• Aucun résultat trouvé

Performance of the ATLAS electromagnetic calorimeter under beam tests

N/A
N/A
Protected

Academic year: 2021

Partager "Performance of the ATLAS electromagnetic calorimeter under beam tests"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: in2p3-00021640

http://hal.in2p3.fr/in2p3-00021640

Submitted on 13 Apr 2004

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

F. Hubaut

To cite this version:

(2)

Performance of the ATLAS electromagnetic calorimeter under beam tests FabriceHubaut

a  a

CPPM,CNRS/IN2P3,Univ. Mediterranee,Marseille,France

ThephysicsprogramatLHCishighlydemandingintermsofdetectorperformance. Inparticular,theATLAS electromagnetic calorimeter has to match challenging requirements for energy, position and time resolutions. CalorimeterprototypeandproductionmoduleshavebeentestedunderelectronbeamsatCERNduringthelast threeyears. ResultsarepresentedandcomparedtoATLASrequirements.

1. Introduction

TheATLAS(AToroidalLHC ApparatuS) ex-periment [1], presently under construction, will start operation in 2007 at the LHC [2] proton-protoncollideratCERN.Thismulti-purpose de-tectorhasawidephysicsprogram,spanningfrom precision measurements of W



bosons, top and bottomquarksproperties, to Higgsboson or su-persymmetric particle searches. In most cases, theelectromagnetic(EM)calorimeterwillplaya keyrole in measuringenergy, position and time ofelectronsandphotons.

2. General layout of the ATLAS electro-magneticcalorimeter

TheLHCextremeoperatingconditionsimpose severe constraints on detectors, in terms of ra-diation tolerance, background rejection capabil-ity, noise handling, response speed, spatial cov-erage and time stability. The EM calorimeter is a lead-liquid argon (LAr) sampling calorime-ter with an accordion geometry [3], that guar-antees a full azimuthal coverage. It is divided in one barrel (jj < 1:475) and two end-caps (1:375 < jj < 3:2) and is segmented in depth in three compartments(see gure 1). The sam-pling 1(front)ismadeof narrowstripsand per-forms precise position measurements and =

0 separation. Thesampling2(middle)hasadepth of16to18X

0

andcollectsmostofthee/ shower energy. Thesampling3(back)recovershigh en-ergytailsandhelps toseparatehadronicto elec-

OnbehalfoftheATLASliquidargongroup.

tromagnetic particles. In addition, a thin pre-samplerdetectorcorrectsenergylossesinthe up-stream material for jj < 1:8. In total, almost 200,000read-outchannelsgivethedetectorahigh granularity. Liquidargonhasbeenchosenforits intrinsic linear behavior, response stability and radiationtolerance. Foreaseofconstruction,the barrel part is divided in 32 modules and each end-cap wheel is made of 8 modules. The con-struction, test and integration of these modules arepresentlywelladvanced,andaredetailedina separate contribution[4]within thispublication.

∆ϕ = 0.0245

∆η = 0.025

37.5mm/8 = 4.69 mm

∆η = 0.0031

∆ϕ=0.0245

x

4

36.8mm

x4

=147.3mm

Trigger Tower

Trigger

Tower

∆ϕ = 0.0982

∆η = 0.1

16X

0

4.3X

0

2X

0

1500 mm

470 mm

η

ϕ

η = 0

Strip towers in Sampling 1

Square towers in

Sampling 2

1.7X

0

Towers in Sampling 3

∆ϕ×∆η

= 0.0245

×

0.05

Figure 1. Sketch of theaccordionstructure and sampling segmentationoftheEMcalorimeter.

(3)
(4)

energeticone. Inordertocompensateforenergy lossesin frontofthecalorimeterand leakage be-yondit,weightsareappliedtothepresamplerand theback compartmentresponses. Moreover,the nite size of the cluster causesa lateral leakage a ecting the energy measurement at a level be-low0.4%, andtheaccordiongeometry inducesa modulation along  with similar magnitude. In addition, the speci c setting of thehigh voltage by nite sectors in the end-cap induces alinear variationof theenergyresponse as afunction of  ineachsector. Finally,unlikeinATLAS,beam test particlearrivaltimes areasynchronouswith respecttothe40MHzclock,andtheenergy mea-surementis sensitiveto this phase. All these ef-fects are found in good agreement with simula-tionsandhavebeencorrectedfor.

6. Beamtest results

The performance of the EM calorimeter has been extensively tested under electron beams using two full-size prototype modules (one for the barrel and one for the end-cap) and seven production modules (four barrel and three end-cap). An ATLAS-like electronics was used. Re-sults from prototype modules, including noise, cross-talk, time stability, temperaturee ect, re-sponse to muons, =

0

separation, are exten-sivelydescribedin[7,8]. Theyallowedtoimprove calorimeter performance. The following results havebeenobtainedwithproductionmodulesand aresimilarforalltestedmodules.

6.1. Energy resolutionand uniformity Energy scans from 10 to 245 GeV have been performed at several positions. After unfolding noiseandbeamenergyuncertainty,thesampling termaisfoundbelow10%

p

GeV (resp. 12.5)for every barrel (resp. end-cap) positions, whereas the local constant term c is everywhere smaller than 0.4%. This is in good agreementwith AT-LAS speci cations (section 3). The linearity is foundtobebetterthan1%.

Toestimatetheglobal constanttermof equa-tion(1),thelocalconstanttermhastobeadded quadratically with the response non-uniformity.

The latter has been determined by performing position scans througheverymodule cells. As a result,theresponse non-uniformityislowerthan 0.6%onthewholemoduleforthebarrelandthe end-cap(see gure3). Itis smallerthan0.5%in regionsofsize=0:20:4. Asrequired, theresultingglobalconstanttermisbelow0.7%.

215

220

225

230

235

240

245

10

20

30

40

Energy (GeV)

MODULE P13

η (middle)

RMS/E (%) =

0.57

Num of Cells : 515

215

220

225

230

235

240

245

10

20

30

40

215

220

225

230

235

240

245

10

20

30

40

215

220

225

230

235

240

245

10

20

30

40

215

220

225

230

235

240

245

10

20

30

40

215

220

225

230

235

240

245

10

20

30

40

215

220

225

230

235

240

245

10

20

30

40

215

220

225

230

235

240

245

10

20

30

40

215

220

225

230

235

240

245

10

20

30

40

215

220

225

230

235

240

245

10

20

30

40

215

220

225

230

235

240

245

10

20

30

40

215

220

225

230

235

240

245

10

20

30

40

215

220

225

230

235

240

245

10

20

30

40

215

220

225

230

235

240

245

10

20

30

40

φ

=1

φ

=2

φ=3

φ=4

φ=5

φ=6

φ=7

φ=8

φ

=9

φ=10

φ=11

φ=12

φ=13

φ=14

215

220

225

230

235

240

245

0

50

(a)

Entries

730

Constant

94.12

Mean

119.8

Sigma 0.5892

Energy (GeV)

110

112

114

116

118

120

122

124

126

128

130

Number of cells

0

20

40

60

80

100

Entries

730

Constant

94.12

Mean

119.8

Sigma 0.5892

(b)

(5)

Energy-weightedbarycenters arecalculatedin thefrontand/or in themiddlecompartmentsto perform position measurements. Inthe  direc-tion, corrections for nite cellsize are done and the beam chambers resolution is unfolded. The positionresolutioninthefront(resp.middle) sec-tionisstablealong and amountsto0:1510

3 -units (resp. 0:3510

3

). These two  mea-surementscanbecombinedwiththelongitudinal showerbarycentersto estimatetheshower direc-tion. Anaveragepreliminary50mrad=

p

E(GeV) resolutionis achievedoverthewhole calorimeter whichisinagreementwithsimulationsandwithin ATLASspeci cations.

6.3. Time measurementresolution

Theoptimal lteringtechniqueprovides infor-mationontheparticlearrivaltime(equation(2)). Celltocelltimedi erencesarestudied. Figure4 showstheresultsobtainedforonebarrelcelland its neighbors,as a function of the energy. They are in agreement with the expected electronics contribution. The time resolution amounts to 70psat70GeV,whichiswithinATLAS spec-i cations.

7. Conclusions and outlook

Theseveralbeamtestsperformedonprototype and production modules show that the ATLAS EMcalorimeter meets thephysicsspeci cations. Theconstruction,testandintegrationofthe nal modules are presentlywell proceeding[4]. Com-binedruns of afull barrelwedge and ofall end-capliquidargoncalorimeterswilltakeplacenext year, and will provide a rstglimpse of the AT-LASdetector.

Acknowledgment

I thank my ATLAS-Larg-EM colleagues for providing me with gures and results. I am in-debtedtoE.Monnier,P.PralavorioandL.Serin fordiscussionsinthepreparationofthetalkand themanuscript.

Figure4. Timeresolution(symbols)asafunction of theenergy,andexpectedelectronics contribu-tion(line).

REFERENCES

1. The ATLAS Technical Proposal, CERN/LHCC/94-43(1994).

2. The Large Hadron Collider, CERN/AC/95-05(1995).

3. ATLASLiquidArgonCalorimeter,Technical DesignReport, CERN/LHCC/96-41(1996). 4. A. Jeremie, The ATLAS liquid argon

elec-tromagnetic calorimeter construction status, these proceedings.

5. ATLAS CalorimeterPerformance, Technical DesignReport, CERN/LHCC/96-40(1996). 6. W.E. Cleland, E.G. Stern, Nucl. Inst.

Meth.A338(1994)467.

Références

Documents relatifs

We will present studies with different amounts of material in front of the calorimeter, representing various regions in the ATLAS detector, performance results from the

This section, after a brief de- scription of the procedure to compute the electron energy in test beam data, presents some of the important per- formances like energy

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

a low frequency sinuso dal signal on the high voltage lines and to read the.. response from the signal layer by

Muons in the high energy electron beam have been used to study the EM barrel module 0 response. to \minimum ionising&#34;

barrel assembly, the irularity of the half barrel at the inner and outer radius. and at z = 0 mm and at z = 3200 mm

The gain ratio delivered by the test pulse and extracted from the slopes were compared and it was found that both methods give comparative results, well-correlated among channels,

Status of the construction of the ATLAS electromagnetic liquid argon calorimeter, overview of beam test performance studies.. International Conference on Calorimetry in High