l l o c a t e d on t h e Fermi s u r f a c e . From c a l c u l a t i o n s i n per- t u r b a t i o n t h e o r y , i n c l u d i n g second-order terms i n t h e Heine Abarenkov / 3 / model p o t e n t i a l , i t was expected t h a t t h e group v e l o c i t y

a t

an AN should e x h i b i t a s i n g l e maximum o r a s i n g l e minimum depending on whether t h e phonon d i s p e r s i o n i s followed from i n s i d e t h e Fermi s u r - f a c e towards o u t s i d e o r v i c e v e r s a /4/. I n Fig. 1 anomaly No. 4 should be a mamimum and No. 5 , p r a c t i c a l l y c o i n c i d i n g , a minimum. The calcu- l a t i o n shows a s a r e s u l t a n t of both e f f e c t s a maximum, w h i l e t h e

Fig. 1: a )

...

Transverse

-

phonon d i s p e r s i o n curve. 0.75 5 0 0 0 measured phonon group

o v e l o c i t y .

2

b ) P r e d i c t e d group v e l o c i t y 0-50

$2Q

w i t h numbered anomalies /4/. I5 3 0 1 .2 .3 .4 .S P

-.

K T' M q +

(3)

C6-366 JOURNAL DE PHYSIQUE

e x p e r i m e n t a l o b s e r v a t i o n r e v e a l s a s t r o n g maximum a t t h e p r e d i c t e d p o s i t i o n and a s t r o n g unexpected minimum f o r s m a l l e r q - v a l u e s .

F i g . 2: Measured c a l c u l a t e d ( b , d ) v e l o c i t y . (open d o t s ) a n d phonon group [2X/c] PHONON WAVEVECTOR [ L n l f l a l

F i g . 2 shows c a l c u l a t e d and measured A N ' S /5/ f o r two l o n g i t u d i - n a l d i s p e r s i o n c u r v e s i n 10051 and 1~001 d i r e c t i o n s i n v o l v i n g t h e r e -

+

c i p r o c a l l a t t i c e v e c t o r s T = (002) and = ( l o o ) , r e s p e c t i v e l y . Both c a l c u l a t e d A N ' s and t h e e x p e r i m e n t a l one i n 15001 d i r e c t i o n s a r e com- p a r a b l e i n s t r e n g t h , b u t t h e o b s e r v e d one i n [0051 d i r e c t i o n i s much s t r o n g e r . Both A N ' s a r e r e l a t e d t o e l e c t r o n t r a n s i t i o n s between s p h e r i - c a l p a r t s o f t h e Fermi s u r f a c e , t h e r e f o r e t h e band s t r u c t u r e s h o u l d b e s i m i l a r . But t h e s t r o n g a n i s o t r o p y o f t h e Cd s t r u c t u r e ( c / a = 1.886 i n s t e a d o f 1.633 f o r i d e a l h . c . p . ) produces p r o b a b l y an a n i s o t r o p y i n t h e e l e c t r o n phonon i n t e r a c t i o n and i n t h e e l e c t r o n s u s c e p t i b i l i t y v i a a n a n i s o t r o p y i n t h e c o n d u c t i o n e l e c t r o n wave f u n c t i o n and i n t h e e l e c - t r o n i o n p o t e n t i a l .

-

'r=

(1011

F i g . 3: P l a n e i n r e c i p r o c a l s p a c e p e r p e n d i c u l a r t o 1100] W e i n v e s t i g a t e d t h e A N ' s o u t o f symmetry d i r e c t i o n s a s w e l l /5/ and c o u l d s e p a r a t e some which c o i n c i d e f o r symmetry d i r e c t i o n s . Par- t i c u l a r a t t e n t i o n was ? a i d t o e l e c t r o n t r a n s i t i o n s between f l a t p a r t s

( s u r f a c e o f t h e second B r i l l o u i n zone) o f t h e Fermi s u r f a c e w i t h 3

(4)

would occur in the case of a spherical Fermi surface. The points in Fig. 3 indicate observed AN'S. For the symmetry direction T, where the AN coincides with q = o, we found a strong variation of the phonon group velocity for small q.

Fig. 4: Anomalous behavior of the phonon group velocity in T direction for small q's. a) Kohn anomaly in case of a spheri- cal Fermi surface. b-d) Case of a flat Fermi surf ace T = ( 1 0 1 )

.

b: E = 0.01; C: E = 0.02; d: E = 0.03.

PHONON WAVEVECTOR

A calculation /5/ shows that some kind of

AN appears even for

flat parts of the Fermi surface, if the gap is sufficiently small. Yet, it is not a Kohn AN, as the slope of the electron susceptibility at 2 kF (2kF being the distance between opposite parts of the Fermi sur- face) is finite and not infinite. The calculated effect on the group velocity for small q's in T-direction is presented in Fig. 4. Case b resembles the observed behavior. The gap which is 2 V; was character- ized by the parameter E = v;/~EO(T/~) where V; is the value of the

model potential at the point (101 ) and ~O(r/2) is the energy of an un- perturbed state at the zone boundary.

/I/ B. Dorner, A.A. Chernyshov, V.V. Pushkarev, A.Yu. Rumyantsev and R. Pynn; J. Phys. F.

-

11, 365 (1981)

/2/ W. Kohn; Phys. Rev. Lett.

2,

393 (1959)

/3/ I.V. Abarenkov and V. Heine; Phil. Mag.

2,

529 (1965)

/4/ A.A. Chernyshov, V.V. Pushkarev, A.Yu. Rumyantsev, B. Dorner and

R. Pynn; J. Phys. F

2,

1983 (1979)

Références

Documents relatifs

This occurs because, in an electron gas obeying degenerate statistics, phonon emission with simultaneous conservation of energy and momentum between initial and final

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Keywords : graphene, field effect transistor, ab initio, density-functional theory, electron- phonon coupling, gauge field, deformation potential, screening, Boltzmann

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

We pre- sent here the results of new tilted and parallel field RFSE measurements on different orbits in cadmium which confirm the presence of e-e scatte- ring of the right

This surprising result has been explained by Engelsberg and Simpson /3/ who showed that the in- fluence of the electron-phonon interaction on the dHvA effect is rather subtle

High symmetry points in the Brillouin zone allow for an unambiguous identification of the contributions of specific deformabilities to the phonon self-energy in the correspon-

To afford a firm basis for the surface analysis by STM, it is indispensable to elucidate how the tunneling current is determined by the microscopic structure and