• Aucun résultat trouvé

An Introduction to the measurement and interpretation of dynamic ice loads on compliant structures

N/A
N/A
Protected

Academic year: 2021

Partager "An Introduction to the measurement and interpretation of dynamic ice loads on compliant structures"

Copied!
25
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur: IAHR Special Report, 89-5, pp. 167-187, 1989-02

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

An Introduction to the measurement and interpretation of dynamic ice

loads on compliant structures

Frederking, R. M. W.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC: https://nrc-publications.canada.ca/eng/view/object/?id=d9ef4498-fc23-4cb0-8941-b752d21af8d5 https://publications-cnrc.canada.ca/fra/voir/objet/?id=d9ef4498-fc23-4cb0-8941-b752d21af8d5

(2)

- S e r TH1

N 2 1 d

o

$1

National Research Conseil national

C . Council Canada

de

recherches Canada BLDG

Institute for lnstitut de

Research in recherche en

Construction construction

An Introduction to the Measurement and

Interpretation of Dynamic Ice Loads on

Compliant Structures

by R. Frederking

Reprinted from

IAHR Special Report 845, February 7989

Working Group on Ice Forces: 4th Stateof-th+Afl Report

p. 167-187

(IRC Paper No. 1600) Reprinted with permission

(3)

REsme

L'aatem

@sen&

certains

des factcurs fondamentaux

qui

i n t e ~ e n n e n t dans

le

comportment des structures flexiblcs soumises

A

divas types

de charges

de glace.

I1

donne

un

certain

nambre

de

dkfinitions ct examine divers aspe-cts des kquations de bast du

mowemcnt

d'uns

structure souple.

II

mite de

la

mesure dt la reponse dynamique

dcs

stmctures, du calcul h 1'

aide-

de la

transformation

en-

le domine

de temps et le

domaine

dt Mquence, et

de

l'inmpr6tation

des dsultats.

Il

fait des reccmmmdations concemant

les

mkthdes dt mesure.

L t s

r6suItats

des essais

en

laboratoire serviront Zi illustrer ces

mkthodes.

(4)

AN INTRODUCTION TO THE MEASUREKNT AND INTERPRETATION OF DYNAMIC ICE LOADS ON COMPLIANT STRUCTURES '

R. F r e d e r k i n g S e n i o r Research O f f i c e r Geotechni ca 1 Sect i o n I n s t i t u t e f o r Research i n Construct i o n N a t i o n a l Research C o u n c i l o f Canada CANADA Abstract

Some o f t h e fundamental f a c t o r s i n t h e behaviour of f l e x i b l e s t r u c t u r e s s u b j e c t t o v a r i o u s t y p e s o f i c e 1 oading a r e . introduced. Terminology i s presented and v a r i o u s aspects o f t h e b a s i c equations o f m o t i o n o f a compliant s t r u c t u r e a r e discussed. Measurement of dynamic response o f s t r u c t u r e s , a n a l y s i s u s i n g t r a n s f o r m a t i o n between t h e t i m e domain and frequency domain, and i n t e r p r e t a t i o n o f r e s u l t s a r e t r e a t e d . Recommendat io n s a r e made on measurement methods. The r e s u l t s o f 1 aboratory t e s t s w i l l be used t o i l l u s t r a t e t h e s e methods.

(5)

I n t roduct i on

Many s t r u c t u r e s are s u b j e c t t o dynamic i c e loads. These can be slender. s t r u c t u r e s such as l i g h t p i e r s o r b r i d g e p i e r s . I n t h i s case t h e whole s t r u c t u r e may v i b r a t e , e i t h e r as a r e s u l t o f t h e compliance of t h e s t r u c t u r e i t s e l f o r i t s foundation. F o r very l a r g e s t r u c t u r e s such as off-shore s t r u c t u r e s o r ships, t h e whole s t r u c t u r e may v i b r a t e , as above and a d d i t i o n a l l y , components o f t h e s t r u c t u r e may v i b r a t e . The dynamic n a t u r e o f t h e i c e load i s s t i l l s u b j e c t t o considerable d i s p u t e , as witnessed by t h e two o t h e r s t a t e - o f - t h e - a r t r e p o r t s t o t h i s Symposium on t h e s u b j e c t (MZih'ttanen, 1988 and Sodhi, 1988). The o b j e c t i v e of t h i s review i s t o introduce some o f t h e fundamentals o f dynamic s i g n a l a c q u i s i t i o n and analysis i n t h e c o n t e x t o f i c e load measurements i n t h e f i e l d and laboratory. It i s aimed a t t h e person e n t e r i n g t h e f i e l d of dynamic s i g n a l a c q u i s i t i o n and a n a l y s i s , not t h e expert. By removing some of t h e ambiguity i n t h e basic data, t h e e f f o r t s i n i n t e r p r e t i n g r e s u l t s can be made more e f f e c t i v e .

Background

A l l s t r u c t u r e s are f l e x i b l e t o some e x t e n t and consequently, when subjected t o a load, they w i l l deform. Depending on t h e nature of t h e loading, o s c i l l a t o r y motions o f t h e s t r u c t u r e can be set up. There a r e numerous reference works on v i b r a t i o n s , eg. Thomson, 1981. The f o l lowing w i l l r e v f ew selected fundamentals o f v i b r a t i o n analysis. Free v i b r a t i o n describes a system moving under t h e a c t i o n o f f o r c e s i n t e r n a l t o i t . Such a system w i l l v i b r a t e a t one o r more n a t u r a l frequencies determined by t h e mass and s t i f f n e s s p r o p e r t i e s o f t h e system. I f v i b r a t i o n s take place as a r e s u l t o f e x t e r n a l forces i t i s termed f o r c e d v i b r a t i o n . For o s c i l l a t o r y e x t e r n a l forces, t h e system i s f o r c e d t o o s c i l l a t e a t t h e f o r c i n g frequency. I f t h e f o r c i n g frequency corresponds t o one of t h e n a t u r a l frequencies o f t h e system, resonance occurs and e x c e s s i v e l y l a r g e o s c i 1 l a t ions may resu 1 t.

There a r e a number o f types o f p e r i o d i c motion, t h e s i m p l e s t being p e r i o d i c motion; i.e. motion having a constarrt frequency. One of t h e

(6)

x = A s i n 2 n t / - r ( 1

where x i s p o s i t i o n a t t i m e t, t extends f r o m - - t o +-, A i s t h e a m p l i t u d e and 7 i s t h e p e r i o d o f t h e o s c i l l a t i o n . P e r i o d i c m o t i o n can r e s u l t i n complex wave forms which a r e represented by t h e F o u r i e r s e r i e s . Methods a r e now a v a i l a b l e t o d e t e r m i n e t h e F o u r i e r s p e c t r u m ( f r e q u e n c y c h a r a c t e r i s t i c s ) o f a complex wave form. T h i s w i l l b e discussed i n more d e t a i l 1 ater. Another t y p e o f o s c i l l a t o r y mot i o n i s t r a n s i e n t motion, w h i c h has a f i n i t e s t a r t and end, ti c t c tf. T r a n s i e n t m o t i o n i s n o t

p e r i o d i c , i n t h a t i t repeats i n d e f i n i t e l y , b u t i t can be analysed f o r i t s frequency content. Random motion i s n o w d e t e r m i n i s t i c ; i .e. a f u n c t i o n cannot be w r i t t e n which can p r e d i c t f u t u r e motions. It i s p o s s i b l e , however, t o determi ne frequency, phase, and amp1 i t u d e c h a r a c t e r i s t i c s o f random motions and d e s c r i b e them i n s t a t i s t i c a l t e r n .

M o t i o n i s d e s c r i b e d as b e i n g a s i n g l e degree o f freedom when p o s i t i o n i s s p e c i f i e d by a s i n g l e s p a c i a l coordinate. A s i n g l e p a r t i c l e moving i n space would have t h r e e degrees o f freedom ( p o s i t i o n s p e c i f i e d by c o o r d i n a t e s o f t h e p o i n t ) . A r i g i d body would have t h r e e p o s i t i o n a l c o o r d i n a t e s and t h r e e r o t a t i o n a l c o o r d i n a t e s , s i x degrees of freedom A

continuous e l a s t i c body would have an i n f i n i t e nunber o f degrees o f freedom, a l t h o u g h i n p r a c t i c e i t i s p o s s i b l e t o d e s c r i b e t h e system w i t h a f i n i t e number o f degrees o f freedom.

The m o t i o n o f most s y s t e m , a t l e a s t f o r some a m p l i t u d e range, can be d e s c r i b e d as 1 inear. A simple s i n g l e degree o f freedom system w i t h damping

i s d e s c r i b e d by t h e e q u a t i o n where x ( t ) = t i m e s e r i e s o f displacement ;(t) = f i r s t d e r i v a t i v e o f x ( t ) w i t h respect t o t i m e ? ( t ) = second d e r i v a t i v e o f x ( t ) w i t h r e s p e c t t o t i m e n = on/Zn =

E=

m n a t u r a l frequency k = s t i f f n e s s o f t h e s t r u c t u r e m = mass o f t h e s t r u c t u r e

F

= c / 4 m f n = c r i t i c a l damping r a t i o c = damping constant

(7)

f ( t ) = t i m e s e r i e s o f i n p u t f o r c e

See F i g u r e 1 f o r a schematic r e p r e s e n t a t i o n o f such a system. Mass, m, damping constant, c, and s t i f f n e s s , k , a r e f i x e d constants o f t h e system. Note t h a t t h e power on each o f t h e s e t e r n i s one. E q u a t i o n ( 2 ) i s t h e f a m i l i a r l i n e a r second o r d e r d i f f e r e n t i a l e q u a t i o n t o w h i c h t h e r e a r e c l o s e d form s o l u t i o n s f o r many cases o f f ( t ) . I f f ( t ) = 0, t h e r e s u l t i n g m o t i o n i s f r e e damped v i b r a t i o n . I f f ( t ) t 0, t h e n i t i s f o r c e d v i b r a t i o n .

I n a l i n e a r system as d e s c r i b e d above, t h e r e i s a 1 i n e a r r e l a t i o n between cause and e f f e c t .

F i g u r e

1

Schematic o f a s i n g l e degree o f freedom system w i t h damping s u b j e c t t o f o r c e d v i b r a t i o n , f ( t ) .

Some s y s t e m , however, a r e nonl inear. The d i f f e r e n t i a l e q u a t i o n d e s c r i b i n g a n o n l i n e a r o s c i l l a t o r y system has t h e general form

S o l u t i o n t o t h i s e q u a t i o n i s much more d i f f i c u l t and numerical methods g e n e r a l l y have t o be used. A s p e c i a l f o r m o f a n o n l i n e a r system i s t h e autonomous system, one i n w h i c h time, t, does n o t appear e x p l i c i t l y . The e q u a t i o n f o r an autonomous system i s o f t h e form

(8)

h

reduced t o a system o f two f i r s t o r d e r d i f f e r e n t i a l e q u a t i o n s and a

s o l u t i o n d e t e r m i n e d i n t h e phase plane (x,; p l a n e ) . The f o l l o r i n g methods

w h i c h w i l l b e d i s c u s s e d a p p l y o n l y t o l i n e a r systems, and cannot be a p p l i e d

t o a non-1 i n e a r system. Sel f - e x c i t e d o s c i l l a t i o n s come a b o u t as a r e s u l t o f t h e m o t i o n i t s e l f . F l u t t e r o f a n a i r c r a f t w i n g i s a c l a s s i c a l example. I n t h e s i m p l e s t form t h e m o t i o n i s i n d u c e d by an e x t e r n a l e x c i t a t i o n f o r c e w h i c h i s some f u n c t i o n o f t h e v e l o c i t y , f(;); i.e. f ( i ) may be 1 in e a r o r n o n l i n e a r i n

i.

R e a r r a n g i n g e q u a t i o n ( 5 ) i t c a n b e s e e n t h a t t h e a p p a r e n t damping, ( ( ( i ) = c i

-

f c o u l d b e n e g a t i v e , depending o n t h e n a t u r e o f f ( i ) . W i t h n e g a t i v e a p p a r e n t damping t h e ampl i t u d e o f v i b r a t i o n becomes p r o g r e s s i v e l y l a r g e r , p o s s i b l y 1 e a d i n g t o s t r u c t u r a l f a i l u r e . Note t h a t a l t h o u g h t h e s t r u c t u r a l consequences a r e

s

i m i l a r , s e l f - e x c i t e d o s c i l l a t i o n s a r e n o t a resonant phenomenon. Some

p o s s i b i l i t i e s f o r t h e f o r m o f apparent damping a r e p r e s e n t e d i n F i g u r e 2 .

F o r f(;) =

0

( d a s h e d l i n e ) t h e u s u a l c a s e o f p o s i t i v e v i s c o u s damping

o b t a i n s ( c c o n s t a n t ) . The s o l i d l i n e p r e s e n t s a case o f n e g a t i v e

dampinq. F o r s m a l l v e l o c i t i e s , a p p a r e n t damping I$(;) i s n e g a t i v e and t h e

ampl i t u d e o f o s c i l l a t i o n w i l l increase. F o r l a r g e r v e l o c i t i e s damping

becomes p o s i t i v e and a m p l i t u d e o s c i l l a t i o n s w i l l t e n d t o a l i m i t . A t h i r d case i s shown by t h e d o t t e d l i n e , one where damping i s i n i t i t a l l y p o s i t i v e

f o r s m a l l v e l o c i t i e s , b u t becomes n e g a t i v e f o r l a r g e r v e l o c i t i e s . It .

s h o u l d be remembered t h a t n e g a t i v e damping does n o t imply t h a t energy i s b e i n g c r e a t e d i n t h e system, b u t t h a t i t i s b e i n g b r o u g h t i n t o i t from some o u t s i d e source.

The o b j e c t i v e i n any s e t o f e x p e r i m e n t a l measurements i s t o e x t r a c t

i n f o r m a t i o n f r o m measured data. Q u a n t i t i e s o f i n t e r e s t i n s t r u c t u r e

response i n c l u d e 1 oads, deformat i o n s , a c c e l e r a t i o n s , s t ra i ns, etc. The

q u a l i t y o f t h e a c q u i r e d d a t a s i g n i f i c a n t l y a f f e c t s t h e u s e f u l n e s s o f t h e

(9)

F i g u r e 2 I d e a l i z e d r e p r e s e n t a t i o n o f two examples o f " n e g a t i v e " apparent damping, s o l i d l i n e (

-

) and dotted l i n e (.. ...); and normal viscous damping, dashed 1 i ne (---).

poor data. It i s most d e s i r a b l e t o have an i n t e g r a t e d approach f o r a l l phases of a v i b r a t i o n a n a l y s i s task; i .e. measurement ( i n s t r u m e n t a t i o n ) , d a t a acquisi'tion, s i g n a l processing and analysis. F i g u r e 3 il l u s t r a t e s schemat i c a l l y t h e elements t o an o v e r a l l approach t o measuri ng. V i b r a t ion o r s i g n a l a n a l y s i s i s t h e t o o l which can be a p p l i e d t o b e t t e r understand dynamic l o a d i n g o f a s t r u c t u r e . F i n a l l y i t should be remembered t h a t a l l measurement programs a r e i t e r a t i v e . Something must be known about a s i g n a l before i t can be s u c c e s s f u l l y measured. Once i n i t i a l l y measured, i t can be improved upon. I

)

I

EXTRACTION PROCESSING INTERPRETATION

r

1

(10)

4 Measuring Techniques

A1 1 measurements i n v o l v e some s o r t of t r a n s d u c e r which converts response of t h e s t r u c t u r e i n t o an e l e c t r o n i c s i g n a l which can be measured and recorded. Transducers may be d i v i d e d i n t o two basic categories; p a s s i v e ones such as s t r a i n gauges ( l o a d c e l l s , pressure c e l l s ) , displacement transducers (LVDTs, DCDTs) which r e q u i r e e x t e r n a l e x c i t a t i o n , and a c t i v e ones which s e l f-generate a s i g n a l ; i .e. electromagnetic

(seismometers o r geophones f o r v e l o c i t y ) o r p i ezo-el e c t r i c (acceleraneters ) which generate a charge. Each category o f t r a n s d u c e r and type w i t h i n

c a t e g o r i e s has i t s own c h a r a c t e r i s t i c s . The t r a n s d u c e r has t o be selected i n r e l a t i o n t o t h e v a r i a b l e which i s t o be measured. Frequency response, s e n s i t i v i t y , etc. have t o be t a i l o r e d t o t h e requiremerrt. To measure a h i g h v i b r a t i o n frequency, t h e n a t u r a l frequency o f t h e sensor must be even l a r g e r . This means i t s mass has t o be small and/or i t s s t i f f n e s s large. On t h e o t h e r hand, t o o b t a i n h i g h s e n s i t i v i t y t h e s t i f f n e s s has t o be small. A consequence o f t h i s i s t h a t h i g h frequency response sensors w i l l tend t o have l o w s e n s i t i v i t y , and v i c e versa.

A t y p i c a l frequency response curve i s shown i n F i g u r e 4 t o i l l u s t r a t e sensor behaviour. The s o l i d curve shows t h e response o f a strain-gauged a c c e l e r a n e t e r o r l o a d c e l l , t h e dashed curve t h a t o f a p i e z o - e l ' e c t r i c acceleraneter. The strain-gauged device has response down t o a zero frequency, somet imes r e f e r r e d t o as DC, whereas t h e p i ezo-el e c t r i c device i s s u b j e c t t o u n d e r s h o o t when t h e low frequency c u t - o f f , fL, becanes t o o h i g h r e l a t i v e t o t h e frequency range o f t h e s i g n a l , fa t o f b i n F i g u r e 4. On t h e o t h e r hand i f t h e h i g h frequency l i m i t , fH, i s exceeded b o t h types o f transducers are s u b j e c t t o r i n g i n s , i.e. h i g h amplitude resonant response. P i ezo-el e c t r i c sensors have almost no damping so t h e resonant amplitudes can become very large.

D i g i t a l Processing

The f i r s t stage o f d i g i t a l processing i s sampling. A continuous analogue s i g n a l i s sampled a t a p a r t i c u l a r t i m e i n t e r v a l , ~ t , and t h e amplitude a t t h a t t i m e i n s t a n t determined. The e r r o r i n amplitude d i g i t i z i n g i s a f u n c t i o n o f t h e nunber o f

-

b i t s ( b i n a r y d i g i t s ) i n t h e analogue t o d i g i t a l conversion system. For a s i n g l e sample, represented as

(11)

FREQUENCY

F i g u r e 4 Frequency response f o r various types o f transducers, s o l i d l i n e (

1

f o r strain-gauged a c c e l e r m e t e r , dashed l i n e (---) p i e z o - e l e c t r i c acceleraneter.

a b i n a r y nunber w i t h N b i t s , t h e e r r o r , e, i s

z - ~ / z .

Normal l y , w i t h 10 o r 12 b i t systems t h i s r e s o l u t i o n e r r o r i s i n s i g n i f i c a n t (1/2048 o r 1/8192), however i f t h e f u l l range i s not being used i t can become q u i t e apparent. The f r e q u e n c y o f sampling, fS = l / h t , i s t h e n e x t c o n s i d e r a t i o n . I n o r d e r t o preserve t h e frequency content o f t h e s i g n a l i t should be sampled a t l e a s t a t t w i c e t h e maximum s i g n i f i c a n t frequency o f t h e s i g n a l , fmax. This i s known as t h e Nyquist c r i t e n o n . I n p r a c t i c e a s l i g h t l y h i g h e r sampling frequency i s used

I f sampling i s not done a t a s u f f i c i e n t l y h i g h r a t e , an a l i a s i n g e r r o r occurs, t h a t i s a s i g n a l appears t o have a frequency which i s lower t h a n i t r e a l l y i s . An example o f a l i a s i n g i s shown i n F i g u r e 5. fmax here i s 10 Hz, b u t by s a m p l i n g a t f S = 8 Hz, b t = 0 . 1 2 5 ~ ~ t h e a p p a r e n t frequency becomes 2 Hz. It would appear t h a t sampling a t a h i g h e r r a t e would e l i m i n a t e a l i a s i n g ; however, i n p r i n c i p l e , a l l t h i s does i s move up t h e frequency t h r e s h o l d f o r which i t might occur. The s o l u t i o n t o c o n t r o l l i n g a l i a s i n g e r r o r s i s t o i n t r o d u c e an a n t i a l i a s i n g f i l t e r between t h e s i g n a l source and t h e d i g i t i z e r . This i s a sharp low pass f i l t e r which r e j e c t s s i g n a l components w i t h f r e q u e n c y components g r e a t e r t h a n f m a X . It i s almost impossible t o c o r r e c t f o r t h e e f f e c t o f a l i a s i n g once i t has occurred.

(12)

0 0.2 0.4 0.6 0.8 1 .O TIME, sec

I

At2 = 0.125 SeC At ,= 0.025 SeC

FREQUENCY

F i g u r e 5 R e p r e s e n t a t i o n o f a l i a s i n g i n t h e t i m e domain and frequency doma i n , sampl i ng f r e q u e n c y

,

f = 8 Hz; a c t u a l frequency 10 H z ,

s a1 i a s e d frequency, 2 Hz.

Transform

Operatiom

An i d e a l i z a t i o n o f t h e l o a d i n g s i t u a t i o n f o r dynamic i c e / s t r u c t u r e i n t e r a c t i o n i s shown s c h e m a t i c a l l y i n F i g u r e 6. It i s p o s s i b l e t o measure a r e a c t i o n o r response f o r c e on t h e foundation, r ( t ) , o r response a c c e l e r a t i o n ? ( t ) a t some p o i n t i n t h e s t r u c t u r e remote from t h e i c e i n p u t f o r c e f ( t ) . T h i s i s what t h e s t r u c t u r e d e s i g n e r requires. I n i c e mechanics, however, we a r e i n t e r e s t e d i n knowing t h e i c e i n p u t force, f ( t ) , and t h e f a c t o r s which i n f l u e n c e it. This f o r c e i s o f t e n awkward o r

(13)

d i f f i c u l t t o measure. The n a t u r e o f t h e response, r ( t ) , i s dependent upon t h e dynamic c h a r a c t e r i s t i c s o f t h e s t r u c t u r e and can be r e l a t e d t o t h e f o r c i n g f u n c t i o n , f ( t ) , through t h e c o n v o l u t i o n i n t e g r a l o f t h e impulse response f u n c t i o n o f t h e s t r u c t u r e , h ( t )

,

FOU NOATION F i g u r e 6 Schematic o f i c e l o a d i n g o f a p i e r .

To e s t a b l i s h t h e r e l a t i o n between t h e f o r c e and t h e response, i t i s more convenient t o t r a n s f o r m t h e above r e l a t i o n i n t o t h e frequency domain:

where w i s t h e c i r c u l a r frequency; R, F and H a r e a l l complex f u n c t i o n s i n t h e frequency domain f r o m w h i c h expressions f o r ampl i t u d e and phase can be extracted. The frequency response f u n c t i o n , H(w), can be d e r i v e d from measured c h a r a c t e r i s t i c s o f t h e system. T h i s i s done by performing a " p l u c k i n g " o r s t e p u n l o a d i n g experiment (e.g. Haynes, 1986) f r o m w h i c h t h e n a t u r a l frequency, f and damping r a t i o ,

c,

can be d e t e n n i ned. Once t h e s e

n

'

f a c t o r s a r e k n w n f o r t h e s i n g l e degree o f freedom system d e s c r i b e d by E q u a t i o n (2), t h e ampl i t u d e o f t h e frequency response f u n c t i o n , a l s o r e f e r r e d t o as t h e " t r a n s f e r function", can be c a l c u l a t e d from t h e f o l l w i n g expression:

Note t h a t t h e r e i s a l s o a f u n c t i o n f o r t h e phase angle. 176

(14)

The F o u r i e r J t r a n s f o r m method p r o v i d e s a means f o r c o n v e r t i n g f u n c t i o n s from t h e t i m e domain t o t h e frequency domain and v i c e versa. When s i g n a l s a r e recorded i n d i g i t a l f o r m a t equal t i m e i n t e r v a l s , At, t h e d i s c r e t e F o u r i e r t r a n s f o r m o f a t i m e s e r i e s x ( n A t ) o f N p o i n t s i n t o a f u n c t i o n X(nAf) i n t h e frequency domain i s

f o r n = 0,1,2,... N-1. I n a s i m i l a r manner, t h e i n v e r s e d i s c r e t e F o u r i e r t r a n s f o r m i s

I n a s e t o f experiments t h e t i m e s e r i e s o f t h e response, i n t h i s case t h e f o r c e , r ( t ) , i s measured. The measured response f u n c t i o n c o u l d a l s o be a t i m e s e r i e s o f t h e a c c e l e r a t i o n , ? ( t ) . The t i m e s e r i e s response f u n c t i o n , r ( t ) , i s converted i n t o t h e frequency domain, R(w), by a p p l y i n g t h e d i s c r e t e F o u r i e r t r a n s f o r m t o i t ( E q u a t i o n 11). Knowing t h e amp1 i t u d e o f t h e t r a n s f e r f u n c t i o n H(w) f r o m E q u a t i o n (10) and t h e phase, t h e i c e f o r c i n g f u n c t i o n i n t h e frequency domain, F(w), i s c a l c u l a t e d by t r a n s p o s i n g E q u a t i o n ( 4 )

a g a i n remembering t h a t F, R and H a r e complex functions. The i n v e r s e d i s c r e t e F o u r i e r t r a n s f o r m ( E q u a t i o n 12) i s t h e n a p p l i e d t o F(w) t o o b t a i n t h e t i m e s e r i e s f o r t h e i n p u t i c e f o r c e f ( t ) .

The b a s i c methods f o r c a r r y i n g o u t t h i s a n a l y s i s a r e r e l a t i v e l y s t r a i g h t f o r w a r d , p a r t i c u l a r l y w i t h t h e ready a v a i l a b i l i t y o f hardware t o d i g i t i z e analogue s i g n a l s and s o f t w a r e t o p e r f o r m d i s c r e t e F o u r i e r transforms. It m s t be k e p t i n mind, however, t h a t t h e r e a r e c e r t a i n 1 im i t a t i o n s i n a c t u a l appl i c a t i o n s (Ra i n e r , 1986). These i n c l u d e sampl i ng frequency, t r a n s f o r m o f l o n g records and wrap-around o r leakage. To a v o i d " a l i a s i n g " o f a t i m e s e r i e s s i g n a l , i t must be sampled a t o r above t h e N y q u i s t frequency, as discussed e a r l i e r . To adequately d e f i n e t h e t i m e r e c o r d from a p p l i c a t i o n o f t h e t r a n s f e r f u n c t i o n , t h e sampling frequency

(15)

should be a t l e a s t s i x times, and p r e f e r a b l y t e n times, t h e h i g h e s t s i g n i f i c a n t frequency component i n t h e o r i g i n a l s i g n a l .

The d i s c r e t e F o u r i e r a n a l y s i s i s performed on samples of l e n g t h N. To e s t a b l i s h t h e sample l e n g t h N, some p r a c t i c a l considerations have t o be t a k e n . The maximum s i g n i f i c a n t frequency, fmax. has t o be selected, which e s t a b l i s h e s f S from E q u a t i o n ( 7 ) . N e x t t h e r e s o l u t i o n i n t h e frequency domain, ~ f , has t o be s p e c i f i e d . F i n a l l y t h e sample l e n g t h N i s c a l c u l a t e d f r a n

N i s then adjusted upwards o r downwards t o s a t i s f y t h e c o n d i t i o n t h a t N i s e q u a l t o 2", m b e i n g a n i n t e g e r . I f t h e N a r r i v e d a t i s t o o l a r g e , computational problems c o u l d be encountered. Some judgments have t o be made on t h e frequency r e s o l u t i o n , ~ f . Where t h e a v a i l a b l e s i g n a l l e n g t h i s s e v e r a l t i m e s t h a t r e q u i r e d f o r a n a l y s i s , Tt, i t may we1 1 be advantageous t o break t h e record i n t o a number o f s m a l l e r , o v e r l a p p i n g segments of t h e r e q u i r e d length. The r e s u l t s from t h e segments a r e averaged t o o b t a i n t h e frequency c h a r a c t e r i s t i ' c s o f t h e whole record. The d i s c r e t e F o u r i e r t r a n s f o r m i s a c i r c u l a r f u n c t i o n which can be viewed as r e p e a t i n g i t s e l f each N set o f points. I f t h e end and s t a r t values o f t h e record a r e not t h e same, a f i c t i t i o u s impulse i s imposed on t h e s i g n a l which r e s u l t s i n

i t s reappearance a t t h e beginning, a phenomenon known as wrap-around. The e x p l a n a t i o n f o r t h i s phenanenon i s t h e leakage o f energy a t frequencies t o e i t h e r s i d e of t h e a c t u a l frequency. Windowing i s a method o f s e l e c t i v e f i l t e r i n g which reduces t h e e f f e c t o f leakage. See f o r example Braun

(1986). The minimum value o f ~f i s c o n t r o l l e d by t h e t o t a l s i g n a l l e n g t h a v a i l a b l e f o r a n a l y s i s , Tt, according t o t h e r e l a t i o n

If t h e s i g n a l l e n g t h i s t o o s h o r t , ~f becomes l a r g e and r e s o l u t i o n i s l o s t i n t h e frequency domain. I n d i v i d u a l frequency components m i g h t not be d i s t i n g u i s h e d . Also, t h e amplitudes o f peaks i n t h e frequency domain a r e attenuated. This i s r e f e r r e d t o as a b i a s e r r o r .

-

Bias e r r o r s can be recognized by decreasing t h e bandwidth bf; i.e. i n c r e a s i n g N and r e p e a t i n g t h e a n a l y s i s .

(16)

The e f f e c t o f some o f t h e above noted e r r o n p l u s o t h e r problems which can be encountered i n t h e measurement and i n t e r p r e t a t i o n o f dynamic loads

I w i l l now be i l l u s t r a t e d w i t h an example. The case i n p o i n t i s a s e r i e s of

p h y s i c a l model t e s t s c a r r i e d o u t by F r e d e r k i n g and Timco (1988) t o measure i c e loads on a r i g i d s t r u c t u r e on a compliant foundat ion. The experimental s e t up a1 lowed t h e s t i f f n e s s o f t h e foundation, k, t o be s e l e c t e d a t -200

1

I I I I I

I

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 TIME,

s

0 5 10 15 2 0 2 5 3 0 F R E Q U E N C Y , f , H z

F i g u r e 7 Time s e r i e s o f measured response force, r ( t ) , f r u n a step unloading t e s t and i t s t r a n s f o r m i n t o t h e frequency domain, ~f =

0.3 Hz.

(17)

predetermined values. Damping r a t i o , 5 , v a r i ed w i t h s t i f fnes s, b u t c o u l d n o t be c o n t r o l l e d . F i g u r e 6 approximates t h e t e s t arrangements. To o b t a i n t h e n a t u r a l f r e q u e n c y , fn, o f t h e s t r u c t u r e , a s t e p unloading t e s t was c a r r i e d out. The t i m e s e r i e s o f t h e response l o a d and i t s conversion i n t o t h e frequency domain f o r one p a r t i c u l a r case i s shown i n F i g u r e 7. Here t h e frequency i n t e r v a l ~f was 0.3 Hz. A n a t u r a l frequency, fn, of 17.6 Hz and a r e l a t i v e damping, C, o f 0.025 was c a l c u l a t e d . Determining t h e n a t u r a l frequency and r e l a t i v e damping from step unloading t e s t s , and assuming a l i n e a r system, an i d e a l i z e d t r a n s f e r f u n c t i o n can be determined f o r each case u s i n g Equation (10). The i d e a l i z e d t r a n s f e r f u n c t i o n s f o r f i v e d i f f e r e n t f o u n d a t i o n s t i f f n e s s e s a r e i l l u s t r a t e d i n F i g u r e 8. Note t h a t t h e value o f t h e s i n g l e degree o f freedom t r a n s f e r f u n c t i o n becomes l e s s t h a n one once a p a r t i c u l a r value o f frequency i s exceeded. Since t h e t r a n s f e r f u n c t i o n i s deconvolved w i t h t h e frequency domain response f u n c t i o n (Equation 13), i t can be seen t h a t t h e amplitude o f h i g h e r frequency components would be arnplif i

ed.

P r a c t i c a l c o n s i d e r a t ions Suggest t h i s i s not t h e case. A s o l u t i o n i s t o a p p l y a c u t - o f f frequency beyond which t h e amplitude o f t h e t r a n s f e r f u n c t i o n i s taken t o be one. This p o i n t i s n o r m a l l y about 4/3 o f t h e n a t u r a l frequency, see F i g u r e 8. An

5

10

15

20

25

3 0

35

4 0

45

5 0

F R E Q U E N C Y .

H z

F i g u r e 8 Amplitude o f t r a n s f e r f u n c t i o n , H(u), f o r f i v e d i f f e r e n t foundat i o n s t i f fnes ses

,

k.

(18)

1

a l t e r n a t i v e c u t o f f frequency o f 36 Hz was applied t o t h e two h i g h e r s t i f f n e s s foundat ions since i n f l u e n c e o f t h e c a r r i age t o w i n g system may s t a r t t o i n t r u d e a t t h i s p o i n t .

TO examine t h e e f f e c t o f t h e sampling frequency, f S , a 6 second l o n g r e c o r d o f a t i m e s e r i es o f measured response, r ( t ) , was selected. The minimum band width, hfmin, which can be d e r i v e d from t h e sample i s 0.17 Hz. The o r i g i n a l sampling was done a t 100 Hz which, f r a n Equation (7), i n d i c a t e s a maximum s i g n i f i c a n t frequency o f 40 Hz. I n t h i s case t h e n a t u r a l frequency o f t h e s t r u c t u r e was 9 Hz and a c u t - o f f frequency of 12.5 Hz (see F i g u r e 8 ) was used i n t h e a p p l i c a t i o n o f t h e t r a n s f e r f u n c t i o n i n a r r i v i n g a t t h e i c e i n p u t o r "compensated" force, f ( t ) . F i g u r e 9 ( a ) i s t h e measured response f o r c e t i m e s e r i e s . F i g u r e 9 ( c ) i s i t s t r a n s f o r m i n t o t h e frequency domain. The peak frequency i s 3.3 Hz. A p p l i c a t i o n of t h e t r a n s f e r f u n c t i o n f o r t h e

9

Hz s t r u c t u r e (Equation 13) y i e l d s t h e "compensatedn frequency spectrum o f F i g u r e 9(d). Note t h a t t h e energy a t t h e 9 Hz n a t u r a l frequency has been removed and frequency of t h e peak energy has been reduced t o 2.5 Hz. The r e s u l t i n g "compensated" i c e i n p u t f o r c e , f ( t ) , i s presented i n F i g u r e 9(b). Although not presented here, t h e a n a l y s i s was a l s o a p p l i e d t o a 33 second l o n g sample f r a n t h e same t e s t . I n t h i s case t h e minimun frequency band w i d t h i s 0.03 Hz and t h e peak frequency was 3.8 Hz. The frequency spectrum had much more r e s o l u t i o n t h a n t h a t o f Figures 9(c,d) and had h i g h e r peaks by about 20%. This i s evidence o f some bias e r r o r due t o u s i n g a s h o r t record. F i g u r e 10 i s t h e same s i g n a l as t h e one presented i n F i g u r e 9, b u t i n t h i s case sampled a t a frequency o f 20 Hz. Figure 10(a) i s t h e measured response f o r c e sampled a t 20 Hz. F i g u r e 1 0 ( c ) i s i t s t r a n s f o r m i n t o t h e frequency domain. It can be seen t h a t t h e peak frequency i s now about 4 Hz, an i n c r e a s e f r a n t h e 3.3 Hz determined a t t h e h i g h e r sampling frequency. Also t h e magnitude of t h e power s p e c t r a l d e n s i t y has increased. This c o u l d be due t o a l i a s i n g of t h e frequency components g r e a t e r t h a n 20 Hz, which would i n c r e a s e t h e power spectra1 d e n s i t y a t lower frequenci es. A p p l i c a t i o n of t h e t r a n s f e r f u n c t i o n f o r t h e 9 Hz s t r u c t u r e y i e l ds t h e "compensated" frequency spectrum of F i g u r e 10(d). The r e s u l t i n g i c e i n p u t f o r c e t i m e s e r i e s , f ( t ) , i s presented i n F i g u r e lO(b).

(19)

F i g u r e 9 Time and frequency domain records of measured response f o r c e ,

r ( t ) , and i c e input f o r c e , x ( t ) , f o r sampling a t 100 Hz; 9 Hz

(20)

F i g u r e 10 Time and frequency domain r e c o r d s o f measured response f o r c e , r ( t ) , and i c e i n p u t f o r c e , x ( t ) , f o r sampling a t 20 Hz; 9

Hz

(21)

TIME. t .

s

a ) TIME INTERVAL 7 2 . 5 TO 9 0 . 5

s

TIME, 1 ,

s

b ) TIME INTERVAL 70.5 TO 8 8 . 5

s

F i g u r e 11 Example of wrap-around e f f e c t r e s u l t i n g f r a n a s l i g h t s h i f t i n t h e t i m e i n t e r v a l , Tt, s e l e c t e d f o r a n a l y s i s .

One o f t h e problems discussed e a r l i e r was t h a t o f wrap-around. This i s i l l u s t r a t e d i n F i g u r e 11, which shows t h e e f f e c t o f t a k i n g a t i m e s l i c e , f o r a n a l y s i s purposes, f r a n d i f f e r e n t i n t e r v a l s i n t h e t i m e s e r i e s . I n F i g u r e l l ( a ) , i n which t h e s t a r t and end values of t h e response force, r ( t ) , a r e very s i m i l a r , t h e i c e i n p u t f o r c e t i m e s e r i e s , f ( t ) , i s v i r t u a l l y

(22)

2

i d e n t i c a l t o r ( t ) . I n F i g u r e l l ( b ) t h e s t a r t and end v a l u e s o f r ( t ) a r e v e r y d i f f e r e n t and t h i s shows up i n t h e magnitude of t h e s t a r t and end o f t h e i c e i n p u t f o r c e t i m e s e r i e s , f ( t ) . A p p l i c a t i o n of windowing would have reduced t h i s e f f e c t

.

An i n t r o d u c t i o n t o t h e t o p i c o f dynamic s i g n a l measurement and a n a l y s i s has been made i n t h e c o n t e x t o f t h e behaviour o f f l e x i b l e s t r u c t u r e s s u b j e c t t o i c e loading. The b a s i c equations d e s c r i b i ng t h e f o r c e s and motions o f a v i b r a t o r y system have been presented and t h e associ ated terminology defined. Many commerci a1 programs a r e a v a i l a b l e f o r d o i n g d i s c r e t e F o u r i e r transforms. I n u s i n g them i t i s important t o understand t h e i r l i m i t a t i o n s . The techniques o f d i g i t a l s i g n a l a c q u i s i t i o n and processing a r e considered, and some of t h e e r r o r s and p i t f a l l s which m i g h t be encountered i n p r a c t i s e have been i 1 lu s t r a t e d .

Recomwndat ions

Since most i c e l o a d i n g events a r e o f a random nature, t h e r e s u l t s f r u n them s h o u l d be t r e a t e d i n a p r o b a b i l i s t i c fashion. This i s t h e approach which i s being taken i n new codes f o r environmental loads on offshore s t r u c t u r e s , eg. t h a t o f t h e Canadian Standards Associ a t ion. I n examining p u b l i s h e d d a t a where dynamics might be a f a c t o r , c a u t i o n should be e x e r c i sed i n i n t e r p r e t a t ion, u n l e s s t h e measurement and a n a l y s i s methods a r e explained.

The f o l l o w i n g check l i s t i s suggested i n p l a n n i n g and executing a f i e l d o r l a b o r a t o r y measurement program:

i ) Ensure t h a t a l l transducers, s i g n a l c o n d i t i o n e r s and analogue t o d i g i t a l converters have s a t i s fa c t o r y response c h a r a c t e r i s t i c s over t h e expected frequency range.

i

i )

P r e s e l e c t t h e maximum s i g n i f i c a n t s i g n a l frequency, fmaX. This e s t a b l i s h e s t h e sampling frequency, fS,

(23)

i i i ) I n t r o d u c e an a n t i - a l i a s i n g f i l t e r b e f o r e t h e i n p u t t o t h e analogue t o d i g i t a l c o n v e r t e r t o r e j e c t a l l s i g n a l components w i t h frequencies g r e a t e r t h a n fmax.

i v ) E s t a b l i s h t h e m i n i m m number o f samples, N, r e q u i r e d i n t h e record,

where hf i s t h e r e q u i r e d frequency r e s o l u t i o n i n t h e frequency domain. Note t h a t N must meet t h e requirement t h a t i t i s some p w e r o f 2; i.e. 2, 4, 8, 16 o r 32...

v ) V e r i f y t h a t t h e s i g n a l l e n g t h a v a i l a b l e f o r a n a l y s i s , Tt, meets t h e requirement f o r t h e frequency r e s o l u t i o n

v i ) Run a t e s t w i t h t h e above f a c t o r s and examine t h e r e s u l t s t o see i f t h e y a r e reasonable. Re-adjust t h e sampl i n g frequency and r e p e a t t h e a n a l y s i s t o see if t h e r e i s any change i n t h e r e s u l t s . Remember t h a t i t i s an i t e r a t i v e process.

The above steps a r e n o t e x h a u s t i v e b u t d o p r o v i d e some guidance i n dyanamic measuring and a n a l y s i s program.

References

Braun, S. ed., 1986. M e c h a n i c a l S i g n a t u r e A n a l y s i s , t h e o r y and a p p l i cation, Academic Press, London, p. 385.

Frederking, R. and Timco. G.W. 1988. I c e Loads on a R i g i d S t r u c t u r e w i t h a Compl i a n t Foundation, Proc. POAC '87, Fairbanks, v. 3, pp. 393-402.

Haynes, F.D. 1986. V i b r a t i o n a n a l y s i s o f t h e Yamachiche L i g h t p i e r . I n t . J . of A n a l y t i c a l and Experimental Model A n a l y s i s , A p r i l 1986, Vol. 1, Flo. 2 , pp. 9-18.

(24)

Maattanen, M. 1988. ice-lnduced V i b r a t i o n s o f Structures--Sel f Exci t a t i o n ,

t o appear i n proceeding o f IAHR I c e Symposium 1988, Sapporo.

Rainer, J.H. (1986). A p p l i c a t i o n s o f t h e F o u r i e r transform t o t h e processing o f v i b r a t i o n s i g n a l s. National Research Counci 1 Canada, Ottawa, BRN 233, p. 24.

Sodhi, 0. 1988. Ice-Induced V i b r a t i o n s o f S t r u c t u r e s , t o appear i n proceeding of IAHR I c e Symposium 1988, Sapporo.

Thomson, W.T. (1981). Theory o f v i b r a t i o n s w i t h a p p l i c a t i o n s . London, George A1 l e n and Unwin, p. 467.

(25)

This paper is being distributed in reprint form by the Institute for

Research in Construction. A list of building practice and research

publications available from the Institute may be obtained by writing

to

the Publications Section, Institute for Research in Construction,

National Research Council of Canada, Ottawa, Ontario, KIA OR6.

Ce document est distribuC sous forme dc tire-&-part par 1'Institut de recherche en construction. On peut obtenir une liste des publications de 1'Institut portant sur les techniques ou les recherches en matitre de

bitiment cn Ccrivant

B

la Section des publications, Institut de recherche

en construction, Conseil national de recherches du Canada, Ottawa (Ontario). KIA 0R6.

Références

Documents relatifs

Cette opération nécessite la prise en compte de la variété des contextes (documents administratifs ou autres) qui participent à diffuser et/ou modifier les noms

 Le Débutaniseur dans laquelle le Butane est vaporisé, accompagné d'un peu de C 3 qui n'a pas été complètement vaporisé dans le Dépropaniseur, les lourds

" Generality of the Program Synthesis approach: We show prob- lems from very different domains of automated feedback gen- eration for introductory programming

electronic band structure to predict or explain the electron mo- bility based on the free electron picture and its corresponding transport properties, but neglected the fact

Paraphrasing Abelardo Morell [ 9 ], ”a camera obscura has been used ... to bring images from the outside into a darkened room”. As shown in section 2.2, in certain condi- tions, we

The aim of the present study is to investigate the effects of solvent type (ethanol, methanol, acetone and water), acetone concentration (20–100%, v/v), solvent acidity

Efficiency of extraction was determined by measuring the total phenols, flavonoids, tannins, total antho- cyanin and antioxidant activity (ferric reducing power, scavenging effect

Studying this mapping, it is shown that using nonlinear decoding algorithms for single input-multiple output (SIMO) and multiple input multiple output (MIMO) systems, extra numbers