• Aucun résultat trouvé

The immune response of ruminant livestock to bluetongue virus:From type I interferon to antibody

N/A
N/A
Protected

Academic year: 2021

Partager "The immune response of ruminant livestock to bluetongue virus:From type I interferon to antibody"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: hal-01190011

https://hal.archives-ouvertes.fr/hal-01190011

Submitted on 1 Sep 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The immune response of ruminant livestock to bluetongue virus:From type I interferon to antibody

N. James Maclachlana, Christine Henderson, Isabelle Schwartz-Cornil, Stephan Zientara

To cite this version:

N. James Maclachlana, Christine Henderson, Isabelle Schwartz-Cornil, Stephan Zientara. The immune

response of ruminant livestock to bluetongue virus:From type I interferon to antibody. Virus Research,

Elsevier, 2014, 182, pp.71-77. �10.1016/j.virusres.2013.09.040�. �hal-01190011�

(2)

ContentslistsavailableatScienceDirect

Virus Research

jo u r n al hom e p ag e :w w w . e l s e v i e r . c o m / l o c a t e / v i r u s r e s

The immune response of ruminant livestock to bluetongue virus:

From type I interferon to antibody

N. James Maclachlan

a,∗

, Christine Henderson

b

, Isabelle Schwartz-Cornil

c

, Stephan Zientara

c

aDepartmentofPathologyMicrobiologyandImmunology,SchoolofVeterinaryMedicine,UniversityofCalifornia,Davis,CA95616,USA

bMerialInc.,Athens,GA30601,USA

cANSESAlfort,UMR1161ANSES/INRA/ENVA-UPEC,23AvduGénéraldeGaulle,BP63,94703Maisons-AlfortCédex,France

a r t i c l e i n f o

Articlehistory:

Availableonline10October2013

Keywords:

Bluetonguevirus Immuneresponse Innate

Adaptive

a b s t r a c t

Infectionofruminantswithmost(butnotall)serotypesofbluetonguevirus(BTV)leadstoahighlyblood cell-associatedviremiathatmaybeprolongedbutnotpersistent.Furthermore,recoveredanimalsare resistanttoreinfectionwiththehomologousvirusserotype,whichisthebasisforvaccinationstrategies topreventBTVinfectionandtheclinicaldisease(bluetongue)thatitcausesindomesticlivestock.BTV infectionisinitiatedatthesiteofvirusinoculationandtheassociateddraininglymphnode,fromwhere thevirusisthenspreadinlymphcellstothesystemiccirculationandsecondarysitesofreplication.

ReplicationofBTVintargetcells,notablymononuclearphagocyticcells(dendriticcellsandmacrophages) andendothelium,leadstothegenerationoftheinnateandadaptiveimmuneresponsesthatmediateboth initialvirusclearanceandsubsequentresistancetoinfectionwiththehomologousvirusserotype.The goalofthisreviewistosummarizecurrentunderstandingoftheseinnateandadaptiveimmuneresponses ofanimalstoBTVinfection.

©2013ElsevierB.V.Allrightsreserved.

1. Introduction

Bluetongue(BT)isanarboviraldiseaseofdomesticand wild ruminantscharacterizedbyvascularinjurythatresultsintissue necrosis,hemorrhage, andedema (Hutcheon,1902; Maclachlan et al., 2009; Spreull, 1905; Verwoerd and Erasmus, 2004).The causativeagentofBTisbluetonguevirus(BTV),theprototypemem- berofthegenusOrbivirus,familyReoviridae(Bordenetal.,1971;

MatsuoandRoy,2013;Murphyetal.,1971;Schwartz-Corniletal., 2008).TheBTVvirionconsistsofadiffuseouterproteincoatand aninnericosahedralcorethatenclosesthetranscriptasecomplex (Stewartetal.,2012;Verwoerdetal.,1972).Thegenomeincludes 10 distinctgenome segmentsofdouble-stranded RNA(dsRNA).

Eachgenesegmentencodesatleast1protein,specifically7struc- tural(VP1-7)and5nonstructural(NS1-3/3A,4)proteins(Grubman etal.,1983;Mertensetal.,1984;Ratinieretal.,2011).Some26BTV serotypesarenowrecognizedglobally(Hofmannetal.,2008;Maan etal.,2012).

BTVinfectionoccursthroughouttemperateandtropicalregions oftheworldcoincidentwiththedistributionofspecificspecies ofvectorCulicoidesbitingmidges,howevertheglobaldistribution

Correspondingauthor.Tel.:+15307548125.

E-mailaddress:njmaclachlan@ucdavis.edu(N.J.Maclachlan).

ofBTVhasrecentlyalteredmarkedly, particularlyin thenorth- ern hemisphere (Gibbs and Greiner, 1994; Maclachlan, 2011;

MaclachlanandMayo,2013;Saegermanetal.,2008;Tabachnick, 2010).Thus,BT isviewedcurrentlyas aglobally emerging dis- ease(Gibbsetal.,2008;Guisetal.,2012;Jiminez-Clavero,2012;

Maclachlan and Guthrie,2010; Purse et al., 2008; Weaver and Reisen, 2010).OutbreaksofBTcanbeeconomicallydevastating tolivestockproductionandthepresenceofBTVinacountrycan adverselyimpactthetradeandmovementoflivestock(Maclachlan andOsburn,2006;Velthuisetal.,2010).ControlofBTVinfection andBT diseasecanbedifficult,andpreventionofthediseaseis typicallyreliantonvaccinationofsusceptiblelivestock(reviewed:

MaclachlanandMayo,2013).Soundvaccinationstrategiesshould logicallybebasedonathoroughunderstandingoftheruminant immuneresponsetoBTV,whichisthefocusofthisreview.

2. Innateimmunity

Theinnateimmuneresponseconstitutesthefirstlineofdefense ofanimalsagainstviralinfections.Innateimmunemechanismsare alsocriticaltotransitiontoaneffectiveadaptiveimmuneresponse (humoralandcellular).NaturalBTVinfectionofruminantstypi- callyoccursfollowingthebiteofanyoneofthemultiplespecies ofhematophagousCulicoidesmidgesthatserveasbiologicalvec- torsofthevirus(Barratt-BoyesandMaclachlan,1995;Gibbsand 0168-1702/$seefrontmatter©2013ElsevierB.V.Allrightsreserved.

http://dx.doi.org/10.1016/j.virusres.2013.09.040

(3)

72 N.J.Maclachlanetal./VirusResearch182(2014)71–77

Greiner,1994; Melloretal., 2000;Tabachnick,2010;Verwoerd andErasmus,2004).AftercutaneousinstillationofBTVfollowing thebiteofaninfectedmidge,thevirusisquicklytranslocatedin dendriticcells totheregionallymphnodewhere initialreplica- tionoccurs(Barratt-BoyesandMaclachlan,1994;Ellisetal.,1991;

Hematietal.,2009;Pini,1976).Conventionaldendriticcellsare recruitedinlargenumberstotheskinfollowingvirusinfection, facilitatingfurtherreplicationofthevirusatthesiteofinitialinfec- tionintheskin(Hematiet al.,2009).Interruptionoflymphatic flowtotheregionallymphnodeadjacenttothesiteofvirusinoc- ulationmarkedlydelaystheonsetofviremia(Barratt-Boyesand Maclachlan,1994).

InitialreplicationofBTVintheregionallymphnodelikelyoccurs indendriticcells,macrophages,endotheliumandpossiblylympho- cytes,asthesearemajorcellulartargetsofBTV(Maclachlanetal., 2009;Darpeletal.,2012).InvitroBTVinfectionofovineconven- tionaldendriticcellsfromskinlymphleadstotheproductionof proinflammatoryandimmunecytokines(interleukins[IL-1␤,IL-6, IL-12])aswellastoexpressionofco-stimulatorymoleculesthat promotetheproliferationofBTV-specificCD4+andCD8+Tcells (Hemati etal.,2009).Similarly,invitro BTVinfectionofbovine monocyte- derivedmacrophages leadstotheiractivationwith productionoftissuenecrosisfactor(TNF-␣),interleukins(e.g.IL- 1␤,IL-8)andinduciblenitricoxidesynthetase(Drewetal.,2010a).

ReplicationofBTVintheregionallymphnodestimulatesamarked cellularresponsecharacterizedbyincreasednumbersof Bcells withinthenodeitselfandtheappearanceofvirus-specificanti- bodiesandactivatedCD8+Tcellsinthedrainingefferentlymph (Barratt-Boyesetal.,1995).

FollowinginitialreplicationofBTVatthesiteofinoculationand withintheadjacentdraininglymphnode,thevirusisthendissem- inatedtoavarietyoftissuesthroughoutthebodywheresecondary replicationoccursinmononuclearphagocyticcells(macrophages anddendriticcells),endothelialcells,lymphocytesincluding␥␦

Tcells,andperhapsothercelltypes(Barratt-Boyes etal.,1992;

Barratt-Boyes and Maclachlan, 1994,1995; Darpel et al., 2012;

DeMaulaetal.,2001,2002;Ellisetal.,1991;Hematietal.,2009;Lee etal.,2011;Maclachlanetal.,1990,2009;MahrtandOsburn,1986;

Umeshappaetal.,2012;Whetteretal.,1989).ViralRNA(especially dsRNA)isdetectedbypatternrecognitionreceptors(PRR)inthe cytoplasmicandendosomalcompartmentsofhostcells,notably toll-likereceptors(TLRs)ormembersoftheretinoicacidinducible gene(RIG-1)-likefamilyofcytoplasmicreceptors(Levyetal.,2011).

DifferentPRRutilizedistinctsignalingpathwaystotriggerthepro- ductionof TypeIand TypeIIIIFNs and otherproinflammatory cytokines.

IthaslongbeenrecognizedthatBTVinfectionisastronginducer ofTypeIIFN,bothinvivoandinvitro(Fosteretal.,1991;Fulton and Pearson, 1982; Huismans, 1969; MacLachlan et al., 1984;

MaclachlanandThompson,1985;Russelletal.,1996).Whereas adultmiceareresistanttoproductiveBTVinfection,TypeI(␣/␤) IFNreceptorknockoutmice(IFNAR[−/−])arehighlysusceptible tolethalinfectionwiththevirus(Calvo-Pinillaetal.,2009a,2010;

Franceschietal.,2011).ItrecentlyhasbeenshownthatBTVinduces TypeIIFNproductioninplasmacytoiddendriticcellsviaaMYD88- dependentTLR7/8-independentsensing and signalingpathway, whereascytoplasmichelicases(RIG-1,MDA5)mediatesensingand signalinginBTV-infected epithelialcells(Chauveauetal.,2012;

Ruscanuetal.,2012).TheBTVNS3proteinspecificallyinterferes withIFNproductioninepithelialcellsbyinhibitingtheRIG1-like receptormediatedsignalingpathway(Chauveauetal.,2013).Plas- matocytoiddendriticcellsandType1IFNmayexertacentralrole in triggeringBcellresponses and promotingBTV-specific anti- bodysynthesis(humoralimmunity),ashasrecentlybeenshown forrotavirus,whichisanotherdsRNAvirusofthefamilyReoviridae (Dealetal.,2013).

Infectionofdendriticcells,macrophages,endothelialcellsand othersduringBTVinfectionofruminantsleadstotheproduction ofavarietyofproinflammatoryandvasoactivemediatorsinclud- ingTypeIIFNs,TNF-␣,andvariousinterleukinsandprostanoids, buttheresponse canvarydependingonthecelltypesthatare infected aswellastheirtissue location(Channappanavaretal., 2012;DeMaulaetal.,2001,2002;Drewetal.,2010a;Hematietal., 2009;Ruscanuetal.,2012,2013;Umeshappaetal.,2012).Fur- thermore,althoughthesevirus-inducedcytokineandchemokine mediatorsmayservetolimit/controltheinfectionduringitsini- tialstagesandtopromotethedevelopmentofastrongacquired immuneresponse,theymayalsocontributetothepathogenesis ofthecapillaryleakagesyndromeandcoagulopathythatcharac- terizesclinicalBTinruminants-theso-called“cytokinestorm”of hemorrhagicfevers(Fig.1)(Drewetal.,2010b;Maclachlanetal., 2008,2009;Umeshappaetal.,2012).Thus,thevirulencetosheep ofdifferentstrains/serotypesofBTViscorrelatedwiththesever- ityofthevascularlesionstheyinduceandtoserumconcentrations ofacutephase proteins,andnot toviralloads(Sanchez-Cordon etal.,2013).Similarly,DeMaulaetal.(2002)showedthatvascu- larinjuryand enhancedcoagulation,asassessedbytheratioof plasmathromboxanetoprostacyclin,weresignificantlygreaterin sheepthancattleinoculatedwiththesamestrainofBTV,consis- tentwiththesensitivityofsheepandrelativeresistanceofcattle toexpressionofclinicalBT.

3. Cellularimmunity

Cell-mediatedimmunity(CMI)typicallylimitsviralspreaddur- ingtheinitialstagesofacuteviralinfectionsbythedestruction ofvirus-infectedcells(virusfactories).AlthoughBTVinfectionof ruminantsclearlyresultsinchanges inlymphocytepopulations anddynamicsbothlocally(adjacenttothesiteofinfection)andsys- temically(Barratt-Boyesetal.,1995;Ellisetal.,1990,1991;Hemati etal.,2009;Umeshappaetal.,2012),theCMIresponseofruminants toBTVinfectionremainspoorlycharacterized.CD8+cytototoxicT lymphocytes(CTLs)havebeenidentifiedfollowingBTVinfectionof bothmiceandsheep,althoughtheiractivityisapparentlytransient andtheirpreciseroleinmediatingvirusclearanceispoorlydefined (Andrewetal.,1995;Calvo-Pinillaetal.,2012;JeggoandWardley, 1982a,b;Jeggoetal.,1984,1986).AdoptivetransferofCTLshar- vestedfromthethoracicductofasheeppreviouslyinfectedwith BTVpartiallyprotectedrecipientsheepagainstchallengeinfection witheitherhomologousorheterologousserotypesofBTV(Jeggo etal.,1984,1986).

The BTV NS1 and VP2 proteins have been proposed to be major targets of the ovineCMI response to BTV,although the viralprotein-specificCTLresponse ofindividualsheepcanvary markedly(Andrewetal.,1995;Janardhanaetal.,1999;Takamatsu andJeggo,1989).Ovine CTLsspecificforthenon-structuralNS1 proteinarecrossreactiveamongstdifferentBTVserotypes.Simi- larly,Calvo-Pinillaetal.(2012)describedgenerationofNS1-specific CD8+TcellsandheterotypicimmunityinIFNARmicethatwere immunizedwithrecombinantBTVproteins,andJonesetal.(1996, 1997)earliershowedthattheBTVnonstructuralproteins,espe- ciallyNS2,caninducecross-reactiveCTLsinmice.Togetherthese findingsoffersomepromisethatapolyvalentvaccinestrategyto preventBTVinfectionispotentiallyfeasible,astheNS1andNS2 proteinsarerelativelyconservedamongfieldstrainsofBTVregard- lessofserotype.However,neitherhomologousnorheterologous protectionwasobtainedwitharecombinantadenovirusexpressing onlytheNS1proteinofBTV-2despitestronginductionofprotein- specificCD8+Tcellsinthevaccinatedsheep(unpublisheddata).

Similarly,althoughBTVcore-likeparticlesthatincludeonlyVP3 andVP7havebeenreportedtoinducepartialprotectionagainst

(4)

Fig.1.PotentiallycriticalinteractionsofBTVwithmononuclearphagocytes(dendriticcells,macrophages)duringinfectionofruminants.Specifically,thesecellsmay:(1) contributetodisseminationofBTVinafferentlymphandblood,(2)produceantiviralandinflammatorycytokines/chemokinesthatinitallycontrolBTVinfectionandpossibly triggerthecytokinestormandassociatedcoagulopathyandhemorrhageand(3)elicitacquiredimmuneresponsesthatleadtoviralclearanceandsubsequentprotection againstre-infectionwiththehomologousBTVserotype.

bothhomologousandheterologouschallengeinsheep,complete protectionrequiresimmunizationwiththeVP2oftherespective BTVserotype(Royetal.,1994;Stewartetal.,2012).Thus,despite thepotential promise of a polyvalent BTVvaccination strategy basedonCMIresponsestodifferentBTVproteins,littleprogress hasbeenmadeinconfirmingtheviabilityofsuchanapproachand thepreciserole ofCMIineithermediatingvirusclearancedur- ingprimaryinfectionorconferringresistancetoreinfectionwith homologousorheterologousBTVserotypesawaitsthoroughclari- fication.

4. Antibody(humoral)immunity

BTVinfectionof ruminantsresultsinthepromptproduction ofantibodiestoboth structuralandnonstructuralviralproteins (HuismansandErasmus,1981;Maclachlanetal.,1987;Richards etal.,1988).ImmunecompetenceoffetalruminantstoBTVinfec- tionarisespriortomid-gestation(Osburnetal.,1982;MacLachlan etal.,1984).AntibodiestocoreproteinVP7arebroadlyserogroup reactiveasthisproteinisconservedamongstmostBTVserotypes andstrains,thusdetectionofantibodiestoVP7isthebasisofthe competitiveELISA(cELISA)assaysthat arenowwidelyusedfor serologicaldiagnosisofBTVinfectionoflivestock(Afshar,1994;

Anderson,1984;MaclachlanandMayo,2013).BTV-specificneu- tralizingantibodiescanconferlong-lastingresistancetoreinfection withthehomologousBTVserotype,whichisthebasisofvaccina- tionstrategiestopreventBTdisease(Huismansetal.,1987;Noad andRoy,2009;Savinietal.,2008;Spreull,1905;Stewartetal.,2012;

VerwoerdandErasmus,2004).Interestingly,althoughneutraliz- ingantibodiesconferserotype-specificresistancetoreinfection, viremiacancontinueforextendedintervalsinthecourseofprimary infectiondespitethepresenceofsuchantibodies(Barratt-Boyes andMaclachlan,1994,1995;Bonneauet al.,2002;Fosteretal., 1991;DiGialleonardoetal.,2011;Luedkeetal.,1969;Martinelle et al.,2011; Richards et al.,1988).This abilityof BTV toavoid neutralizationduring primaryinfection isattributed toitsinti- mateassociationwiththecellmembranesofcirculatingbloodcells, erythrocytesinparticular,whichalsoleadstoanextendeddura- tion(severalmonths)ofreverse-transcriptase-polymerasechain reaction(RT-PCR)positivestatusofruminantsfollowingBTVinfec- tion(Barratt-BoyesandMaclachlan,1994;BrewerandMaclachlan,

1992, 1994; Di Gialleonardo et al., 2011; Luedke et al., 1969;

Maclachlanetal.,1990,1994,2009;Martinelleetal.,2011).

TheneutralizingepitopesofBTVarelocalizedtospecificinter- activeregionsoftheVP2outercapsidprotein.Sheepinoculated withVP2thatiseitherisolatedfromviralparticlesorgeneratedby invitroexpressionproducevirusneutralizingantibodiesandare resistanttochallengeinfectionwiththehomologousBTVserotype (HuismansandErasmus,1981;Huismansetal.,1987;Royetal., 1990,1992,1994;Stewartetal.,2012).Atleastsomeneutraliza- tionepitopesarehighlyconformationallydependent,reflectingnot onlyfoldingoftheVP2proteinonitselfbutalsoitsconformational interaction withthe otherouter capsidprotein, VP5 (Appleton andLetchworth,1983;CowleyandGorman,1987;DeMaulaetal., 1993,2000;Gouldetal.,1988;GouldandEaton,1990;Heidner etal.,1990;Mertensetal.,1989).DeMaulaetal.(2000)showed thatwhereasmostvariantsthatwereresistanttoneutralization withindividual neutralizingmonoclonalantibodies (MAbs)had amino acidsubstitutionsinkey regions ofVP2, theVP2 ofone MAb-neutralizationresistantvariantviruswasunchangedbutthis virushad a substitution in VP5, confirmingunambiguously the importanceof theconformationalinteractionbetweenVP2 and VP5 in BTV neutralization. Individual neutralizing epitopes are sometimesconservedbetweenserotypesineitheraneutralizing ornon-neutralizingconformation(Maclachlanetal.,1992;Pierce etal.,1995;Ristowetal.,1988;RossittoandMaclachlan,1992;

WhiteandEaton,1990).Thepresenceofcommonneutralization epitopesbetweenBTVserotypesisfurtherconfirmedbyserolog- icalcrossreactivityofcertainserotypesofthevirus,andbythe factthatanimalsinoculatedorimmunizedwithoneormoreBTV serotypescandevelopneutralizingantibodiesagainstserotypesto whichtheywereneverexposed(Dunguetal.,2004;Rossittoand Maclachlan,1992;Thomas,1985).

StudieswithBTVproteinsexpressedfromrecombinant pox, herpesandbaculovirusesconfirmthatinductionofneutralizing antibodiesandprotectionofsheepagainstchallengeinfectionwith thehomologousBTVserotypeisbestachievedbyco-expression of both theVP2 and VP5 outercapsidproteins, includingtheir co-expressionasvirus-likeparticlesorincombinationwithBTV core proteins (Lobato et al., 1997; Ma et al., 2012; Roy et al., 1990, 1992, 1994). Thus, we have utilized the canarypox (CP) virusexpressionvectortoevaluateinductionofBTV-neutralizing antibodiesinsheepusingaCPconstructco-expressingbothVP2

(5)

74 N.J.Maclachlanetal./VirusResearch182(2014)71–77

Table1

Effectofimmunizationofsheepwithdifferentdosesofrecombinantcanarypoxvirus co-expressingtheVP2andVP5genesofbluetonguevirus(BTV)priortochallenge infectionwithBTVserotype17.

TREATMENT SN+ cELISA++ qRTPCR+++ Temp.

(>103.5F) Pre* Post Pre Post

Control 0/4 3/3* 0/4 3/3 4/4 4/4

Vaccine–low 0/4 4/4 0/4 4/4 4/4 1/4

Vaccine–med 3/4 4/4 0/4 1/4 1/4 0/4

Vaccine–high 4/4 4/4 0/4 0/4 0/4 0/4

+SN=serumneutralizationtesttoBTV-17;titer<10considerednegative.

++cELISA=competitiveELISAtoBTVcoreproteinVP7(VMRD).

+++ qRT-PCR=quantitativePCRbasedondetectionofBTVS10geneafterchallenge infection,aspreviouslydescribed(Booneetal.,2007).

* Serologicalstatusimmediatelybeforeand14daysafter(Post)BTVchallenge infection.

** 1sheepdiedinthecourseofthestudy.

andVP5ofastrainofBTV-17(CP-BTV)(Booneetal.,2007).This recombinantCP-BTVconstructconferscompleteresistanceofvac- cinatedsheeptochallengeinfectionwiththehomologousvirus serotype.Inanefforttobetterestablishtheprotectiveimmunity inducedbytherecombinantCP-BTVconstructweundertookadose titration/challengeinfection study using 16 seronegative sheep housedin insect-secure isolation facilities and methods essen- tiallyaspreviouslydescribed(Booneetal.,2007).Thesheepwere assignedindividuallytooneoffourtreatmentgroups:fourcon- trolsheepwereimmunizedwitha CP-vectoredvaccineagainst WestNilevirus(Recombitek®,Merial,GA);fourhighdosevacci- natedsheepwereinoculatedsubcutaneouslyandintramuscularly (SC/IM)with 2×108 particles of therecombinant CP-BTV con- struct;fourmediumdosevaccinatedsheepwereinoculatedSC/IM with2×107 particlesof CP-BTV;and fourlow dosevaccinated sheepwereinoculatedSC/IMwith2×106particlesofCP-BTV.All sheepwereimmunizedtwicewiththeirrespectiveinoculaata3 weekintervalandthenchallengedat3weeksafterboosterimmu- nizationbySCinoculationof approximately104.9 tissueculture infectiousdosesofafieldstrainofBTV-17,aspreviouslydescribed (Booneetal.,2007).Allsheepwereseronegativebygroup-spe- cific cELISAprior to challenge(Table1), confirmingthat sheep vaccinatedwiththeCP-BTVcanbedistinguishedfromthoseprevi- ouslyinfectedwithBTV(DIVA).Whereasallcontrolandlowdose vaccinates, andone of thefourmedium dosevaccinatedsheep seroconvertedbycELISAat14daysafterchallengeinfection,the three other medium dose and all of the high dose vaccinated sheepremainedseronegativebycELISAfollowingchallenge.Fur- thermore,whereasthefourcontrolandonelowdosevaccinated sheepalldevelopedmarkedfever(>103.5F)byday6–7afterchal- lengeinfection,threeofthefourlowdosevaccinatesandallsheep immunizedwitheithermediumorhighdosesoftheCP-BTVcon- structwereresistanttochallengeinfectionasdeterminedbythe absenceoffever.ViralRNAwasnotdetectedbyquantitativeRT- PCR(qRT-PCR)inthebloodanyofthehighdosevaccinatedsheep, andinonlyoneofthefourmediumdosevaccinatedsheep.Incon- trast,allofthecontrolandlowdosevaccinatedbecameinfected afterchallengeasconfirmedbyqRT-PCRanalysisoftheirblood (Table1).

Insummary,thesestudiesconfirmthatinductionofprotective immunityinsheepcanbeaccomplishedbyimmunizationwith onlytheBTVoutercapsidproteins,andthatthereisatitratable responsetovaccinationsuchthat immunizationwithrelatively largequantities of the CP-BTV construct can induce sterilizing immunitywhereas lowerdoses protectagainst developmentof clinicalsignsfollowing challengebut notinfection.This immu- nityissomewhatcorrelatedtoinductionofneutralizingantibody inserum,howeverthedatafurthersuggestthatanimalswitha

minimalneutralizingantibodyresponsefollowingvaccinationmay beprimedtomorequicklyandeffectivelyrespondtochallenge infection.Similarobservations of immune “priming” havebeen madewithotherrecombinantvaccineconstructsthatutilizeother expressionvectorssuchascapripoxandmyxomaviruses(Perrin etal.,2007;Topetal.,2012),andwithotherCP-vectoredanimal vaccinessuchasthattoWestNilevirus(Gardneretal.,2007).

5. Vaccinology

Athoroughunderstandoftheimmuneresponsetoanimalsto BTVinfectioniscentraltothelogicaldevelopmentofefficacious vaccines,whichisimportantbecauseat-riskcountriestypicallyuse vaccinationoflivestocktocontrolanyincursionoroutbreakofBT (MaclachlanandMayo,2013).Earlyinvestigatorsrecognizedthat livestockthatrecoveredfromBTwereoftenresistanttothedisease, whichspurredinitialeffortstodevelopvaccines(Spreull,1905).

However,itwaslaterrecognizedthatvaccinationcanbeproblem- aticgiventhepluralityof BTVserotypes(currently26) coupled withserotype-specificimmunityin livestock,meaningthatvac- cinespotentiallyhavetobedevelopedtoall26currentlyrecognized BTVserotypes(reviewed:NoadandRoy, 2009;OyaAlparetal., 2009;Savinietal.,2008;Stewartetal.,2012;Zientaraetal.,2010).

Furthermore,therearefewavailablecommercialvaccineproducts forBTVotherthanthelive-attenuated(modifiedlivevirus[MLV]) vaccinesthatcontinuetobeusedtopreventBTamongcommercial sheepinseveralareasoftheworld(e.g.SouthAfrica,theUnited States of America). MLV vaccines are relatively inexpensiveto produceandtheyareeffectiveastheycaninduceprotectiveimmu- nitysimilartothatwhichfollowsnaturalinfection.Despitethese attributes,theuseofinactivatedvaccinesisincreasinglypreferred asinactivatedvaccinesenjoyseveralinherentadvantagesoverMLV vaccines.Specifically,ascompared toMLVvaccines,inactivated vaccinescannotcausediseaseorreverttovirulence,reassortgenes withfieldorMLVviruses,norcrosstheplacentatocauserepro- ductivelosses(reviewed:MaclachlanandMayo,2013;Noadand Roy,2009;Savinietal.,2008;Stewartetal.,2012;Zientaraetal., 2010).However,inactivatedvaccinessufferfromtheirrelativeslow onsetofimmunityascomparedtoMLVvaccines,andthelackof commercialproductsformostBTVserotypes.

Although not yet available commercially, replication defec- tivevaccinevirusesproducedusingreversegeneticstechnology offerthepotentialforvaccineconstructsthatcombinetheben- efitsofMLVvaccineswiththesafetyofinactivatedones(Celma etal.,2013;Matsuoetal.,2011).Other“nextgeneration”products suchasbaculovirus-expressedviruslikeparticles(VLPs)andviral- vectoredrecombinantvaccines,includingtheCP-BTVrecombinant describedearlier,havebeenshowntobeeffectiveexperimentally buttheirinherentcostandlimitedmarketpotentialhaveprevented theircommercialusetodate(Booneetal.,2007;Celmaetal.,2013;

NoadandRoy,2009;Stewartetal.,2010).

TherecentavailabilityofIFNARmiceasanexperimentalmodel systemhasfurtherfacilitatedthestudyofimmunitytoBTVinfec- tion, and tothe development of potentially efficaciousvaccine constructs(Calvo-Pinillaetal.,2009a,2010).IFNARmicecanbe protected againstlethalBTV challengebyneutralizing antibod- iesinducedbyimmunizationwithrecombinantVP2aloneorin combinationwithotherviralproteins(Calvo-Pinillaetal.,2009b, 2012;Franceschietal.,2011;Jabbaretal.,2013;Maetal.,2012).

ImmunizationofIFNARmicewithindividualorcocktailsofrecom- binantBTVproteinsalsocaninducevaryingdegreesofheterotypic immunityassociatedwiththeproductionofprotein-specificCD8+

Tcells(Calvo-Pinillaetal.,2012).Itistobestressed,however,that althoughtheIFNARmurinemodelprovidesausefulmodelforini- tialscreeningofpotentialvaccines,validationinruminantlivestock

(6)

isclearlyrequiredandparticularlyinsituationswheretheTypeI IFNresponsemaybecriticaltothestimulationofcriticalacquired immuneresponses.

In summary,although ongoing studieshave repeatedly con- firmedthatarecombinantsubunitvaccinationstrategyisviable forprotectionoflivestockagainst BTVinfection,theexpression ofimmunogenicVP2canbechallenginggiventheconformational natureofindividualepitopesandtheirstabilityduringstorage,and becauseoftheapparentlyserotype-specificnatureofimmunityto BTVinfectionoflivestock(DeMaulaetal.,2000;Savinietal.,2008;

Stewartetal.,2012;Zientaraetal.,2010).Thus,currentvaccina- tionstrategiestopreventBTVinfectionoflivestockcontinuetobe reliantonhistorictechnologies,withalloftheirattendantpotential disadvantages(MaclachlanandMayo,2013;Savinietal.,2008).

Acknowledgements

TheauthorsthankDr.DamienVitourforhisconstructivereview ofthemanuscript. Portionsofthesestudiesweresupportedby USDANRICompetitiveGrant#2002-35204-12314,andfundspro- videdbytheHarrietE.PflegerFoundation.

References

Afshar, A., 1994. Bluetongue:laboratory diagnosis. ComparativeImmunology, MicrobiologyandInfectiousDiseases17,221–242.

Anderson,J.,1984.UseofmonoclonalantibodyinablockingELISAtodetectgroup- specificantibodiestobluetonguevirus.JournalofImmunologicalMethods74, 139–149.

Andrew,M.E.,Whiteley,P.,Janardhana,V.,Lobato,Z.,Gould,A.,Coupar,B.,1995.

AntigenspecificityoftheovinecytotoxicTlymphocyteresponsetobluetongue virus.VeterinaryImmunologyandImmunopathology47,311–322.

Appleton,J.A.,Letchworth,G.J.,1983.Monoclonalantibodyanalysisofserotype- restrictedandunrestrictedbluetongueviralantigenicdeterminants.Virology 124,286–299.

Barratt-Boyes,S.M.,Maclachlan,N.J.,1994.Thedynamicsofviralspreadinblue- tonguevirusinfectedcalves.VeterinaryMicrobiology40,361–371.

Barratt-Boyes,S.M.,Maclachlan,N.J.,1995.Pathogenesisofbluetonguevirusinfec- tionofcattle.JournaloftheAmericanVeterinaryMedicalAssociation206, 1322–1329.

Barratt-Boyes,S.M.,Rossitto,P.V.,Stott,J.L.,Maclachlan,N.J.,1992.Flowcytometric analysisofinvitrobluetonguevirusinfectionofbovinebloodmononuclearcells.

JournalofGeneralVirology73,1953–1960.

Barratt-Boyes,S.M.,Rossitto,P.V.,Taylor,B.C.,Ellis,J.A.,Maclachlan,N.J.,1995.

Responseoftheregionallymphnodetobluetonguevirusinfection.Veterinary ImmunologyandImmunopathology45,73–84.

Bonneau,K.R.,DeMaula,C.D.,Mullens,B.A.,Maclachlan,N.J.,2002.Durationof viraemiainfectioustoCulicoidessonorensisinbluetonguevirus-infectedcattle andsheep.VeterinaryMicrobiology88,115–125.

Boone,J.D.,Balasuriya,U.B.,Karaca,K.,Audonnet,J.C.,Yao,J.,He,L.,Nordgren,R., Monaco,F.,Savini,G.,Gardner,I.A.,Maclachlan,N.J.,2007.Recombinantcanary- poxvirusvaccineco-expressinggenesencodingtheVP2andVP5outercapsid proteinsofbluetonguevirusinduceshighlevelprotectioninsheep.Vaccine25, 672–678.

Borden,E.C.,Shope,R.E.,Murphy,F.A.,1971.Physiochemicalandmorphological relationshipsofsomearthropod-bornevirusestobluetonguevirusanew taxonomicgroup.Physiochemicalandserologicalstudies.JournalofGeneral Virology13,261–271.

Brewer,A.W.,Maclachlan,N.J.,1992.Ultrastructuralcharacterizationoftheinterac- tionofbluetongueviruswithbovineerythrocytesinvitro.VeterinaryPathology 29,356–359.

Brewer,A.W.,Maclachlan,N.J.,1994.Thepathogenesisofbluetonguevirusinfec- tionofbovinebloodcellsinvitro:ultrastructuralcharacterization.Archivesof Virology136,287–298.

Calvo-Pinilla,E.,Rodriguez-Calvo,J.,Anguita,T.,Sevilla,N.,Ortego,J.,2009a.Estab- lishmentofabluetonguevirusinfectionmodelinmicethataredeficientin alpha/betainterferonreceptor.PLosOne4,e5171.

Calvo-Pinilla,E.,Rodriguez-Calvo,T.,Sevilla,N.,Ortego,J.,2009b.Heterologous primeboostvaccinationwithDNAandrecombinantvacciniavirusAnkarapro- tectsIFNAR(−/−)miceagainstlethalbluetongueinfection.Vaccine28,437–445.

Calvo-Pinilla,E.,Nieto,J.M.,Ortego,J.,2010.Experimentaloralinfectionofblue- tonguevirusserotype8intype1interferonreceptor-deficientmice.Journalof GeneralVirology91,2821–2825.

Calvo-Pinilla,E.,Navasa,N.,Anguita,J.,Ortego,J.,2012.Multiserotypeprotection elicitedbyacombinationalprime-boostvaccinationstrategyagainstbluetongue virus.PLoSOne7,e34735.

Celma,C.C.,Boyce,M.,vanRijn,P.A.,Eschbaumer,M.,Wernike,K.,Hoffmann, B.,Beer,M.,Haegerman,A.,DeClerq,K.,Roy,P.,2013.Rapidgenerationof replication-deficientmonovalentandmultivalentvaccinesforbluetonguevirus:

protectionagainstviruschallengeincattleandsheep.JournalofVirology87, 9856–9864.

Channappanavar,R.,Singh,K.P.,Singh,R.,Umeshappa,C.S.,Ingale,S.L.,Pandey,A.B., 2012.Enhancedproinflammatorycytokineactivityduringexperimentalblue- tonguevirus-1infectioninIndiannativesheep.VeterinaryImmunologyand Immunopathology145,485–492.

Chauveau, E., Doceul, V., Lara,E., Adam, M., Bread,E., Sailleau, C.,Viarouge, C.,Desprat,A., Meyer,G.,Schartz-Cornil, I.,Ruscanu,S.,Charley, B.,Zien- tara,S.,Vitour,D.,2012.Sensingandcontrolofbluetonguevirusinfection in epithelial cells viaRIG-1 and MDA5helicases. Journalof Virology 86, 11789–11799.

Chauveau,E.,Doceul,V.,Lara,E.,Brard,E.,Sailleau,C.,Vidalain,P.O.,Meurs,E.F., Dabo,S.,Schwartz-Cornil,I.,Zientara,S.,Vitour,D.,2013.NS3ofbluetongue virusinterfereswiththeinductionoftypeIinterferon.JournalofVirology87, 8241–8246.

Cowley, J.A.,Gorman, B.M., 1987. Cross-neutralization ofgenetic reassortants of bluetongue virus serotypes 20 and 21. Veterinary Microbiology 19, 37–51.

Darpel,K.E.,Monaghan,P.,Simpson,J.,Anthony,S.J.,Veronesi,E.,Brooks,H.W.,Elliot, H.,Brownlie,J.,Takamatsu,H.H.,Mellor,P.S.,Mertens,P.P.,2012.Involvement oftheskinduringbluetonguevirusinfectionandreplicationintheruminant host.VeterinaryResearch43,40.

Deal,E.M.,Lahl,K.,Narvaez,C.F.,Butcher,E.C.,Greenberg,H.B.,2013.Plasmacytoid dendriticcellspromoterotavirus-inducedhumanandmurineBcellresponses.

JournalofClinicalInvestigation123,2464–2474.

DeMaula,C.D.,Heidner,H.W.,Rossitto,P.V.,Pierce,C.M.,Maclachlan,N.J.,1993.Neu- tralizationdeterminantsofUnitedStatesbluetonguevirusserotype10.Virology 195,292–296.

DeMaula,C.D.,Bonneau,K.R.,Maclachlan,N.J.,2000.Changesintheoutercapsid proteinsofbluetonguevirusserotype10thatabrogateneutralizationbymono- clonalantibodies.VirusResearch67,59–66.

DeMaula,C.D.,Jutila,M.A.,Wilson,D.W.,Maclachlan,N.J.,2001.Infectionkinet- ics,prostacyclinreleaseandcytokine-mediatedmodulationofthemechanism ofcelldeathduringbluetonguevirusinfectionofculturedovineandbovine pulmonaryarteryandlungmicrovascularendothelialcells.JournalofGeneral Virology82,787–794.

DeMaula,C.D.,Leutenegger,C.M.,Bonneau,K.R.,Maclachlan,N.J.,2002.Theroleof endothelialcell-derivedinflammatoryandvasoactivemediatorsinthepatho- genesisofbluetongue.Virology296,33–337.

DiGialleonardo,L.,Migliaccio,P.,Teodori,L.,Savini,G.,2011.ThelengthofBTV- 8viremiaincattleaccordingtoinfectiondosesanddiagnostictechniques.

ResearchinVeterinaryScience91,316–320.

Drew,C.P.,Heller,M.C.,Mayo,C.,Watson,J.L.,Maclachlan,N.J.,2010a.Bluetongue virusinfectionactivatesbovinemonocyte-derivedmacrophagesandpulmonary arteryendothelialcells.VeterinaryandImmunologyImmunopathology136, 292–296.

Drew,C.P.,Gardner,I.A.,Mayo,C.E.,Matsuo,E.,Roy,P.,Maclachlan,N.J.,2010b.Blue- tonguevirusinfectionalterstheimpedanceofmonolayersofbovineendothelial cellsasaresultofcelldeath.VeterinaryImmunologyandImmunopathology 138,108–115.

Dungu,B.,Gerdes,T.,Smit,T.,2004.Theuseofvaccinationinthecontrolofblue- tongueinsouthernAfrica.VeterinariaItaliana40,616–622.

Ellis,J.A.,Luedke,A.J.,Davis,W.C.,Wechsler,S.J.,Mecham,J.O.,Pratt,D.L.,Elliot,J.D., 1990.T-lymphocytesubsetalterationsfollowingbluetonguevirusinsheepand cattle.VeterinaryImmunologyandImmunopathology24,49–67.

Ellis,J.A.,Luedke,A.J.,Nunamaker,C.E.,Nunamaker,R.A.,Haven,T.R.,1991.Cuta- neouslymphoidtrafficinsheepinfectedwithbluetonguevirus.Veterinary Pathology28,175–180.

Foster,N.M.,Luedke,A.J.,Parsonson,I.M.,Walton,T.E.,1991.Temporalrelationships ofviremia,interferonactivity,andantibodyresponsesofsheepinfectedwith severalbluetonguevirusstrains.AmericanJournalofVeterinaryResearch52, 192–196.

Franceschi,V., Capocefalo,A., Calvo-Pinilla,E., Redaelli,M.,Mucignatt-Caretta, C.,Mertens,P.,Ortego,J.,Donofrio,G.,2011.Immunizationofknock-out␣␤

interferonreceptormiceagainstlethalbluetonguevirusinfectionwithaBoHV4- basedvectorexpressingBTV8VP2antigen.Vaccine29,3074–3082.

Fulton,R.W.,Pearson,N.J.,1982.Interferoninductioninbovineandfelinemono- layerculturesbybluetonguevirusserotypes.CanadianJournalofComparative Medicine46,100–102.

Gardner,I.A.,Wong,S.J.,Ferraro,G.L.,Balasuriya,U.B.,Hullinger,P.J.,Wilson,W.D., Shi,P.Y.,Maclachlan,N.J.,2007.IncidenceandeffectsofWestNilevirusinfection invaccinatedandunvaccinatedhorsesinCalifornia.VeterinaryResearch38, 109–116.

Gibbs, E.P.,Greiner, E.C.,1994. Theepidemiologyofbluetongue. Comparative Immunology,MicrobiologyandInfectiousDiseases17,207–220.

Gibbs,E.P.,Tabachnick,W.J.,Holt,T.J.,Stallknecht,D.E.,2008.U.S.concernsofblue- tongue.Science320,672.

Gould,A.R.,Hyatt,A.D.,Eaton,B.T.,1988.Morphogenesisofabluetonguevirusvari- antwithanaminoacidalterationataneutralizationsiteintheoutercoatprotein VP2.Virology165,23–32.

Gould,A.R.,Eaton,B.T.,1990.TheaminoacidsequenceoftheoutercoatproteinVP2 ofneutralizingresistantmonoclonalantibody-resistantvirulentandattenuated bluetongueviruses.VirusResearch17,161–172.

Grubman,M.J.,Appleton,J.A.,Letchworth,G.J.,1983.Identificationofbluetongue virustype17genomesegmentscodingforpolypeptidesassociatedwithvirus neutralizationandintergroupreactivity.Virology131,355–366.

Références

Documents relatifs

Enfin, nous arrivons à la définition de l’adaptation dans le domaine du cinéma du texte littéraire, qui est l’objet de notre étude, c’est-à-dire, la définition de

Differential response of bovine mammary epithelial cells to Staphylococcus aureus or Escherichia coli agonists of the innate immune system.. Veterinary Research 2013,

The relative mRNA expression of TLR1-9 (A,B) and four cytokines (IFN- β, TNF-α, IL-6, CXCL8) (C,D) was evaluated directly in bronchial biopsies (A,C) and in non-stimulated cultures

Glyceraldehyde-3-phosphate dehydrogenase from Eimeria acervulina modulates the functions of chicken dendritic cells to boost Th1 type immune response and stimulates autologous CD4+

After having established which KG climate classifications prevail in each European country, and having obtained a climatic profile of each quarantine arthropod species, represented as

In the current study we report the use of a trachea epithelial cell line (newborn pig trachea cells – NPTr) in comparison with alveolar macrophages and lung slices for

cDC2, conventional Dendritic Cells type 2; CBA, Cytokine Bead Assay; DCs, Dendritic Cells; FL13, Flanders13 virus; LV, Lelystad virus; moDC, Monocyte- derived Dendritic Cells;

Radioresistant cells expressing TLR5 control the respiratory epithelium’s innate immune responses to flagellin..2. 6 Present address: Glaxosmithkline Biologicals, Rixensart, Belgium