• Aucun résultat trouvé

Optimisation de forme pour la conception des cavités de liner

N/A
N/A
Protected

Academic year: 2021

Partager "Optimisation de forme pour la conception des cavités de liner"

Copied!
31
0
0

Texte intégral

(1)

HAL Id: hal-01959233

https://hal.inria.fr/hal-01959233

Submitted on 18 Dec 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Optimisation de forme pour la conception des cavités de liner

Gilles Tissot, Gwénaël Gabard

To cite this version:

Gilles Tissot, Gwénaël Gabard. Optimisation de forme pour la conception des cavités de liner. CFA’18 - 14ème Congrès Français d’acoustique, Apr 2018, Le Havre, France. pp.1-30. �hal-01959233�

(2)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion 1/17

Shape optimisation for acoustic liners design

GillesTissot, GwénaëlGabard

Laboratoire d’Acoustique de l’Université du Mans

Congrès Français d’Acoustique Le Havre, Wednesday, 25 April 2018

(3)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion 2/17

Context

Acoustic liners:

Schematic representation.

Integrated in nacelles of aricrafts.

Constraints:

Low frequency absorption requires deep cavities.

Challenge to push away this limitation.

MACIAANR project: LAUM, SAFRAN.

(4)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion 3/17

Context

Objective:

Optimise cavity shape of liners.

Make it resonate at lower frequencies.

Strategy:

Shape optimisation.

Based on frequency response.

(5)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion 4/17

Outline

1 Governing equations

2 Shape optimisation

3 Numerical implementation

4 Results

(6)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion 5/17

Governing equations

Helmholtz equation:













∆p+k2p= 0 inΩ

∇p.n= 0 onΓs (free slip).

∇p.n=δvi−12Tp−δTk2(i−1)(γ−1)2 p

onΓw (walls)

∇p.n+ikp= 2ikeikL onΓZ (Impedance B.C.).

Γs

L

Bossart et al. (2003) Berggren et al. (2018)

(7)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion 5/17

Governing equations

Helmholtz equation:













∆p+k2p= 0 inΩ

∇p.n= 0 onΓs (free slip)

∇p.n=δvi−12Tp−δTk2(i−1)(γ−1)2 p

onΓw (walls).

∇p.n+ikp= 2ikeikL onΓZ (Impedance B.C.).

δv= q 2

ωRea ; δT = q 2

ωReaP r.

∇f=Tf+∂f

∂nn;

∆f= ∆Tf+2f

∂n2 +T.n∂f

∂n

Γs

Γw

L

Bossart et al. (2003) Berggren et al. (2018)

(8)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion 5/17

Governing equations

Helmholtz equation:













∆p+k2p= 0 inΩ

∇p.n= 0 onΓs (free slip)

∇p.n=δvi−12Tp−δTk2(i−1)(γ−1)2 p

onΓw (walls)

∇p.n+ikp= 2ikeikL onΓZ (Impedance B.C.).

Unitary amplitude of incoming plane wave.

Reflexion coefficient:

R= 1

LZ Z

ΓZ

p(x, L) dxeikL

eikL.

Impedance: Z= 1 +R 1R.

ΓZ

Γs

Γw

L

Bossart et al. (2003) Berggren et al. (2018)

(9)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion 5/17

Governing equations

Helmholtz equation:













∆p+k2p= 0 inΩ

∇p.n= 0 onΓs (free slip)

∇p.n=δvi−12Tp−δTk2(i−1)(γ−1)2 p

onΓw (walls)

∇p.n+ikp= 2ikeikL onΓZ (Impedance B.C.).

Modify cavity shape for improving behaviour: Target impedance.

J(Ω, p) = 1 2

Z k2

k1

|Z(p, k)−ZT(k)|2dk

ΓZ

Γs

Γw

L

Bossart et al. (2003) Berggren et al. (2018)

(10)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion

Generalities Impedance matching 6/17

Shape optimisation

Generalities

Infinitesimal domain variations:

Reference domain:

Shape variation:

Ω +hδθ

h small.

(11)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion

Generalities Impedance matching 7/17

Shape optimisation

Generalities

Cost functional: unconstrainedminimisation problem

J(Ω) = Z

f(x) dx Shape derivative: ∀δθ we have

(∇δθJ, δθ) = lim

h→0

J(Ω +hδθ)− J(Ω)

h =

Z

Γθ

δθ(x).n(x)f(x) dx.

Descent direction:

J(Ω +hδθ) =J(Ω) +h Z

Γθ

δθ(x).n(x)f(x) dx+O(h2)

⇒δθ(x) =−f(x)n(x) ensures a descent direction! Indeed: J(Ω +hδθ) =J(Ω)−h

Z

Γθ

f2(x) dx+O(h2)

Allaire (2003,2004)

(12)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion

Generalities Impedance matching 7/17

Shape optimisation

Generalities

Cost functional: unconstrainedminimisation problem

J(Ω) = Z

f(x) dx Shape derivative: ∀δθ we have

(∇δθJ, δθ) = lim

h→0

J(Ω +hδθ)− J(Ω)

h =

Z

Γθ

δθ(x).n(x)f(x) dx.

Descent direction:

J(Ω +hδθ) =J(Ω) +h Z

Γθ

δθ(x).n(x)f(x) dx+O(h2)

⇒δθ(x) =−f(x)n(x) ensures a descent direction! Indeed: J(Ω +hδθ) =J(Ω)−h

Z

Γθ

f2(x) dx+O(h2)

Allaire (2003,2004)

(13)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion

Generalities Impedance matching 7/17

Shape optimisation

Generalities

Cost functional: unconstrainedminimisation problem

J(Ω) = Z

f(x) dx Shape derivative: ∀δθ we have

(∇δθJ, δθ) = lim

h→0

J(Ω +hδθ)− J(Ω)

h =

Z

Γθ

δθ(x).n(x)f(x) dx.

Descent direction:

J(Ω +hδθ) =J(Ω) +h Z

Γθ

δθ(x).n(x)f(x) dx+O(h2)

⇒δθ(x) =−f(x)n(x) ensures a descent direction!

Indeed: J(Ω +hδθ) =J(Ω)−h Z

Γθ

f2(x) dx+O(h2)

Allaire (2003,2004)

(14)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion

Generalities Impedance matching 8/17

Shape optimisation

Impedance matching

Cost functional:

J(Ω, p) = 1 2

Z k2

k1

|Z(p, k)−ZT(k)|2dk

subject to

∆p+k2p= 0 + B.C.

Impedance: Z(p, k) = e−ikLeikL+ ¯p

e−ikL+eikLp¯ with p¯= 1 LZ

Z

ΓZ

pdl.

Bängtsson et al. (2003)

(15)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion

Generalities Impedance matching 8/17

Shape optimisation

Impedance matching

Cost functional:

J(Ω, p) = 1 2

Z k2

k1

|Z(p, k)−ZT(k)|2dk

subject to

∆p+k2p= 0 + B.C.

We define the Lagrangian(constrained7→unconstrained)

L(Ω, p, λ) =J(Ω, p)−real Z k2

k1

λ,∆p+k2p

dk

Bängtsson et al. (2003)

(16)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion

Generalities Impedance matching 8/17

Shape optimisation

Impedance matching

Cost functional:

J(Ω, p) = 1 2

Z k2

k1

|Z(p, k)−ZT(k)|2dk

subject to

∆p+k2p= 0 + B.C.

We define the Lagrangian(constrained7→unconstrained)

L(Ω, p, λ) =J(Ω, p)−real Z k2

k1

λ,∆p+k2p

dk

Derivative with respect to each variable:

(∇δλL, δλ) = (∇δpL, δp) = 0 (∇δθL, δθ) = 0⇒(∇δθJ, δθ)

Bängtsson et al. (2003)

(17)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion

Generalities Impedance matching 9/17

Impedance matching

Derivative with respect toλ: ∆p+k2p= 0.

Derivative with respect top: Adjoint equation





















∆λ+ (k)2λ= 0 x∈Ω

∇λ.n= 0 x∈Γs

∇λ.n+δvi+ 1

2 ∆Tλ−δT(k)2(i+ 1)(γ−1)

2 λ= 0 x∈Γw

∇λ.n−ikλ= 2 LZ

eikL(Z(p, k)−ZT(k))

(e−ikL+eikL−p)¯2 x∈ΓZ.

Derivative with respect toΩ: For any displacement directionδθ, (∇δθJ, δθ) =

Z

Γθ

(δθ(x).n(x)) Z k2

k1

Real

−∇λ.∇p+k2λp dkdx.

(18)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion

Generalities Impedance matching 9/17

Impedance matching

Derivative with respect toλ: ∆p+k2p= 0.

Derivative with respect top: Adjoint equation





















∆λ+ (k)2λ= 0 x∈Ω

∇λ.n= 0 x∈Γs

∇λ.n+δvi+ 1

2 ∆Tλ−δT(k)2(i+ 1)(γ−1)

2 λ= 0 x∈Γw

∇λ.n−ikλ= 2 LZ

eikL(Z(p, k)−ZT(k))

(e−ikL+eikL−p)¯2

x∈ΓZ.

Derivative with respect toΩ: For any displacement directionδθ, (∇δθJ, δθ) =

Z

Γθ

(δθ(x).n(x)) Z k2

k1

Real

−∇λ.∇p+k2λp dkdx.

(19)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion

Generalities Impedance matching 9/17

Impedance matching

Derivative with respect toλ: ∆p+k2p= 0.

Derivative with respect top: Adjoint equation





















∆λ+ (k)2λ= 0 x∈Ω

∇λ.n= 0 x∈Γs

∇λ.n+δvi+ 1

2 ∆Tλ−δT(k)2(i+ 1)(γ−1)

2 λ= 0 x∈Γw

∇λ.n−ikλ= 2 LZ

eikL(Z(p, k)−ZT(k))

(e−ikL+eikL−p)¯2

x∈ΓZ.

Derivative with respect toΩ: For any displacement directionδθ, (∇δθJ, δθ) =

Z

Γθ

(δθ(x).n(x)) Z k2

k1

Real

−∇λ.∇p+k2λp dkdx.

(20)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion

Generalities Impedance matching 10/17

Impedance matching

Algorithm:

Solve iteratively:

Solve Helmholtz direct ⇒ p(k) (frequency response). Solve Helmholtz adjoint ⇒ λ(k) (frequency response). Optimality condition ⇒ ∇δθJ.

Move shape with linesearch algorithm(Armijo backtracking). Iterate until convergence.

(21)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion 11/17

Numerical implementation

Finite elements with immersed boundary:

XFEMfor integration methods on cut elements (GETFEM++).

Level set:





ψ= 0 x∈Γθ ψ >0 x∈Ω ψ <0 x /∈Ω.

Transport equation for moving the shape:

∂ψ

∂t +vn.∇ψ= 0.

with

v=−∇δθJ.n. (Regularised by Sobolev Gradient) nis the outward wall normal direction. SUPG discretisation.

Moës et al. (1999) Osher et al. (2001) Protas et al. (2004)

(22)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion

Inviscid problem Viscous problem 12/17

Results

No viscosity: ZT = 0,k= [0.2 : 0.6]

Initial condition. Converged.

Coloured byδθJ.

(23)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion

Inviscid problem Viscous problem 12/17

Results

No viscosity: ZT = 0,k= [0.2 : 0.6]

−20

−10 0 10 20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Z

k

Initial Final

ReactanceIm(Z).

(24)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion

Inviscid problem Viscous problem 13/17

Results

No viscosity: ZT = 0,k= [0.15 : 0.25]

Initial condition. Converged.

Coloured byδθJ.

(25)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion

Inviscid problem Viscous problem 13/17

Results

No viscosity: ZT = 0,k= [0.15 : 0.25]

−20

−10 0 10 20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Z

k

Initial Final

ReactanceIm(Z).

(26)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion

Inviscid problem Viscous problem 14/17

Results

Viscosity: ZT = 1.0,k= [0.2 : 0.6]

Initial condition. Converged.

Coloured byδθJ.

(27)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion

Inviscid problem Viscous problem 14/17

Results

Viscosity: ZT = 1.0,k= [0.2 : 0.6]

−20

−10 0 10 20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Z

k

Initial Final

0 0.2 0.4 0.6 0.8 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Z

k

Initial Final

ReactanceIm(Z). ResistanceRe(Z).

0 0.02 0.04 0.06 0.08 0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

α

k

Initial Final

Absorptionα= 1− |R|2.

(28)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion

Inviscid problem Viscous problem 15/17

Results

Viscosity: ZT = 1.0,k= [0.15 : 0.25]

Initial condition. Converged.

Coloured byδθJ.

(29)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion

Inviscid problem Viscous problem 15/17

Results

Viscosity: ZT = 1.0,k= [0.15 : 0.25]

−20

−10 0 10 20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Z

k

Initial Final

0 0.2 0.4 0.6 0.8 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Z

k

Initial Final

ReactanceIm(Z). ResistanceRe(Z).

0 0.02 0.04 0.06 0.08 0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

α

k

Initial Final

Absorptionα= 1− |R|2.

(30)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion 16/17

Conclusion

Summary:

Shape optimisation for impedance matching.

Viscous model: compromise between Helmholtz and full linearised Navier-Stokes.

Perspectives:

Optimise from efficient/realistic configuration.

Different cost functional (Penalty to initial guess, absorption, . . . ).

(31)

Context Outline Gov. equations Shape optimisation Implementation Results Conclusion 17/17

Thank you for your attention.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to