• Aucun résultat trouvé

Multi-Agent Simulation Collision Avoidance of Complex System

N/A
N/A
Protected

Academic year: 2021

Partager "Multi-Agent Simulation Collision Avoidance of Complex System"

Copied!
18
0
0

Texte intégral

(1)

HAL Id: hal-01975416

https://hal.archives-ouvertes.fr/hal-01975416

Submitted on 17 Jan 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

System

Mohammed Chennoufi, Fatima Bendella, Maroua Bouzid

To cite this version:

Mohammed Chennoufi, Fatima Bendella, Maroua Bouzid. Multi-Agent Simulation Collision Avoidance

of Complex System. International Journal of Ambient Computing and Intelligence, IGI Pub, 2018, 9

(1), pp.43-59. �10.4018/ijaci.2018010103�. �hal-01975416�

(2)

DOI: 10.4018/IJACI.2018010103

Copyright©2018,IGIGlobal.CopyingordistributinginprintorelectronicformswithoutwrittenpermissionofIGIGlobalisprohibited.



Multi-Agent Simulation Collision Avoidance of Complex System:

Application to Evacuation Crowd Behavior

Mohammed Chennoufi, Department of Computer Science, University of Science and Technology of Oran, Oran, Algeria Fatima Bendella, Department of Computer Science, University of Science and Technology of Oran, Oran, Algeria Maroua Bouzid, University of Caen, Normandy, France

ABSTRACT

Inthiswork,wepresentacollisionavoidancetechniqueforacrowdrobustnavigationofindividuals

inevacuationwhichisagoodexampleofacomplexsystem.Theproposedalgorithmisinspired

fromtheReynoldsmodel,withtheadditionofseveralindividuals’behavioralcriteriaaswellasa

microscopicperceptionoftheenvironment,whichaffectstheirtravelspeedsandemergingappeared

phenomena.OursystemismodeledbyagentandtestedbyaNetlogosimulation,severalmodulessuch

asA*planning,physicalandpsychologicalfactorsofagentshavebeenprogrammedandsuccessfully

insertedintoa3Denvironment.Ourapplicationcanbeusedasaframeworktosimulaterealsituations

(evacuationofastadium,abuilding...)inordertoarriveatstrategiestodecisionsupportofacomplex

system,whichisarealprobleminourdailylife.

KEywoRdS

A*, Agents, Behavior, Collision Avoidance, Crowd, Emergence, Obstacle, Path

INTRodUCTIoN

Ourworkconcernsthemicroscopiclevelofacomplexsystemandmorepreciselytheintercalations

betweencrowdindividualsinevacuation.Thecollisionavoidanceisaprimordialphaseinthe

interactionindividuals-environment,whethertheavoidanceofstatic(wall)ordynamicobstacles

(neighborhoodindividuals).

Wedistinguishseveralmicroscopicmodelsofcollisionavoidancesuchassocialforces(Helbing,

Farkas,&Vicsek,2000),rule-basedmodels(Reynolds,1987)andcellularautomatamodels(Chenney,

2004),(Suwais,2014).Thedifferencebetweenthemisinthediscretizationofspaceandtime.A

(virtual)socialforceisanalogoustorealforcesuchasrepulsiveinteraction,frictionforce,dissipation,

solvingmotionNewton’sequationsforeachindividual.Intherule-basedmodel,thedisplacementof

thecrowdisgovernedbybehavioralrulesoftheform“ifconditionthenaction”.Recentlytherehas

beenalotofworkoncrowdsandtheirbehaviorasmodelsthatcheckthecharacteristicsofcomplex

systems(Reynolds,1987;Lamarche&Donikian,2004).

ThefirstworkofReynolds(1987)ontheconceptofflockingdescribesthebehavioroftheunits

individuallyasagroupusingonlylocalrules,someyearafter,Reynolds(1999)introducesthenotion

ofautonomyforeachagenttofinditswaysoastoavoidcollisions.Thedisadvantageofthisapproach

isthatitoperatesonthebasisoflocalinformation,puttingindividualsincongestedenvironments.

TheworkofMusse(2000)istocreaterulesformanagingdirectlyasetofinformation,asa(Kirchner,

(3)

Namazi,Nishinari,&Schadschneider,2003)groupofpeopleoperatingintheenvironment.Butthis

approachhasthedisadvantageofspecializingthemodel,makingagainitsgeneralizationevenmore

difficult.

However,inmodelsofcellularautomata,thespaceisrepresentedbyagridofuniformcells;

eachcelltoalocalstatewhichdependsonasetofrulesdescribesthebehaviorofindividualsin

whichspaceandtimearediscrete(Chenney,2004)andinbehavioraldomainswecancitethework

ofHansandMarsland(2016),Roman,Nawaf,Darryl,andAbdallah,(2014)andFrancesca(2016).

MusseandThalmann(1997)focusedonbasiccollisionhandlingbyproposingtwotechniques

ofcollisionavoidance.Thefirstinvolvesintersectionoftwolinesanddistancebetweentwopointsin

ordertodetectpossiblecollisionevents.Iftwovirtualhumansarepotentiallycolliding,onlyonewill

beallowedtogoonfirstwithitspath.Thesecondmethodisstraightforwardanditdependsonthe

changeofdirections.Anintelligentvirtualhumancanavoidthecollisionbychangingitsdirections

throughangularchanges.Leitão,Vinhas,Machado,andCâmara(2014)proposedageneticalgorithm

withtwoscenariosforinverseshortestpathlengthproblems.

TheworkofFoudil,Noureddine,Sanza,andDuthen(2009)inspiredbytheReynoldsmodel

(1987)considersthreetypesofcollisionbetweentwoagents:

• Front collision:Occursifagentsmovetowardseachother;

• Away collision:Whentheagentisbehindanotheragent;

• Side collision:Occursiftowagentswalkalmostinthesamedirection.

AnothercollisiontechniquethatwecanuseforcrowdsystemisproposedbyLoscos,Marchal,

andMeyer(2003).Thistechniquepresentscollisiondetectionbetweenavatarandotherobjects(such

asbuilding).Thestrategyistousecollisionmapandgridsystem.Thetechniqueoutlinesthreetypes

ofcollisionstrategieswhicharefrontal,followingandperpendicular.Thetechniquecomparesthe

directionofeachagent,thevelocityfactorandthedistancebetweentheagents.Inordertodeviate

fromanappropriateangle,thereareafewwaystodecideeithertoslowdownortocompletelystop.

Haifa,Ayesh,andDaniel(2012)addedemotionsascognitivecharacteristicsofagentstothe

behaviorsofcrowdsandcellularautomatamodelsforcollisionavoidance.Silva,Urbano,and

Lyhne(2014)proposeandevaluateanovelapproachtotheonlinesynthesisofneuralcontrollersfor

autonomousrobots.TheworkofStephane,Gaud,Alves,andKoukam,(2013)presentsanewmodelof

collisionavoidanceallowingthedesignofrealisticandeffectivevirtualbehaviorsbetweenpedestrians

andcyclists.It’sbasedonaslidingforcetoallowgentleavoidanceofpotentialcollisionswhileallowing

thepedestriantocontinuetoprogresstowardshisgoalwiththeuseofdynamictimewindowsto

predictfuturepotentialcollisions(principleofleasteffort).Hughes,Ondrej,andDingliana(2014)

presentedaholonomiccollisionavoidancealgorithmforcrowdsimulationbasedonexperimental

data,whichallowedustoobserveboththeconditionsunderwhichholonomicinteractions,aswellas

thestrategiesthatwalkersuseduringtheseinteractionstoavoidthecollision,themaindisadvantage

isatthelevelofthediscretizationoftimeandthedynamicobstacles.Narang,Best,Curtis,and

Manocha(2015)proposedacrowdsimulationalgorithmbasedondensityfilterswhichdependon

thesensitivityofthelocalplanneratthepreferredspeedtogeneratehuman-likecrowdflowswhich

generatespedestriantrajectoriesandwhichpresentthespeed-densityrelationshipsexpressedbythe

fundamentaldiagram.Thisapproachisbasedonbiomechanicalprinciplesandpsychologicalfactors.

Thefactthatadaptationisdoneatthelocallevelimpliesthatdensityfiltersmayproveineffectivein

scenarioswherenavigationtechniquesdependentonglobaldensityaremoreappropriate.

Knowingthatthesecomplexsystemspossessanonlinearandanunstablebehaviorduringtheir

executionshencetheirmodelingisdifficultatahigherlevel,thusthesimulationremainsanefficient

waytotesttheproperfunctioningofthesystemandseetheemergenceatthemacroscopiclevelby

simpleinteractionsbetweenindividuals.Eachagenthasasimplebehaviorandcollectively,agents

canaccomplishacomplextaskwhosegoalisnottoswitchtochaos.

(4)

WeproposedacollisionavoidancealgorithminspiredbytheReynoldsmodel(1987),it’sbased

onsimpleruleswiththeadditionofseveralcriteria.Afterseeingtoplanthewayofourindividuals’

crowdtowardsthearrivaldestinationbyavoidingthestaticobstaclesbyasimpleA*,welaunchour

simulationofcrowdmovementbyactivatingthemoduleofcollisionavoidanceinrealtime,thelatter

isbasedonalocalperceptionoftheenvironment(Angleofvision,comfortdistance,density)and

aspeedofmovement(desiredspeed).Eachindividualinthecourseofhisorherpath,herealizes

oneoftheseinteractionstofollow,fleeoravoidsadynamiccollisionifitexistsbydecreasingor

increasingitsspeedandorbyaslightdeviationtotherightortotheleftthenareturntowardsits

planning.Thisonewillinfluenceinstantlyonitsinitialtrajectory.Oursimulationworksevenifthe

crowdisdense;wehaveaddedphysiologicalfactorsasagethathasadirectrelationwithvelocity.

Activationanddeactivationofthecollisionavoidancemoduleoccursduringthesimulationfora

goodvisualizationofthecollision.

Therestofthearticleisorganizedasfollows:thefirstsectiondescribescomplexsystemswhilea

collisionavoidancemodelispresentedinthesecondsection.Thethirdsectionpresentsasimulation

ofourmodelwithdiscussionsofemergingphenomena.Acomparativestudyispresentedinfourth

section.Finally,weendwithaconclusionandperspectives.

CoMPLEX SySTEM

Researchinthecomplexsystemsisbecomingincreasinglyimportant;Itpresentsitselfeverywherein

ourworldandinseveraldisciplineswhetherinbiology,economics,chemistry,physics,transportation,

internet,security…evenhumansocietyiscomplex.However,thereisnosingledefinitionofacomplex

system.Asafirstapproximation,complexsystemsaresystemscomposedofinteractingentitieswith

capacitytoevolveovertime;theyadoptanon-lineardynamicbehavior.Acomplexsystemcanbe

definedasalargenumberofinteractingcomponentsallowingthesystemtorestructureormodifythe

patternofinteractionbetweenitscomponents.Itisimpossibletopredictitsevolutionanditsfuture

behaviorbyasimplecalculationwithapossibilityofswitchingtochaos.Eveniftheinteractions

betweenthesecomponentsaresimple;thereemergesaglobalbehaviorthatwasnotdescribedfrom

theserulesofinteractionemerges.Inordertowillpredictthisbehaviorwellandtoknowtheevolution

ofthesystem,simulationandexperimentsareprimordial(Bar-yam,1997).Figure1showstwo

examplesofcomplexsystemsintwodifferentlevels.

Twolevelsaredistinguishedincomplexsystems:

• Amicroscopiclevel(lowlevel)whichrepresentsthelocalpropertiesbetweenthe,components

ofthesystem;

• Amacroscopiclevel(highlevel)whichrepresentsthewholesystemwithemergenceofthenew

properties.

Studyinginteractionsisnoteasybecausetheycanbedirect,indirect,withorwithoutfeedback

loops.Inthecaseofdirectinteractions,itisdifficulttofollowtheselinksovertimebetweentheentities

ofthesystem,imagineifweaddtheindirectcaseaswellasthedynamicsoftheenvironmentwhich

becomesmoreandmorecomplexanddifficult.Differentlevelsofinteractionobservationexist:the

interactionsbetweensystemsofthesamelevelandtheinteractionsbetweensystemsofdifferentlevels.

Intheliterature,severalscientistsdefinetheconceptofemergenceasbeingthewholeismore

thanthesumoftheparts.Thisconceptisfoundinthephilosophyofscienceandinothercomplex

adaptivesystemssuchastheneuralsystem,antcolonies(Vijver,1997;Prokopenko&Wang,2004).

Anotherapproachtoemergenceinvolvestheconceptofcausalitydescending.Acharacteristicis

emergingifithasakindofcausalpoweronlowerlevelentities.Whileweassumethatthese(lower

level)entitiesmusthaveanupwardcausalityonemergingcharacteristics,thisapproachassumesa

two-waycausalrelationship(Couture,2007).

(5)

Characteristics of Chaotic Systems

Chaostheoryhasapplicationsinmanyfields,includingnetworking,largedataanalyzes,fuzzylogic,

gametheoryandsystemicthinking(Radhwan,Kamel,Mohammed,&Hassanien,2015).Itisadomain

ofdeterministicdynamicsproposingthatrandomeventsmayresultfromnormalequationsbecause

ofthecomplexityofthesystemsinvolved.

Themaincharacteristicsofchaoticsystemsare:

• Chaosresultsfromadeterministicprocess;

• Itoccursonlyinnon-linearsystems;

• Itoccursinretroactivesystems;whereeventsofthepastaffectcurrenteventsandcurrentevents

affecteventsofthefuture;

• Thedetailsofthechaoticbehaviorarehypersensitivetothechangeoftheinitialconditions;

• Itcanoccurfromrelativelysimplesystems:-withdiscretetime;

• Informationoninitialconditionsisirretrievablylost;

• Itisnotyetpossibletodetermineinadvancetheparticularpaththatthedynamicprocesswill

followinordertomovetowardschaos(Williams,1997).

PRoPoSEd APPRoACH

Thissectiondescribesthemodelingofourapproachintreestep:

1. Step1isparamountinthenavigationprocess;itcontainsthecharacteristicsofBDIagents

(perceptionsandbeliefs);

2. Ourcontributionisinstep2morepreciselytomakeahybridizationbetweentheA*(seeAlgorithm

1),ourcollisionavoidancemodelandbehavioralfactorswhichavoidsreal-timecollisions;

3. Step3containsthesimulationpartwhichisanefficientwaytovalidateanonlinearsystemby

meansofseveralexperiments.

Mathematical Modeling of The Problem

Eachagentisrepresentedbyacircle(turtleinNetlogo)(seeFigure3)with:

• Position A x y

i

( , ) :where x and y arethecoordinatesoftheagent A

i

inthevirtualspace;

• s

init

S istheinitialstate(startingnode)foreach A

i

with S = { s s

1

,

2

,... s

i

} ;

Figure 1. Example of complex systems: a) Transport networks, b) Emergency evacuation

(6)

• s

Exit

S isthefinalstate(Exitnode)forall A

i

;

• h S

s

∈ (Manhattandistance)istheheuristicfunctionwhichcomputestheapproximatedistance

fromthecurrentstatetothegoalstatedefinedas:

h

( )s

= x x

s

s'

+ y

s

y

s'



ForfirstA*algorithmweusetheformula:

f x ( ) = g x h x ( ) + ( ) + δ 

whichisthecurrentapproximationoftheshortestpathtothegoal,where:

• g x ( ) isthetotaldistancebetweentheinitialpositiontothecurrentposition;

• g As (

init

) istheminimumcostoftheagent A

i

;

• h As (

init

) istheminimumheuristicofthesameagent;

• OpenListisanorderedlistofstates;thesearchhasbeengeneratedbuthasnotbeenexpandedyet;

• ClosedLististhesetofstates;thesearchhasbeenexpanded(itisusedtopreventre-expansion);

• h

i

istheheuristicforagent A

i

toexit.

Figure 2. BDI architecture of a cognitive agent

(7)

Thecongestionvalue δ toknowiftheclosestparttothepathoftheagentisfreeornotandto

guidetheagentintheleastpopulatedareasisdefinedinouralgorithmaccordingtothefollowing

function:

δ ϕ ϕ

ϕ

=

− ≤ ≤

 

 

 

  infini if NA

NA if NA

if NA

i

i i

i

max max

0 



where:

• NA

i

isthenumberofindividualspresentinacomfortzoneofanagent A

i

;

• max istheMaximumnumberofpeopleoccupyingacomfortandariskzone;

• ϕ istheisthethresholdofcongestion,weoptedforonehalfofthe max  ( 1 2 / * max ) ;

• Forthesecondalgorithmweuse;

• Acomfortdistance COD or d isthemaximumdistancebetweentwoagentstoavoidcollision;

• Ariskdistance RID COD = / 2 :istheminimumdistancebetweentwoagentstoavoidcollision;

• Direction:dependingonthedirectionoftheagent A

i

,itupdatesitspositionrightorlefttoavoid

collision;

• Radiusofvision α :Customdomainofvision;

• Angleofdeviation β :theagentissteeringwithangleβfordeviation;

• Speed v

:thespeedvarieswiththestateofhealthandmobility,rangingfrom0(whenthehealth

ormobility=0)at4m/s(whenrunninginpanic);

• Thedensity D :Numberofindividualsinacomfortzone.

Collision Avoidance Model

Thecollisionavoidancemodulepresentedandexplainedinthispaper(seeAlgorithm2)isseenasan

importantactionintheoverallplanningsimulationprocessofouragent-basedshedinstep2ofFigure

2.Thisavoidingcollisionisacrucialphaseinthepathsofindividuals,thedetectionofcollisions

willdependontheshapeandsizeoffixedordynamicobstacles.Whenmakinganattempttoavoid

anobstacle,therearemanydecisionstomake.Thelatteronesdependontheavailablepaths,finding

thebestandtheshortestpathdependsonthealgorithmsused.

Inordertoeliminateanyriskofcollisionwithagents,weusetheinformationobtainedin

perceivingtheenvironment.Inourapproachweconsiderasinglecollisionthatencompassesallthe

casesinordertodecreasethetests,itisbasedonacomfortdistanced,Radiusofvisionα,Riskzone

(DZ),Comfortzone(CZ),adesiredspeed V

d

,Apermissiblespeed V

ad

,thedensityD(Numberof

individualsincomfortzone),Angleofdeviationβandaradiusofcomfort R = 2 * ( * tan( / )) d α 2  (seeFigure3).

Algorithm1:A*

Begin

//Initialization;

Current node = Starting node;

Repeat

(8)

For each element s of the list of neighbors do If ( s .state == free) and s ∉ closed list then f s ( ) = g s h s ( ) + ( ) + δ ; // δ is a congestion factor

End if

If s ∉ open list then

Add the node to the open list;

Put the current node as the parent of the node c;

Else

If the new cost is better then Update the open list;

Update the parent of node;

End if End if

End for

If the open list is empty then No solution;

Else

Current node = the best node in the open list;

Remove the best node from the open list;

Place it in the closed list;

End if

Until current node = destination node End.

Algorithm2:Collisionavoidance

Figure 3. Collision avoidance

(9)

Begin

For each frame do For each agent A

i

do

Perception of the environment; // α = Radius of vision & d = comfort distance

If (𝝳 == 0) //

the path is free

Then The agent follows his A* path;

Else

If (𝝳== ( NA

i

− ϕ )) // ∋ Agents in R Individual detects another within its radius R

Then

rt( β ); // Turn right with a β deviation (change direction)

lt ( β/4 ); // Turn left with a β/4 deviation (Instant return to its path)

Wating; // If the distance between the agent and the expected position of the Collision is sufficient.

Vd V D

I

= ; // moving along A* path with desired speed = speed of individuals / density . Else

Vad V D

I

N

i

= 

  

  + ξ ; // moving with A* as a function of N

i

chronological

identification number of the crowd, ξ is threshold of speed ϵ [0 1]

End if End if

End for End for

End.

Fuzzy Controller

FuzzyLogic(Zimmermann,2001)isidealformodelingandcontrollingacrowdmovementinalarge

scaleforcollisionavoidance.Thisfuzzyisusedtorepresentanimprecisevaluebetweentrueand

false.Theinputvariablesoftheregulatoraretransformedintolinguisticvariableswiththedefinition

ofmembershipfunctions.Thus,thisoperationconsistsofdeterminingthedegreetoavaluetoafuzzy

setastheworkofSarkar,Banerjee,andHassanien(2015)andDeepakandJohn(2016).Forcustom

visiondomain,weobservetwodistances(COD:comfortdistance),(RID:riskdistance=COD/2)

andananglefromvisionα(SMV:smallvision),(GRV:Greatvision),seeFigure4.

Table1illustratesthefuzzifyingforclassifyingrealinputvariablesintodifferentsets,which

areillustratedinFigure5a,b.

Afterthattheruleshavebeenevaluated,weuseanaggregationcentre-of-gravityfunctionfor

velocitytomergetheoutputs.Toobtaintherealoutputdefuzzifiedvelocity,wetakethemembership

(10)

values(v)foreachfuzzyoutputset,multiplyeachbyitssetcentrevalue(vi),anddividethisbythe

sumofallofthecentrevaluesillustratedinFigure5c:

v

defuzz

= ∑

im=1

( v v *

i

) /

im=1

v

i



withmwhichisthenumberofrulesandv,thecontrolvariable.

Similarly,therealoutputdefuzzifiedDeviationisobtainedbycentre-of-gravityfunction.

ThesurfacecontrolinFigure5erepresentsaseriesofrulesif-then.Theinferenceisbased

onminormaxoperationstomaketheruleinferenceandmaxoperatorfortheaggregationofrules.

NETLoGo SIMULATIoNS

OurNetlogosimulation(seeFigure6)isimplementedin3Dreal-timewithanHPcoreI3,2.40GHz

and4GBmemory.ThemotivationtochooseNetlogoasasimulationsysteminthisworkbecauseit

isverywelladaptedtothemodelingofcomplexsystemstoexploretheemergenceduetointeractions

betweenagents,anditiseasytousewithgooddocumentationsupport.

Figure 4. Illustration Fuzzy of collision avoidance with input distance and angle

Table 1. Fuzzy input definitions for avoidance collision

Real Fuzzy

Comfortdistance COD

Riskdistance RID

Smallvision SMV

Greatvision GRV

(11)

Programmingthespeedoftheagents(Accelerationandwaiting)hasagoodrelationwiththe

otherprogramclass(A*algorithm),aswellasfixedobstaclesprogrammedbypatchesanddynamic

ormobileagentsbyturtles.AnotheradvantageofNetlogoisitsflexibilitytochangethedirectionof

anagenttorightorleftbyaselectedangleβwithasimpleNetlogocommand“rt”or“lt.”

Thevirtualinterfaceofourevacuationseinecanbeeasilydesignedbytheuser,individualsare

randomlydispatched,theuserhasthepowertochoosedestinationandlocationsofobstaclesaswell

aschangespeed,sizeofagentsandthedensityofthecrowd.Thesimulationcanbestartedbyframe

ordirectandinterruptedatanytime.Foragoodvisualizationandcomprehensions,thecollision

avoidancemodulecanbeactivatedanddeactivatedatanytime.

Ourapplicationcanbeusedasaframeworktosimulaterealsituations(evacuationofabuilding,a

stadium,asupermarket,etc.)inordertoarriveatstrategiestodecisionsupportofacomplexsystem.

discussions

Thefiguresinthissectionshowtheexecutionofseveralscenarioswithandwithoutcollisionavoidance:

• Randommovementbehaviorofacrowd;

• Evacuationbehaviorofacrowd.

Scenario 1:Randommovementbehaviorofacrowd.

Figure7showsarandommovementofacrowdwithoutcollisionavoidancetotheleftandwith

collisionavoidancetotherightwheretheagentsarerepresentedwithchronologicallynumbered

circlesfordistinguishingbetweentheagentswhichareincollision(agent28,agent29,agent14,

agent8)ornot-collision(theagent11and17).

Figure 5. Fuzzy input set membership functions for classifying the distance (a) and angle (b) to the nearest obstacle in Fuzzy

terms, Fuzzy output value for obstacle avoidance desired speed (c) and deviation (d), surface viewer control (e)

(12)

Scenario 2:Evacuationbehaviorofacrowd.

Theagentsrepresentedbypersonsinthissecondscenarioarerandomlydividedintotwodifferent

places,withbluecolorontherightandyellowontheleftrepresentingdifferentbehavior(ages,stress,

panic.),theevacuationpathisprogrammedwithA*totheoutputlocatedbetweentwoparts,andthe

collisionavoidancemodulecanbeactivatedordeactivatedinanytime(seeFigure6).

Figure 6. Netlogo simulation

Figure 7. Crowd movements without collision avoidance in the left, and with collision avoidance in the right

(13)

Thissecondscenarioreproducesemergingphenomenaaslineandgroupformationbyinteractions

between100peoples,theagentperceivesitsenvironmentavoidingstaticanddynamicobstacles,

itisthesebehaviorsthatgeneratetheemergenceofthecomplexsystemwithactivationcollision

avoidancemodule.

Figure8showa3Dviewofcrowdevacuationbydeactivatingthecollisionavoidancemodule

whereitiscleartheoccurrenceofcollisionatthedoors,contraryinFigure9representingourapproach,

wefindappearanceofpeople’svoicesbyactivatingthemodule.

Theseemergingphenomenaappearedattheexitwhenthecollisionavoidancemoduleis

deactivatedand,contrarytotheabsenceofanytypeofcollisionwhenthecollisionavoidancemodule

isactivated.

Figure10illustratestherelationbetweenthedensityofthecrowdandtheevacuationtimeofour

simulationscene,wheretheroleofthecollisionavoidancemoduleisclearlyseenwhenthecrowd

isdense,forexamplefrom100agentsduringthetime,theexhaustisat300measurementunitwhen

thecollisionavoidancemoduleisactivatedand539intheeventthatitisdeactivated.

Temporal Complexity

Inordertocalculatethetimeofouralgorithmintermsofrelationofoccurrence,Iusedasimple

techniquecalledincrementedandcountedbycalculatingthenumberofelementaryinstructions

executedbythealgorithmtosolvethecomplexsystem,thiscomplexitydependsonaparameter n . OuralgorithmofcollisionavoidanceusesthebasicalgorithmA*tocalculatethepathtothe

outputwiththeavoidanceofstaticobstacles.

Thetime complexityofA*foroneagentdependsontheheuristicfunction h ,itmeetsthe

followingcondition:

Figure 8. Evacuation without collision avoidance in 3D

(14)

h n h n ( ) −

'

( ) ≤ O (log ( )) h n

'



where h istheestimateddistanceand h

'

istheoptimalheuristic.

Ifcostofadditionsandcomparisonsare O ( ) 1 complexity,thecomplexityofA*is:

Figure 9. Evacuation with collision avoidance in 3D

Figure 10. Execution time of crowd emergency

(15)

O n m ( + log( )) n 

Foracrowdof k agentswehaveatemporalcomplexityfordynamiccollisionavoidanceinthe

worstcasescenariogivenbythefollowingapproximation:

O n ( ) ( ( ) O O ( ) O ( ) O ( ) O ( ) O n m ( log( ))) * n k (

+ = + + + + + +

= + + + +

1 1 1 1 1 1

1 1 1 1 1 1 5

5

+ +

= + +

= + +

O n m n k O n m n k

k k O n m n

( log( ))) * ( ( log( ))) *

* * ( log( ))



A CoMPARATIVE STUdy

Table2showsacomparisonbetweenourapproachanddifferentworksofpreviousyearsoncrowd

planningaccordingtothefollowingcriteria:environmentalmodeling;time/Space;Collisionavoidance;

resultsandreviews.

Table 2. A comparative study between our approach and some research work on evacuation crowd planning

Author/ Year Environmental

Modeling Time / Space Collision

Avoidance Results Reviews

Haifaetal.2012 Hierarchical

decompositionby

cellularautomata

Heterogeneous Reynoldsmodel -Panic

propagation

-Queuelineat

theexit

-Absenceofreal

model

-Nocognitive

notion Jocelynetal

2013 Notdiscussed Heterogeneous Slidingforce -Predictfuture

potential

collisions

-Absence

ofdynamic

environment Rowanetal.

2014 Regulargrid Heterogeneous Holonomic

Interactions Observationthe

conditionsunder

whichholonomic

interactionsoccur

Levelofthe

discretization

oftimeand

thedynamic

obstacles Sahiletal.2015 Cellgrid Heterogeneous -Densityfilters

-Localplanner Generates

pedestrian

trajectories

Ineffectivein

scenarioswith

globaldensity Ourapproach Quadtree

Decomposition Heterogeneous Explainedin

section2 -Appearance

ofemergent

behaviors:queue

line,group

formation,arch

formationatthe

levelofeachdoor

(16)

CoNCLUSIoN

Simulationofvirtualcrowdsisnoteasytopicbecausewehavetomanagethousandsofindividuals.

Somemethodsmanagecrowdsasoneentity.Inthispaper,weareratherinterestedinthemicroscopic

simulationofthesystem.Wehavesuccessfullyimplementedaneffectiverule-basedcollisionavoidance

moduletominimizethemaximum“ifthenelse”tests,pathplanningisprogrammedbytheA*as

wellasagentperceptiondecisionaidingwhenaproblemhasarisen.Emergenceasanimportant

featureofthecomplexsystemhasbecomeclearinadditionoursystemhasnotswitchedtochaos.

WehaveusedahybridarchitectureimprovedA*tocomputeevacuationpathsofacrowd

dispatchedrandomlyinanenvironment,inordertoguidethemintheleastpopulatedareasbymeans

ofacongestionfactorδaddedtotheheuristic(seeAlgorithm1),andonlyacollisionavoidance

procedure(seeAlgorithm2)insteadofthe3Reynoldsprocedures:separation,cohesionandalignment.

Iftheagentperceivesadynamicobstacleinitsnearpath,itdeviateswithadesiredvelocityandthen

returnstoitspathbyinversedeviation.

Inthenearfuture,weareinterestedinthespatialpartoftheenvironmentandthinkinganew

modelofcollisionlearninginordertomanagenewsituationswithGPUprogramming.

(17)

REFERENCES

Bar-yam,Y.(1997).Dynamics of Complex Systems.WestviewPress.

Buisson,J.,Galland,S.,Gaud,N.,Gonçalves,M.,&Koukam,A.(2013).Real-timecollisionavoidancefor

pedestrianandbicyclistsimulation:asmoothandpredictiveapproach.InProceedings of the 4th International Conference on Ambient Systems, Networks and Technologies (ANT 2013)(pp.815-820).

Chenney,S.(2004).flowtiles.[Grenoble,France:ACMSIGGRAPH.].SCA,04,233–242.

Couture,M.(2007).Complexity and chaos - State-of-the-art Overview of theoretical concepts(pp.2006–2453).

Canada:DRDCValcartierTM.

Deepak,D.,&John,S.J.(2016).Informationsystemsonhesitantfuzzysets.International Journal of Rough Sets and Data Analysis,3(1),71–97.

Foudil,C.,Noureddine,D.,Sanza,C.,&Duthen,Y.(2009).Duthen2PathFindingandCollisionAvoidance

inCrowdSimulation.Journal of Computing and Information Technology CIT,17(3),217–228.doi:10.2498/

cit.1000873

Francesca,O.(2016).Technologystudiesandthesociologicaldebateonmonitoringofsocialinteractions.

International Journal of Ambient Computing and Intelligence, 7(1), 1-26.

Haifa,A.,Ayesh,A.,&Daniel,O.(2012).Emotionalbasedarchitectureforcrowdsimulation. Journal of Intelligent Computing,3(2),815–820.

Hans,W.G.,&Marsland,S.(2016).Usingcontextualinformationforrecognisinghumanbehaviour.International Journal of Ambient Computing and Intelligence, 7(1), 27–44.

Helbing,D.,Farkas,I.,&Vicsek,T.(2000).Simulatingdynamicalfeaturesofescapepanic.Nature,407(6803),

487–490.doi:10.1038/35035023PMID:11028994

Hughes,R.,Ondrej,J.,&Dingliana,J.(2014).HolonomicCollisionAvoidanceforVirtualCrowds.SCA ‘14 Symposium on Computer Animation(pp.21-23).Switzerland:ACMSIGGRAPH/Eurographics.

Kirchner,A.,Namazi,A.,Nishinari,K.,&Schadschneider,A.(2003).RoleofConflictsintheFloorField

CellularAutomatonModelforPedestrianDynamics.InProceedings of the2nd International Conference on Pedestrians and Evacuation Dynamics. (PED),London(pp.51–62).

Lamarche,F.,&Donikian,S.(2004).CrowdofVirtualHumans:ANewApproachforRealTimeNavigation

inComplexandStructuredEnvironments. Computer Graphics Forum,23(3),509–518.doi:10.1111/j.1467- 8659.2004.00782.x

Leitão,A.,Vinhas,A.,Machado,P.,&Câmara,F.(2014).AGeneticAlgorithmsApproachforInverseShortest

PathLengthProblems.International Journal of Natural Computing Research, 4(4),36–54.doi:10.4018/

ijncr.2014100103

Loscos,C.,Marchal,D.,&Meyer,A.(2003).Intuitive Crowd Behaviour in Dense Urban Environment Using Local Laws. In Theory and Practice of Computer Graphics (TPCG’03).IpressComputerSocietyIEEE.

Musse,S.R.(2000).Human crowd modelling with various levels of behaviour control.Unpublisheddoctoral

dissertation,ÉcolePolytechniqueFédéraledeLausanneSuisse.

Musse,S.R.,&Thalmann,D.(1997).A Model of Human Crowd Behavior: Group Inter-Relationship and Collision Detection Analysis. In Computer Animation and Simulation ’97(pp.39–51).Budapest:Springer.

Narang,S.,Best,A.,Curtis,S.,&Manocha,D.(2015).Generatingpedestriantrajectoriesconsistentwiththe

fundamentaldiagrambasedonphysiologicalandpsychologicalfactors.PLoS ONE,10(4),e0117856.doi:10.1371/

journal.pone.0117856PMID:25875932

Odella,F.(2016).Technologystudiesandthesociologicaldebateonmonitoringofsocialinteractions.

International Journal of Ambient Computing and Intelligence,7(1),1–26.doi:10.4018/IJACI.2016010101

(18)

Mohammed Chennoufi received an engineer diploma in 2007 and a Magister degree in Computer Science from the University of Science and Technology of Oran ‘Mohamed Boudiaf’ in 2012. He teaches at the University of Oran 2 and his main research concerns are in the areas of artificial intelligence, Multi-agents system, Complex system and crowd behavior.

Fatima Bendella received an engineer diploma in Informatics from the University of Oran and a PhD in Computer Science from the University of Science and Technology of Oran, Algeria in 2005. She has been involved in research of knowledge management systems, learning environments, collaborative learning, ontology’s and embodied agents. She has also investigated the domain of serious games for medical domain. She is currently a Professor in the department of computer science at the University of Sciences and Technology of Oran Mohamed Boudiaf.

Maroua Bouzid received an engineer diploma in Computer Science from the University of Constantine (Algeria) in 1990 and her M.Sc. degree from the University of Nancy 1 (France) in 1991 as well as her PhD degree in 1995 in Temporal Reasoning. She obtained the HDR degree (habilitation to supervise research) from the university of Caen (France) in 2006 in Spatio-Temporal Reasoning. From 1996 to 2002, she was Associate Professor at the University of Artois in Lens (France) and from 2002 to 2009, she was Associate Professor at the University of Caen.

Since 2009, she is Professor at the University of Caen in the Computer Science Department.

Prokopenko,M.,&Wang,P.(2004).OnSelf-referentialShapeReplicationinRobustAerospaceVehicles.In

Proceedings of the9th International Conference on the Simulation and Synthesis of Living Systems (ALIFE9),

Boston(pp.27-32).

Radhwan,A.,Kamel,M.,Dahab,M.Y.,&Hassanien,A.E.(2015).Forecastingexchangerates:achaos- basedregressionapproach.International Journal of Rough Sets and Data Analysis,2(1),38–57.doi:10.4018/

ijrsda.2015010103

Reynolds,C.W.(1987).Flocks,Herds,andSchools:ADistributedBehavioralModel.SIGGRAPH,87(4),

25–34.doi:10.1145/37402.37406

Reynolds,C.W.(1999).Steeringbehaviorsforautonomouscharacters.InProceedingsofGameDevelopers

conference,SanJose,CA(pp.763-782).

Roman,V.Y.,Nawaf,A.,Darryl,D.,&Abdallah,A.M.(2014).Behavioralbiometrics:categorizationand

review.International Journal of Natural Computing Research,4(3),85–118.

Sarkar,M.,Banerjee,S.,&Hassanien,A.E.(2015).Evaluatingthedegreeoftrustundercontextsensitive

relationaldatabasehierarchyusinghybridintelligentapproach.International Journal of Rough Sets and Data Analysis,2(1),1–21.doi:10.4018/ijrsda.2015010101

Silva,F.,Urbano,P.,&Lyhne,A.(2014).OnlineEvolutionofAdaptiveRobotBehaviour. International Journal of Natural Computing Research,4(2),59–77.doi:10.4018/ijncr.2014040104

Suwais,K.(2014).AssessingtheUtilizationofAutomatainRepresentingPlayersBehaviorsinGameTheory.

International Journal of Ambient Computing and Intelligence,6(2),1–14.doi:10.4018/IJACI.2014070101 Vijver,G.V.(1997).Emergenceetexplication.Intellectica, 25(2), 7–23.

Williams,G.P.(1997).Chaos Theory Tamed.USA:AJosephHenryPressbook.

Zimmermann,H.-J.(2001). Fuzzy Set Theory—and Its Applications.NewYork:SpringerNetherlands.

doi:10.1007/978-94-010-0646-0

Références

Documents relatifs

In Chapter 3, we will describe our incremental distance computation al- gorithm which utilizes the concept of Voronoi regions and the properties of convex polyhedra to perform

(Note, though, that the number of training patterns seen before this maximum number of mistakes is made might be much greater.) This theoretical (and very impractical!) result (due

Whenever a new applica- tion such as a communications controller (see embedded system ) was developed, it typically had its own special- ized programming language.

It begins with the fundamentals of informa- tion encoding, data storage, and computer architecture (Chapters 1 and 2); pro- gresses to the study of operating systems (Chapter 3)

Describe, on a basic level, the use and programming of computers, operating systems, databases and computer programs that have applications in engineering.. Describe, on a basic

This module is meant essentially to enable the learner develop basic competences needed to explore the Internet and the World Wide Web; to search for information through

Tofte's idea is to employ a marking of type variables so as to maintain the invariant that if a type variable can occur in the type of a location in the store, then generalization

The reading for the affine variant, which admits Weakening for the multiplicative combination “,”, is obtained by changing the interpretation of the additive function type to say