• Aucun résultat trouvé

The scintillator option for the OPERA target tracker: results on the readout

N/A
N/A
Protected

Academic year: 2021

Partager "The scintillator option for the OPERA target tracker: results on the readout"

Copied!
39
0
0

Texte intégral

(1)

HAL Id: in2p3-00010669

http://hal.in2p3.fr/in2p3-00010669

Submitted on 10 Dec 2001

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

The scintillator option for the OPERA target tracker:

results on the readout

L. Chaussard, P. Jonsson, S. Katsanevas, J. Marteau, G. Moret, S. Gardien,

C. Girerd, D. Essertaize, G. Guillot, S. Vanzetto

To cite this version:

(2)

July06,2001

The scintillator option for the OPERA target tracker:

results on the readout.

L.Chaussard, P.Jonsson,S.Katsanevas,J.Marteau, G.Moret

S.Gardien,C.Girerd; D.Essertaize,G.Guillot, S.Vanzetto

InstitutdePhysiqueNucleairedeLyon

UniversiteClaudeBernardLyonI

F-69622Villeurbannecedex

Abstract

Thisnote summarizesthestudiesperformedat theIPNLconcerning thereadoutofthe scintillator

optionofthetargettracker(TT).Inparticularwereviewtheperformancesandeventuallimitations

ofthemultipixelphotodetectorHPD,theautotriggerablelownoiseVikingChips(VATAseries)and

anethernetbasedDACQsystem. Wepresentbeamtests,includingthefullreadoutchainfromthe

photodetectortotheworkstation,withboththeliquidandplasticscintillatoroptions.Basedonthe

abovewepresent analternative tothe baselineoptionfor the placement ofthe photodetectors. In

thisnewarchitecturethephotodetectorsandtheassociatedelectronicsareputatthecornersofthe

walls,farfromtothescintillatormodules.Westudytheimplicationsofthischoice,andpresentwork

inprogress concerning a prototype. We thenreviewthe implications ofthe current electronicsfor

thereadoutand event-buildingarchitectureandpresentresultsonthesimulationofthefullDACQ

(3)

ThebaselineoptionoftheOPERAtargettrackerforeseestheuseofplasticscintillator,readbya

multi-pixelphoto-detector(MaPMT)andauto-triggerableelectronics. TestsandMonte-Carlosimulationshave

beenundertakeninthecollaboration,andinLyoninparticular,tocharacterizetheperformanceofvarious

alternatives[1].

Inthisnote,insection2wepresentthetestswehaveperformedwithHybridPhotoDiodes(HPD's),

photodetectors that have recently reached a great level of maturity. We then proceed to present the

characterization of the VATA autotriggerable electronics (section 3). These electronics are suitable,

thoughdi erentversions,forboththeHPDandtheMaPMT.Thecurrentperformancesaresummarized

and a set of benchmarks for the LAL/Strasbourg chipunder constructionare implicitly set. Wethen

(section4) presentthe dataacquisition card ORCA, constructedin Lyon,and validatedin beamtests,

abletoreadtheabovefront-endelectronicsanddeliverthedatadirectlytotheEthernetnetwork. Section

5presentsthebeamtestsdonewiththefullreadoutchain,withbothplasticandliquidscintillatoroptions.

In section 6 we propose a target tracker architecture where the photodetectors are at the corners. In

sections 7 and 8 we discuss the implications of the electronics for the triggering and event-building

data-acquisitionandwespecifyfurtherourproposalforafullyEthernetbasedDACQ.The rstrealistic

nite-statemachinesimulationsofafullyspeci edDACQarchitecturearealsoshown. Inthe nalsection

werecapitulateour ndingsandpropositionsonallitemstouchedupon.

2 HPD characteristics

TheHPD'sarehybriddevicesusingaphotocathodetoconvertphotonsintophoto-electrons,accelerating

thelatterwithatypicalhighvoltagerangingfrom 8to 10kV.The8-10KeVphotoelectronsimpinging

onasiliconsensorconverttheir energytocharge. Theenergyneededto createan electron-holepairin

siliconisE

e h

=3:62eV.ThegainoftheHPDisgivenbyG(e ) = (U U

0

)(V)=E

e h

(eV),where

U istheappliedhighvoltageand U

0

representslossesinthesilicondead-layer;thenon-sensitiveregion.

ThetypicalgainoftheHPDis3000correspondingtoachargeof0.5fC.

Detailedstudieshavebeenperformedin Lyonusing a61 pixelsHPD model, produced byDEP[2],

thecharacteristicsofwhicharedisplayedin Table1. Fig.1showsthedesignofthe61pixelsHPD.Each

pixelhasitsownfeed-throughand connectingpin

1 .

TheexternaldimensionsoftheHPDare38mm13mm. Theusefuldiameterofinputwindowis18

mm. Thehighvoltageandgroundconnectionsuse2wiresontheside. TheHPDtubeissurroundedwith

arubbercoatingforisolation. Theinputwindowlies1mmunderthesurfaceof thiscoating. Thisis

usefulfortheconnectionofthe bercookiewiththeinputwindowwithoutimposingstrongconstraints

onthetubeitself.

Thephoto-cathodeisdepositedona beropticsentrancewindow. Thisgivesverygoodperformance

fortheHPDintermsofopticalcross-talk(seeSect. 2.5). Thephoto-cathodeisofmulti-alkaliS20type.

ItsquantumeÆciency asafunction ofthewavelengthisdetailedin Sect. 2.1andFig. 4.

InthisproximityfocusedHPDtheaccelerationdistancebetweenphoto-cathodeandthesiliconplane

isafewmillimeters. ThismakestheHPDimmunetomagnetic elds. Thesiliconsensorisdividedin 61

hexagonalpixels. Eachpixelis 2mm sideto side,with anactiveareaof3.5 mm

2

. A depletionvoltage

of60Visrequiredtofullydepletethesilicondiode. Thegapbetween2adjacentpixelsis50mandthe

electricalcross-talkislessthan1%. Theoutputcapacitanceofthepixelsisaround4pF.

Thefront-endelectronicsoftheHPDshouldhavehighgainandlownoise. Thelowoutputcapacitance

allowstheuseof standardcommercialchipsoriginally designedforthereadoutof silicondetectors(see

Sect. 3for a complete description of the front-end electronics). We useVA-TA type electronic chips,

directlybondedonafront-endboard.

ManytestshavebeencompletedtocharacterizetheHPDintermsof: resolution,uniformity,linearity,

cross-talk, dark current with LED pulsed light and MIPS passing through the proposed scintillator

detectors(plasticandliquid);wepresentthem inthefollowing.

(4)

Table1: HPD characteristics.

Opticalcharacteristics

photocathodetype S20

quantumeÆciency (at480nm) 16.7%

quantumeÆciency (at520nm) 13.0%

usefuldiameter 18mm

inputwindow beroptics

operatingvoltage(max) -12kV

Electricalcharacteristics

totalactivearea 225mm

2

numberofpixels 61

atto atdistance(hexagon) 2mm

diodeactiveareaperpixel 3.5mm

2

gap betweenpixels 50m

depletiondepth 300m

depletionvoltage 60V

outputcapacitance 4pF

deadlayerthickness(junction side) 2m equivalentSi

(5)

board (9.5cm  12.5cm) andkeptin ametallic black box. Thelightcan be distributed to the HPD

either throughasingle1mm diameter clear berin contact withits entrancewindowor througha 61

pixels cookie matching the pattern of the HPD pixels (Fig. 2). This permitted us measurements of

thecross-talkwith a ber-to-photo-detectorconnectionveryclosetothe nal design. Inparticularone

hastoa)minimizethedistance betweentheentrancewindowplaneandthecookie andb)optimizethe

matching betweenthe bersand the HPDpixels. The second requirementis obtainedbyrotating the

cookieandadjustingthelightlevelontheilluminatedpixelandtheneighbours.

Figure 2: Left: HPDtest setupinLyon. TheHPDisinsidethemetallicbox. Theclear berbundleisvisible

ontopofthisbox. Also shownistheVA-DACQacquisitionsystemfromIDEASfortheVA-TAreadout. Right:

details of the HPD cookie collecting bers at theHPD entrancewindow. The hexagonalpattern matches the

HPDpixeldistribution.

We used LED ref. RS 235-9922 for the light source. This is the same with the one used by the

MINOS collaborationfortheir calibrationsystem[3]). The emissionof theLED's (470 nm) is closeto

the maximumemission peak of theWLS bers. The LED wasdrivenwith short pulses (around 50ns

width)ofvariableamplitudes anddi erentrepetitionrates.

Thehigh voltage supplymust haveextremelylowripple. Weadopt theMatsusada[4] HV-15N-HP

with 3 mV ripple for 15 kV. The bias voltage is provided by a oating power supply. These power

supplies,aswellasthefront-endelectronicsdigitalandanalogsupplies,arecontrolledwithlowvoltages.

2.1 Quantum eÆciency

QuantumeÆciencyisobviouslyakeyissuefortheOPERATT.Thegreenextended S20photo-cathode

providesahighquantumeÆciency(above15%)atthemaximumemissionpeakoftheWLS bers. Fig.

3 shows the absorption and emission spectra of the Kuraray Y11 bers, de ned as the baselineWLS

bersforOPERA.FurthertheseWLShavemaximalattenuationlength(7m)atthegreen. SeeSect.

5.2.1fordetailedresults.

Boththesefeatureso ersome exibilityintheTTdesign. Agoodphotonbudgetandlowattenuation

o erthepossibilityofputtingthephotodetectorsat thecorners(seeSect. 6).

TheDEPspeci cationsgaveaquantumeÆciencyattheemissionpeakoftheWLS ber(480nm)of

16.5%. An independentmeasurementhasbeenperformed by J.Seguinot at CERN [5]whohas kindly

agreedto comparethequantumeÆcienciesoftheLyonHPDfromDEPandtheLyon64pixelMaPMT

from Hamamatsu. Fig. 4showstheresultofthemeasurement. At480nmthequantum eÆcienciesare

(6)

Y11 absorption and emission spectra

0

20

40

60

80

100

300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700

Emission

Absorption

λ (nm)

Spectrum (a.u.)

Figure3: KurarayY11WLS bersabsorptionandemissionspectra.

HPD and MaPMT quantum efficiencies

0

0.05

0.1

0.15

0.2

0.25

0.3

200

250

300

350

400

450

500

550

600

650

700

750

800

λ (nm)

Quantum Efficiency

Figure 4: QuantumeÆciency of theS20 photo-cathode measuredby DEP (black dots) and by J.Seguinot at

CERN(redsquares). Also shownis the CERNmeasurement of theHamamatsu64pixels MaPMT QE (green

triangles).

OnewouldhavehopedtohaveabetterratiooftheQEforthe"multi-alkali"(HPD)overthe"bi-alkai"

one(MaPMT).Thefact that theyarecomparablecouldbeattributed tothediÆcultyofdeposition on

the berwindow,and thefurther lossesthatthethelatterimposesontheincomingphotons. DEPcan

guaranteephotocathodeeÆcienciesof thepresentrange,but not50%higher.

2.2 Resolution

HPD'sareknowntohaveexcellentphotonresolution. Thisistheconsequenceofthedissipativeprocess

(7)

TheresolutionisillustratedinFig.5obtainedby ashingagivenpixeloftheHPD(usedfortriggering)

with an average of 13 photo-electronsand looking at thesignalon the6 direct neighbours. Light was

injectedthroughasingleclear beratadistanceofroughly1mmfromtheHPDentrancewindow. The

typicalemissionconeangleofthe berusedis35

o .

Fig.5showstheresultonthe6neighbouringpixelsandthedetailofoneofthem. Thephoto-electrons

areclearlyvisibleandclearlydistinctfromthepedestal( rstpeakaround200mV).Atleast6peaksare

visible. Themeannumberofphoto-electronscanbeevaluatedeitherwiththemeanvalueofthepedestal

subtractedspectrumorwithaPoisson ttothedistribution. Bothmethodsgiveforthistestanaverage

numberof 3photo-electronsonallthepixels.

Itisclearfrom gure5thattheintrinsicresolutionoftheHPDgivesanautomaticcalibrationofthe

readoutchain. Thedi erencebetweentwoconsecutivephotoelectronpeaksgivesthegain(typically 60

mV/p.ewiththefront-endelectronicsusedinthesetests). Duetodissipativesourceofmultiplicationno

gainvariationsareexpectedat thephotodetectorlevel.

0

250

500

750

1000

1250

1500

1750

2000

100

200

300

400

500

600

700

800

ID

Entries

Mean

RMS

13

60066

415.7

117.9

VA output (mV)

Number of events

Figure 5: Left: lightspectraonthesixdirectneighboursofa ashedpixel. Right: detailedspectrum ofoneof

thepixels.

TheHPD resolution ofthe singlephoto-electron has alsobeen achieved in auto-triggermode. The

thresholdoftheelectronicswassetbetweenthepedestalandthe rstphoto-electronpeakonthetriggering

part. We adjust this value on each pixel to compensate for pedestal spreads. Fig. 6 shows the dark

current spectrum of the photo-cathode of one channel. The signal-to-noise ratio (around6) gives an

eÆcientseparationbetweenpedestal and rstphoto-electron peak. Since onetriggersona partof the

signalshaped withafast ampli er thenoiseishigher atthe triggerpartthan at thecharge-measuring

partandthegoodsignaltonoiseratioof g6doesnotmeanthatwetriggerwitha100%eÆciency. The

auto-triggereÆciency, iscurrentlyunderstudy(see3).

2.3 Linearity

We studied the evolution of the HPD gain as a function of the high voltage applied. This test was

performedbyrecordingthedarkcurrentspectrumforvarioushighvoltages. Theminimumhighvoltage

valuetoseparatethe rstphoto-electronfromthepedestalis5kV. Themaximumhighvoltageapplied

was10kV.Thepositionsofthetwopeaksaregivenbythemeanvaluesoftwogaussians. Thetheoretical

gainslopeis 1000=3:62=276:2 e perkV. Theresultof themeasurement isdisplayedonFig.7with a

(8)

Dark current spectrum (HV=9kV)

0

250

500

750

1000

1250

1500

1750

2000

100

150

200

250

300

350

400

450

500

ID

Entries

Mean

RMS

13

17484

274.5

28.06

170.5 / 57

P1

1820.

P2

254.2

P3

9.230

P4

968.9

P5

303.8

P6

11.11

VA output (mV)

Number of events

Figure 6: Darkcurrentspectrumobtainedin auto-triggerablemode

Slope = 268 e

-

/kV

Figure 7: Left: Positions of the pedestalsand the rst photo-electron peak as a functionof the highvoltage

appliedtotheHPD.Right: Evaluationofthegainforeachhighvoltageapplied.

2.4 Uniformity

Thepixel-to-pixelgainuniformityis aclearadvantageof theHPD.Theuniformityisimportantforthe

front-endelectronicsdesignthathasnotto takeintoaccountthegainspreadcompensations.

Wemeasuredtheuniformitywiththedarkcurrentspectrumforeverypixelasexplainedintheprevious

subsection. Weoperatedin auto-triggerable modewith athresholdadjusted between thepedestaland

the rstphoto-electronpeak. Thehighvoltageappliedwas10kV.Thegainobtainedwasthencorrected

withthevariationsin gainofthefront-endelectronicsdeterminedindependentlyinachargecalibration

mode. Theresultis shown in Fig.8. Theleft plotdisplaysa2-D viewofthe 61HPDpixels with their

gain(inelectrons). Therightplotgivesthedistribution ofthesinglephoto-electronchargeQ

pe

for the

61pixels. Theresultinggainnon-uniformity,de nedas

Q pe

=hQ pe

(9)

charge

0

2

4

6

8

10

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

13.67 / 11

Constant

7.277

Mean

.4730

Sigma

.2738E-01

charge

0

2

4

6

8

10

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

13.67 / 11

Constant

7.277

Mean

.4730

Sigma

.2738E-01

charge (fc)

number of channels

Figure 8: Left: projectionofthe gain(inelectrons)forthe 61pixelsofthe HPD.Thegain spreadrangesfrom

2500to3500electrons. Right: singlephoto-electronchargedistribution.

2.5 Cross talk

Weevaluatedtheopticalcross-talkoftheHPDbyilluminatingapixelwithaclear berincontactwith

theentrancewindow. Thelightinjectedhadanaverageof6photo-electrons. Noopticalgreasewasused.

Thecross-talkisgivenbythefraction ofsignalreceivedbytheneighbouringpixels.

The Fig. 9shows the 3-D viewof the signalreceived by the 61 HPD pixels, normalizedto the signal

of the ashedpixel. Themaximum signalcorrelatedwith thelightinjectedis recordedon the6direct

neighboursofthe ashedpixelandisnotlargerthan2%perpixel. Thisintrinsiclowcross-talkisobtained

thankstothe beroptic entrancewindowwhichgivesabetterfocalisationoftheincominglight.

Normalized mean signal per pixel

Cross talk

mm

mm

Signal in triggered pixel (mV)

Signal in neighbour pixel (mV)

Figure9: Left: 3-Dviewofthesignal receivedbytheHPD61pixels,normalizedtothemaximumsignal. The

maximumcross-talksignalislessthan2%. Right: distributionofthelightreceivedbyapixelw.r.t. thedistance

(10)

Thecorollaryofthesensitivityatlargewavelengthsistheincreaseofthedarkcurrent(thermo-emission

of the photo-cathode). This darkcurrentmust be kept at a reasonablelevel in order to minimize the

dead time in an auto-triggerable acquisition operating with athreshold of afraction of photo-electron

(seeSec.7fordetailed results).

Two di erent measurements have been performed to cross-check the dark current rate with the

onegiven by DEPspeci cations. The rst oneis a direct measurementof the dark current spectrum

in auto-trigger mode with a threshold below the rst photo-electron. The limitation of such a

mea-surement is the uncertainty on the trigger eÆciency at any given threshold. A second measurement

has therefore been performed with an external trigger by looking at random dark current counts

occurring in correlation with the external trigger. Indeed the number of such events is given by :

N =f DC f external T integration ,wheref DC

isthedarkcurrentrate,f

external

theexternaltriggerrate

andT

integration

isthetimeofsensitivityoftheelectronics(typicallyfews). TheparameterT

integration

and the cut applied to select events corresponding to single photo-electrons have been cross-checked

withaLEDspectrum(pulsedlightatafrequencyequaltof

external

)). Fig.10showsthedi erentspectra

obtainedwithsuchamethod.

500 s of random trigger at 10 kHz

ch 14, pix 32

Slow shaping VA (mV)

N/4 mV

ch 14, pix 32

ch 14, pix 32

Figure 10: Light and dark current spectra obtained with an external trigger. The light spectra is used for

calibration. Thedarkcurrenteventsareinthe rstphoto-electronpeak.

Bothmeasurementsare consistentwithadarkcurrentratearound25 kHzcm

2

or1kHz/pixel. It

shouldbeemphasizedthattheHPDwasinsideitsclosedmetallicboxandthetemperaturewastypically

T ambiant

+5

o

. Theresultsobtainedin LyonareconsistentwithDEPspeci cations(14kHzcm

2

)given

theuncertaintiesonthetemperatureconditions(thedarkcurrentmaydoubleevery5degrees).

Thishighvalueofdarkcurrentrateisclearlyunacceptable. DEPagreedtotestaanewtypeofS20

photo-cathode,the so-called"hot"S20,with samefeatures around 500nmbut lowersensitivity in the

red(see g11). Thespeci cationsforthedarkcurrentarebelow4kHzcm

2

. Thisnewphoto-cathode

isavailableonthe61 pixelsversionand isalsothe photocathodeusedbythenewmultipixel HPD: the

163pixels HPD(see Sec. 6 fordetails). Given thelower size of the pixels in this new HPD, the dark

currentrateshoulddecreaseto anacceptableratebelow65Hzperpixel. Anew61pixelHPDwith"hot

(11)

S20 photocathodes quantum efficiencies

0

5

10

15

20

25

30

200 250 300 350 400 450 500 550 600 650 700 750 800 850 900

S20

Hot S20

S20 UV

λ (nm)

QE (

%

)

Figure 11: Left: quantumeÆciency oftheS20, "hot"S20 andS20 UVphoto-cathodes asmeasured byDEP.

TheS20 UVphoto-cathodemaybedepositedonaquartzinputwindowonly.

2.7 Advantages and limitations of the HPD for OPERA

TheHPDadvantageshavebeenpresentedindetail:

 Excellentresolution(S/Babove6)permittingautocalibrationofgain

 Excellentuniformity(2%)andlinearity(1%)

 Verylowcross-talk(2%)

 Immunityto magnetic elds. ThoughthismightbelessrelevantforOPERA

Thetwo"weak"pointsoftheHPDare:

 thehighrateofdarkcurrent(1kHz/pixel),ade ciencythatwillbehopefullycorrectedbythenew

photocathodethe"hotS20"(65Hz).

 the low gain, imposing sophisticated electronics. This we consider a less severe problem. We

believethatthenewgenerationoflownoiseelectronicsissuÆcientlywellunderstoodpermittingus

totacklethisproblemwithsuÆcientcon dence. Infactwehaveshownintheprevioussubsections

resultsonthesinglephotoelectrondetection. Furthertheexperimentallevelsofnoiseachieved(see

(12)

3.1 The VA-TA principle

Thefront-endelectronicsbelongtotheVA-TAfamily, rstdevelopedatCERNunderthenameVIKING

[6] and produced byIDEAS [7]. We brie y recallits principle: the VA-TA's are multi channel chips

2 ,

with charge-sensitivepreampli ers followed by afast and a slow shaper. The slow shaper (VA) has a

peakingtime of 1-2microsecondsand thefast shaper(TA) hasarise-time of75 nanoseconds. Each

channel inthetriggerchipTAisfollowedbyalevel-sensitivediscriminatorwithadjustablethreshold,a

serialshift-registerto selectthechannelsallowedtotriggerandamonostable. IntheVATAcgversiona

di erentthreshold canbeset foreachchannel. Theoutputsare ORedtogetherand canbesentto the

VApart. TheOR thenservesas asampleand hold signalforthechargeaccumulatedat theVA part.

Thedelaybetweentriggerandhold matchesthepeakingtimeof theVA (2s). ThesameORsignal

caninitiate the readoutsequence. IntheVA part,theoutputs of thepreampli er enter amultiplexer.

Itsswitchesarecontrolledbyabit-registerrunninginparallel. Theoutputofthemultiplexergoestothe

outputofthechipviaabu er. Onlyoneofthechannelsisseenontheoutputateveryreadoutstep. The

speedofreadoutisthenlimitedbythemultiplexerclockwhichmakesthebitintheregistertogglefrom

onechannelto thenext. Thespeci cationsforthemaximumacceptable clockfrequencygive10MHz,

thoughweencounteredproblemswhentryingtoreadabove5MHz. Thedata canthenbeclockedinto

anADC.

Thechipcanalsobeoperatedintestmodeviaanothermultiplexer/bit-registerontheinput,injecting

charges in the preampli er inputs. Further, it is also possible to use an external trigger for the VA

sample/holdand thestart of thereadout sequence. We willreport below ontests where wehaveused

bothaninternalandanexternaltrigger.

TheworkingprincipleandthetimingsequenceofaVA-TAcombinationaredisplayedinFig.12.

O

U

T

P

U

T

M

U

L

T

I

P

L

E

X

O

R

T

E

S

T

P

U

L

S

E

M

U

X

00

00

11

11

pad

00

00

11

11

H1(s)

H2(s)

+

-H1(s)

H2(s)

+

-TA

VA

Preamp

(charge

integrator)

Slow

shaper

Fast

shaper

Discri-minator

Fixed

with

monostable

vss

vss

vdd

Test pulse

Hold

Analogue

output

ORed

trigger

output

S&H buffer

Input

Time

Signal

Slow shaper

Fast shaper

signal

Preamplifier

Physical event

Undetected trigger

Threshold

4

3

N-1

N

2

Clock

1

Trigger output

Hold

Figure12: WorkingprincipleandtimingsequenceoftheVA-TA.

GiventhelowgainoftheHPD(3000e perphoto-electron)theVA-TAshould havehigh gainand

lownoiseperformance. Thesecharacteristicshavebeeninvestigatedeither in testmode(withinjection

ofchargeviaa1.8pFcapacitance)ordirectlywiththeHPDconnected. Wehavealsocharacterizedthe

chipsintermofdynamicrange,peakingtimesandcommonmodenoise.

2

(13)

The VA-TA concept can beapplied both to HPD and MaPMT. Onehas to adjust the polarity of the

inputsignalandthedynamic rangeofthechips. FortheHPDreadout, weusetheso-calledVA32cand

VA32rich. The rstone has agood signal/noiseratiobut averylimited dynamic range(linear on the

 11.5fC range, corresponding to a maximumlight yield of 46 photo-electrons). The second one has

alarger dynamic range (linear from -65 fC to +65 fC, correspondingto 260 photo-electrons). For the

MaPMTreadoutwecanusethetheVA32hdr11chip(hdrstandingforhigh dynamicrange). Although

the general features of this chip are comparable to the one of the former chips, its dynamic range is

considerably largerandmatchesthe characteristicsof aPMsignal(from -25pC to+25 pC).All these

chipswerebondeddirectlywithaTA32cg chipfortriggering.

Thecomparativedatafor theVA32c,VA32rich, VA32hdr11andTA32cgare giveninTab.2. Dueto

lackoftimewewereabletotestfullyonlytheVATAcgchip.

Table2: VA-TAperformance.

Chip VA32c VA32rich VA32hdr11 TA32cg

Gain(mV/fC) 150 35 0.1 -16(Gainstage=10)

Noise(mV) 10 1 0.25 2.5

Peakingtime(s) 2 2 0.8 0.075

Dynamicrange(fC) 11 65 25000

3.3 Performances of VATAcg

3.3.1 Gain

Thegainismeasuredincalibration mode. SymmetricmeasurementsareperformedfortheVAand TA

chips. For the VA chip, the pulse-heightis recorded for di erent valuesof injected charge. This gives

the value of the pedestals and the gain. For the TA, a scan is performed over the threshold voltage

rangeforagiven calibrationcharge. Thethresholdis foundwhenthe 50%triggereÆciencyis reached.

Therepetitionoftheprocedurefordi erentcalibrationchargesallowsthedeterminationthegainofthe

chip. The symmetricprocedure mayalso beused for cross-check(scan of thechargerange foragiven

voltagethreshold). Bothprocedures leadtosimilarresults. TheTA32cgchiphasagainstagethat can

beadjustedexternally. Thisstageallowstoselectvariablegainintheapproximativeratios1:3:6:10. The

distributionofthegainsfortwoVA32candtwoTAcgchipsaredisplayedinFig.13. Themeanvaluefor

the VA(TA) is around120(-16) mV/fC and the gainspread/chipis around2%. Thepedestalsremain

stablewhentheHPDisconnectedandtheHV isapplied.

3.3.2 Noise

TheVAnoiseiscomputedfromthe tofthepedestaldistribution. ThedistributionsfortwoVA32cchips,

withoutcommon-modenoisesubtraction,aregiveninFig.14. Theyarearound10mVcorrespondingto

500e ENC.Theintrinsicnoiseofthechip(obtainedbeforeconnectingtheHPD)isoftheorderof200

e ENC.TheTAnoiseiscomputedfrom thetriggereÆciencycurve. Atypicaldistribution isshownin

thesame gure. Itisaround2.5mVcorrespondingto900e ENC.Fromstandardtheoreticalcurvesof

noiseversussamplingtime oneknowsthat afactorof2reductionin noiseforboththeVAand theTA

is possible(200 and 500e ENC respectively for theVA and theTA); provided an optimized PCBis

designed. FortheVA, theperformancesastheyarenowaresuÆcient,butareductioninnoiseoffactor

2wouldcertainlybemorethanwelcomeintheTApart.

3.3.3 Trigger

TheTAgivesatriggerthatiscommonforallthechip. ThethresholdisalsosetforalltheTAchannels.

Thechannel-to-channelspreadbecomesalimitationwhen weare dealingwithverylowthresholds. To

(14)

distribution of gain

0

1

2

3

4

5

6

7

8

9

10

80

90

100

110

120

130

140

150

160

24.83 / 13

P1

3.931

P2

116.2

P3

2.099

P4

4.288

P5

123.7

P6

2.622

gain (mV/fC)

number of channels

100

150

200

250

300

350

400

0

10

20

30

40

50

60

channel

pedestal (mV)

Figure 13: Distributionof the VA32c gain (left),TA32cg gain (center)and VA32cpedestals (right). Thelast

plotshowsthestabilityoftheVApedestalswhenweconnecttheHPDandapplythehighvoltage.

distribution of noise

0

1

2

3

4

5

6

7

0

2

4

6

8

10

12

14

16

18

20

9.751 / 15

P1

6.581

P2

9.006

P3

-.3608

P4

3.092

P5

12.04

P6

.8084

noise (mV)

number of channels

Figure14: DistributionoftheVA32c(left)andoftheTA32cg(left)noise. Thevariationofthenoisew.r.t. the

peakingtimeisalsoshown(right).

of the thresholdsaround the commonvalue. Thethreshold spreadis then reduced bya factor 3after

optimizationofthebit-patternin theDACmask(Fig.15)

3.3.4 Dynamicrange

Thelinearityofthefrontendelectronicsoverthefullrequireddynamicrange(1 200p:e:corresponding

to0:5 100fC)canbecheckedinthecalibrationmode.

ThesignaloftheVAasafunction of theinputchargedeterminesthedynamic range. Thedataare

well ttedbyapolynomialoforderthreeVA

output = a 0 +a 1 Q+a 2 Q 2 +a 3 Q 3

. Fig.16showsthedataof

thesignalandthe tasafunctionoftheinputcharge. TheVA32Chasalineardynamicrangefrom0fC

to12:5fC. Forhighervalues,thedi erencebetweenalinearandapolynomial(oforderthree)response

becomes important, but acceptable and can be corrected up to 20 fC. With minor modi cations the

chipcanacceptonlyonepolarityandthereforedoubleitsrangeupto25-40fCcorrespondingto80p.e.

Butthis isnotthedirection we havetaken, sinceweintend to testtheVA-rich chipwhich hasamuch

(15)

Mean = -45.91 mV

σ = 2.491 mV

Mean = -46.86 mV

σ = 0.802 mV

Figure15: ReductionofthethresholdspreadafterDACoptimizationintheTAchip.

Non linearity (‰)

(16)

Duringthebeamtestsof Mayand June2001wecompleted the rsttests ofafullreadout chain, from

thescintillatortotheworkstation,inwhatweproposetobethe nalcon guration. Theresultsofthese

tests will be presented in the next section. In this section wepresent the acquisition card, under the

preliminary nameORCA(OperaReadoutCArd) which includesa12bit,25 MHzADC, thesequencing

element(aFPGAofthetypeAlteraAPEX20K200)andanEthernetchipportingthedatadirectlytoa

PC.TheEthernetcontroller(currentlya10Mbits/sHPchiptobesoonreplacedbya100Mbit/sLINUX

chip)allowsnotonlytoaccessandcontrolthefront-endelectronicsthroughhttpperformingslowcontrol

functions but alsosend thedatathroughTCP/IP[8] totheworkstationwith highthroughput (forthe

timebeing: 1Mbit/s). Thedesign,development,productionandtestingofORCAhasbeendonebyour

laboratory.

AblockdiagramofORCAand itsinteractionwiththeVATA front-endisshownin gure 17

From Photodetector

0

63

Or trigger

Readout logic signals

PPS

Ethernet

Analog

Front End

ADC

Stamping

Time

Logic

Control

FIFO

Ethernet

Capable

Device

Calibration

Monitoring

...

Optional Hard Reset

Figure17: SchematicsofanEthernetCapableFront-endModule

Thiscardallowsadirectcontroloftheacquisitionwithoutusinganacquisitionbus. Itiscoste ective,

giventhelowpriceoftheEthernetcontrollerchips,easyto controlfromaPCunder Windowsor Linux

andwellsuitedforacompleteintegrationclosetothefront-endelectronicssinceonlyoneEthernetcable

is needed to access the acquisition. It is also a perfectly exible candidate for testing the scintillator

modules atdi erentlabsduring theproductionphase,andduringinstallationat GranSasso, sinceitis

perfectlyautonomous: anyportablePCcanbeconnectedtotheEthernetportandtakedata.

Aphotoofthecardcanbeseenin gure 18.

(17)

ORCA, in moredetail,is anEthernetCapableFront-endModule usingaEthernetdevicefrom Agilent

Laboratories[9](WebplugorBFOOT11501). ThisdeviceisacustomASICbasedona68000

micropro-cessorandtheVxWorksrealtimekernel. ItcontainsanembeddedEthernetcontroller,includingaWeb

serverandexpectstoreceivethefront-enddatathrougha5MbpslinkobeyingtheIEEE1451.2standard

[10]. TheIEEE1451.2standardprovidestheabilitytoproducenetwork-capable"smartsensors". It

par-titionsasmartdevice intoaNetworkCapable ApplicationProcessor(NCAP, inourcasethe BFOOT)

andaSmartTransducerInterfaceModule(STIM,inourcasetheADCwiththeFPGAsequencer). The

STIM architectureincludes twomain blocs. The rst blocimplementsthe minimal mandatorypartof

the IEEE 1451.2 standard. The second main bloc containsthe transducer channels and the front-end

sequencer. Thisblocprovidesallthefeaturesneededtocontroltheanalogfront-endchip(VA-TA32cg).

TheNCAPprocessorinterfacestheSTIMwiththeNetwork andallowstocontrolittransparently.

Thepresentprototypeincludesatimestampingfunction,realizedbylatchinganexternalsignaland

givingitatime labelcomingfrom alocalclock. A dedicatedinpu fromanexternally distributed clock

synchronizedonaGPSreceiverpermitsanabsolutetimestamping.

Anodecanbeaccessed inavarietyofways.

 Theprimarymethod isthroughthewebinterfacebytypingaUniversalResourceLocator(URL).

Fig. 19 shows an example of JAVA appletwhich can read continuously an ADC channel in an

oscilloscopemode.

Figure19: WebOscilloscope

 The node can also be accessed by http commands. E.g the command: Http

://ly-otmp9/bin/1451dot2/read ?startChan=2&stopChan=2&stim=1 reads achannel with 2

bytes ofdata.

 TheBFOOTalsoprovidesadatastreamingapplicationwhichallowstokeepanetworkconnection

openedandsendthedatacontinuouslyonEthernet. Thedatastreamingmodeisaspeci c

applica-tionbasedontwothreads,which sharethesamesetofringbu ers. Wehaveachievedthroughput

close to 1 Mbit/s with this function. Figure 20 shows an example of data taken through the

network.

We validated the concept using the embedded Ethernet controller BFOOT 11501. Unfortunately,

AgilenthasdecidedtodiscontinuethischipduetoinsuÆcientdemand. Weluckilyfounditssuccessor,a

lowpowerprocessor(less than500mW),implementingfullLINUX capabilities, includingmultitasking

and equipped with a 100Mbit/s port. It is called ETRAX [13] and has had a very wide distribution

(over1millionsoldalready). Choosing aprocessorwithLINUX, isaguaranteethatwewillbeimmune

toindustrial accidentsofthetypeexperiencedalreadywithAgilent.

4.2 May-June beam tests: test of the full readout chain

(18)

wasachievedviaa50pinsERNIconnectoranda atcable(thiswasimposedbythefront-endelectronics

board). TheHPD,pluggedonthefront-endboard,wasinsideasmallmetallicboxshieldedagainstlight

leakages. Allthepowersupplies(high voltageandHPDbiasvoltage)were xedonthebacksideof the

module. The module was thendriven by lowvoltage signals(max+24V) controlled from the control

roomandthedataacquisition wasperformedthroughasingleethernetconnection. Thisgaveusahigh

mobilityand exibilityofinstallationandrunning.

Figure 21: Picture oftheHPD/VA-TA/EthernetDAQmodule usedduring theMay and Junetestsbeamsat

CERN.The HPD withitsfront-endelectronicsis located inthe metallicbox. The DACQcard is sandwiched

betweenthetwometallicplanes. Powersuppliesareattachedontheback-plane.

We tested the control of the front-end electronics both in external and in auto-triggerable modes.

We checkedthe data transferup to 1Mbits/s (corresponding to 150Hz/channel eventrate for the 64

channel VATAcg). Wealsocheckedthetimestampingandlabelingoftheevents. Thetriggers(external

and auto-trigger)weretimestamped thanksto alocal50 MHzlocalclock (20nsaccuracy) toallowfor

o -linereconstruction.

Thedata transferred were the ADC value(s) for 1 to 64 channels, the triggertimestamps and also

two di erent types of counters giving the number of auto-triggers between two external triggers and

thenumberof auto-triggersin agiventime windowafter thelast externaltrigger. These twocounters

are used to study noiseand triggereÆciencies. All thefunctionalities of the readout chain havebeen

successfullytested. Datapresentedin thenextsectionwereobtainedwiththisreadoutsystem.

(19)

0

1

0

0

1

1

HPD cookie

Logic

Stamping

Time

Logic

Control

Calibration

Monitoring

...

ADC

Ethernet

Capable

Device

FIFO

H1(s)

H2(s)

+

-H1(s)

H2(s)

+

-Preamp

(charge

integrator)

Slow

shaper

Fast

shaper

Discri-minator

Fixed

with

monostable

vss

vss

vdd

Test pulse

Hold

S&H buffer

Input

pad

T

E

S

T

P

U

L

S

E

M

U

X

O

U

T

P

U

T

M

U

L

T

I

P

L

E

X

O

R

VA

TA

signals

ORed

trigger

Analog

out

HPD

61 pixels

2 x 32 channels

VA-TA

DAQ

Ethernet

(48 connected)

Scintillator

(3 x 16 strips)

optical

connector

Figure22: Generalarchitectureofthescintillatortelescopereadoutchain. Themajorelementsofthechainare

thedetectoritself,the HPD,theVA-TAfront-endchipsandEthernetDACQsystem. Thefull chainwastested

(20)

Weperformed testsof scintillator readoutwith anHPD, usingbothplastic and liquidscintillatorwith

radioactivesources,cosmic raysandparticlebeams.

5.1 Tests of the HPD with the plastic scintillator

5.1.1 Asmall telescope prototype

A small plasticscintillator prototypewasbuiltin Lyon. The prototypehas3planesof 16plastic

scin-tillatorbars. Thescintillatorcame fromPol.Hi.Tech(same batchastheoneusedto buildthefullscale

prototypeinStrasbourg[11]). Thebarswere41cmlong,2.6cmwideand1cmthick. Eachbarisread

by WLS bers. Two planeswere equipped with Kuraray Y11 bers(1.2 mm diameter) and the third

onehas Bicron BC91A bers (1 mm diameter). The WLS bers end to an optical connector at both

ends. Theyaregluedtothisconnectorwithcarbondopedglue. Theendsofthe bersarethenpolished

by hand. The minimal and maximal ber lengthsare respectively 70 cm and 100 cm. The bersare

gluedto thescintillatorin agroove(1.6mmthickand1.6mm deep)made withasaw. Theglueis the

standardBicronBC600. Thebarsarethen paintedwithare ectivepaint. Weused theBicron BC620

and applied 4layers with abrush. The strips are then collected, glued together in a 70 cm  41 cm

U-shapealuminiumpro le(the aluminiumthicknessis500m). Theopticalconnectors arealso glued

onthispro le. TheplaneisthenclosedwithanotherU-shapealuminiumpro legluedtothe rstpro le

andtothestrips(Fig.23).

Figure 23: Viewofascintillatorplanewithstripsgluedonanaluminiumpro leandtheWLS bersendedby

the rsthalf ofanopticalconnector.

Thethree planescanbe alignedthanksto transversebars xed withscrews. Thedistance between

(21)

5.1.2 Connectortransmissionand crosstalk

InthetestsofMayandJune2001atCERNthelightwasreadononesidebyasingleHPDwith48pixels

connected. Thetransmission wasensured by abunch of 35cm longclear bers(Bicron BC98MC,1.2

mmdiameter) endedonthe telescopeside byanopticalconnector, matching theoneof thescintillator

plane,andonthephoto-detectorsidebyahexagonalcookiematchingtheHPDpixelpattern.

Thestrip-to-clear- berconnectorshavebeendesigned andbuiltin Lyon. Theyconsist of twoPVC

pieces, 68 mm large and 10 mm wide with 16 holes for the bers, two 3 mm diameter holes for the

alignmentpinsand two3mm holesforthe screws. Twoconsecutive bersare separatedby a2.5mm

gap. Fig.25givethedetailsoftheopticalconnector.

Therelative alignmentof thetwohalvesisgivenbytwometallic pins. The mechanicalaccuracyof

the bersholesissupposedtobeatthelevelof20m.Thesurfaceofthetwohalveshasbeenpolished

byhand. The overalltransmissionof these connectors hasbeen measuredto be above80 %. It canin

principlebeincreasedwithahardermaterial(PVCused toget somedeformationsifone pressthetwo

halvestoohard),opticalgreaseandalsobyadi erenttreatmentofthesurfaces(withadiamond y-cut

machiningforinstance).

Onthecookiesidewemade"Mercedeslike"cookiestomergethe316 berbunchestothesameHPD,

testing the possibility that the granularity of the detector does notmatch thegranularityof thestrip

module,orthestripconnector. Thenon-connectedpixelswerecoveredwithblackadhesivetominimize

possiblere ectionof light at thisend. We havealsoconstructedsimilar cookiesfor theMaPMT's(see

Fig.26. Theywillbeusedincomparativetests.

5.1.3 MIPresponse

TestshavebeendoneinCERN(PST7)inMayandJune2001. The rstcalibrationtestisthe

(22)

Figure26: PictureoftheHPD(left)andMaPMTcookies(right)connectedtotheplasticscintillatortelescope.

of 4scintillators(2 ofthem were1cm wide ngers). Werunwith10 GeVparticles(mostlypionswith

asmallamountof electrons). Theresponse ofthe stripsisdisplayedonFig.27. Twoestimations have

beenperformed, the rst one using aPoisson t to thedistribution and the second onerelyingon the

meanvalueofthedistribution. Discrepanciesbetweenthetwoestimationsoccurforsomestrips(mainly

intheplanewith1mm bers)becauseoflargepedestalsonthecorrespondingchannelsthatgivealower

thanexpectedmeanvalue. Anotherlimitationin thesystematicscan ofthe MIPresponse wasthelow

statisticsfor thestrips at theedges (mainly strips15 and16). Theaverage numberof photo-electrons

obtainedontheplaneswith1.2mmWLS bersis8.4forthe rstplane(withaRMSof0.8)and9.0for

thesecondone(withaRMSof1.3). Thecorrespondingnumberofphoto-electronsforthethirdplaneis

6.1(RMS1.2). Thislowervalueismainly duetothelowerlightyieldoftheBC91A berscomparedto

theY11. One berwasbrokenat theedgeof theplane. The resultsobtainedhereareconsistentwith

(23)

plane 1

N

p.e.

per mip at d

HPD

=40 + 35 cm

Strip number

N

pe

plane 2

Strip number

N

pe

plane 3

N

p.e.

per mip at d

HPD

=40 + 35 cm

Strip number

N

pe

Figure27: MIPresponseof32stripsequippedwith1.2 mmWLS bers(leftplots)andwith1mmWLS bers

(rightplot). Theaverage numberofphoto-electronsisrespectively9and6forthetwo berdiameters. Fiber#

16onplane3isbroken.

5.1.4 Opticalcross-talk

Theoptical cross-talkwith theHPD cookie hasbeenstudied aswell. As mentionedbefore, one hasto

optimizethe position ofthe bersw.r.t. the position ofthe HPDpixels. This isdone byrotating the

cookiearoundthecentral bertomaximizethesignalononegivenpixeland tominimizethesignalon

the neighbours. This procedure givesasatisfactory cross-talk below 2%(which is the intrinsiclimitof

the HPD).Fig.28 showsthe cross-talkfor theeventsoccurring in pixels 13, 24and 42(corresponding

to thestrips# 8in each plane). Thefractionof theincidentlightis lessthan2%onthe neighbouring

pixelsofthese3pixels.

5.2 Tests of the HPD with the liquid scintillator

Tests have also been performed using liquid scintillator setups. The detectors have been produced at

CERN(byI.Kresloandcollaborators). Theyconsist ofpolycarbonatecells(1 1cm

2

cross-section)of

variable lengths (up to 7 m) lledwith BicronBC570 scintillating oil. Thelight is read by a1.2 mm

WLS ber(Y11)whichislocatedapproximativelyatthecenterofthecell. Eachcellisclosedbya3

cmsiliconjoint(CAF50siliconglue). We rsttestedwith cosmicraysa12cellsdetector(4 planesof3

cells) 6m long,read ononesidebytheHPD,withoutanyre ectorontheother side. Inthisdetector,

thecellswere notclosedandthe liquidcamedownto theHPDcookie . Thenwetook dataonthefull

scaleliquidscintillatorprototypeat CERNduring theMayandJunebeamtestperiod. TheTiO

2 load

wasincreasedto20%betweenthetwoteststoimprovethelightyieldanddecreasetheopticalcross-talk

betweenadjacentcells.

5.2.1 Cosmicray setup. Measurementofattenuationlength

Thecosmic raysetupdescribed aboveis shownon Fig.29. Thedetector waswrappedwith aluminized

Mylar. The triggeringsystem consists of 3PM's in coincidenceand the trigger was send to the HPD

readoutsystem. The12 berswereconnectedtoanHPDthroughaspeciallymadecookie.

Theaim of this test was to measure the attenuationlengthalong the ber. Data havebeen taken

at di erentpositions along the detector (from 0.6 m to 5.8 m) by moving the triggeringsystem. The

averagenumberofphoto-electronsat4m wasmeasuredtobe5. Fig.30showsthevariationofthelight

(24)

Cross talk, Plastic Module

Normalized average signal per HPD pixel mm

mm

Figure28: Displayofthe61HPDpixels. Selectedeventsoccurinpixels13,24and42. Thesignalsarenormalized

tothemaximumsignal.

Figure29: PictureoftheliquidscintillatorcosmicssetuptestedinLyonwithaHPDreadoutsystem

of cosmicraydata taking)thecurveis ttedwith asingleexponential. Thecorrespondingattenuation

(25)

Attenuation length measurements w. Liquid Scintillator

Distance from HPD (m)

Mean nr of p.e.

Figure30: Variationofthelightyieldw.r.t. thedistancetotheHPD.The ttingcurveisasingleexponential.

5.2.2 Beamtests

The MIP response of the full scale liquid scintillator prototype was also investigated with the HPD

readoutsystem. Inthisexperiment,a6mhorizontalplaneof50cellswasreadbyoneHPDononeside

and one EBCCD on theother side. 2horizontal and 3 vertical planes were also read by the EBCCD

ononeside. Leadbricks(5.6 cmof Pb) were sandwiched betweenthe 3plane"doublets" andvariable

amountofPbwasputin frontofthe rstplane(theoneconnectedto theHPD).Testswereperformed

atvariableenergies(2,4,6and 8GeV).

WepresentheretheresultsfortheMIPresponse. ThespectraforonecentralcellisgiveninFig.31.

The average number of photo-electrons 4.6 at 4m distance, is fully consistent with the one obtained

withthe cosmicraysetup atacomparabledistance. Themip responseand attenuationlengtharealso

consistentwitharadioactivesourcemeasurementnotshownhere.

ch44

Strip 23, plane 1

N

pe

N

Figure 31: MIP response spectrum at 4 mfrom the HPD ona central cell(# 23). The average numberof

(26)

Thebaselineoptionfortheelectronicdetectorin OPERAisascintillatortrackerwithplasticscintillator

strips,6.7 mlong,1cmthickand2.6cm wide,readoutwithWLS bersandthe Hamamatsu64pixels

H7546MaPMTplacedatbothendsofthe bers[12]. Thegeometryofthetrackeris xedbythechoice

of these elements. The basic units are sub-modules of 64 strips readout by two MaPMT's. Four

sub-modules areassembled in situto constructawholescintillatorwall. Twoplaneswithstrips orthogonal

arecoupledtoformax y tracker. BasicnumbersforthebaselinetargettrackerarerecalledinTab.3.

Table3: Reminderofthenumberofelementsinthebaselinetargettracker.

# perplane 3super-modules

strips 256 36864

units 4 576

MaPMT's 8 1152

Inthisbaselinedesignthephoto-detectorsarecontainedin thesub-modules withthefront-end

elec-tronics. Themain advantagesofthis solution,is theavoidanceofopticalconnectors andthethe

modu-larityofthewholecomplex. Its maindrawbacksasweseethemare:

 lowaccessibilityofthephoto-detectorsandthefront-endelectronics (inparticularforthevertical

stripsplanes);

 fragilityofthemodules(withphoto-detectorsandelectronicsembedded)duringtransportationand

assembly;

 closecouplingbetweentheproductionofthescintillatormodules andthephotodetectorand

elec-tronicsassembly. Weputbothitemsonthecriticalpath.

 large longitudinal dimensions of the sub-modules. The end-manifold length, around 40 cm, is

imposedbythe bersbendingradius,thephoto-detectorandcookielengths,theelectronicreadout

card andmechanicalsupport. Thisextralengthcouldinterfere withtheworkingsofthethebrick

manipulatorrobot. Areductionofthislengthcouldbewelcome;

 large transversedimensions imposed by thephoto-detector. The end-manifold hasathicknessof

32 mm : 30 mm due to the MaPMT thickness and 1mm margin on each side. Probably larger

margins will be needed. The increased length increases quadratically the scanning load for the

eventsrequiringabrick-to-bricktrackmatching.

In this note we propose a possible alternative to the baseline option which foresees to locate the

photo-detectorsin the"corners"of thetarget trackerplanes. Thephoto-detectorsshould behoused in

metallicboxesattachedtothetransversebeamsofthedetector. Thissolutionallowstoovercomeallthe

drawbacksstatedbeforeatthecostof theuseof clear bersandoptical connectors(optionretained by

theMINOScollaboration,seeSec.6.3formoredetails).

Thetransverse dimensionscouldbereduced down to theintrinsic width of thescintillatorplus the

mechanical support and tolerances (one can assume22 to 25 mmtransverse dimensions depending on

themechanicalsupport). Furthermore thelongitudinalend-manifoldlengthisreducedto theminimum

bending radius of the bers (10 cm). The accessibility to the photo-detectorsis better because there

are nomechanicalsupport (likesprings...) in this cornerpartofthe detector. Furthermore in thecase

we introduce a x-yplane coincidence the triggeringsignalsare only traveling between four clusters of

photodetectors/plane.

Thetransportation can bemade separately for the passiveelements (scintillatorsub-modules) and

the photo-detectors boxes. The scintillator and the photo-detector can be tested and calibrated rst

separately on the respective production sites and then connected together with the clear bers for a

globalcalibrationtest. ThistestcouldbeperformedeitherintheGranSassoorinoneoftheproduction

sites.

Thisarchitectureiscompatible withbothplastic andliquid scintillatoroptions. Furthermore itcan

bedesignedforaMaPMToraHPDreadout. Wewillpresentinthisnoteapossibleschemewithanew

(27)

ThemainfeaturesoftheHPDpresentedinthisnote(resolution,uniformity,linearity,lowcross-talkand

good quantum eÆciency)havebeenevaluatedin Lyonwith the61-pixelsmodelavailableatthat time.

Since then, DEP has developed for the BTeV collaboration an HPD with 163 pixels. The major

changehasbeenthere-designofthesiliconchip. TheR&Dforthisisnowcompletedandthe rsttubes

havebeen delivered to BTeV and anotherone couldbe delivered forOPERA in 3month's time. The

design of such a tube is displayed on Fig. 32. It will be a proximity focusing tube with a "hot" S20

photo-cathode.

Figure32: Preliminarydesignofthenew163pixels,proximityfocusingtube.

Thetube is thesame asthe61 pixels (same dimensions, see Fig.1). ThePGA socket is larger (42

mm) and has 192 pins (17 of which are not connected). The pixels have still hexagonal shape with

shorterdimensions(1.345mm atto atinsteadof2mm),1.57mm

2

activeareaand40mgapbetween

adjacentpixels. Fig.33givesthedetailsofthePINdiode. Theoutputcapacitanceisslightlyreduced(3

pFinsteadof4pF).

The rst estimations show that this imposes a maximal diameter of 1.1 mm for the bers. The

cross-talkofsuchacon gurationneedsalsoto beinvestigated.

6.2 Proposals for a tracker architecture

Inthebasicdesign 160pixelsofthe HPDareconnected toascintillatorsub-module. These160pixels

correspondto5chipswith32VATA(ortheLALchip)channelseach. Asmentionedbefore,thesolution

iscompatiblewitheitherplasticorliquidscintillator. Inthecaseofplasticscintillator,wecouldsuppose

that westay closeto the baselinedesign with only di erencethe location of thephotodetectors and a

slightreduction of transverse length. We could connect upto 320 strips on four HPD's for one plane

(28)

numberof tubes forthe OPERA detector is therefore 576(that is half of thebaseline proposal). The

segmentationofthedetectorcouldbedecreasedbytaking2.1cm widescintillatorstrips.

Inthe case of liquid scintillator the segmentation could be easily varied. We will assume that the

segmentation is11cm

2

(standard polycarbonatecellsalreadytested bythe collaboration). Tokeep

thesamenumberofreadoutchannels,weproposetoreadoutthe bersonlyatoneendwithamirror(or

somere ectivematerial)depositedattheotherend. Thenwecouldgather640 bersonfourHPD'sfor

oneplane. This requires8HPD'sperx y planejust asin thepreviouscase. Therefore576tubesare

neededinthisarchitecturealso.

Theincreasein berlengthisbalancedbythelowerpriceoftheliquidscintillator. Inorderto limit

lowsensitivityareas(farawayfromthephoto-detectorand thereforewiththelowest numberof

photo-electronsdueto theabsorptionalongthe ber), thereadout sidemay bealternatedoneachplane. We

show2possiblesketchesforthemodulearchitectureonFig.34. Weseefromtheseschemesthat2HPD's

arehousedinonephoto-detectorboxthatis xedinthecorner. AlightinjectionsystemusingLED'scan

behousedin suchboxes(theconstraintsin termsofweightanddimensionsarereleasedinthecorners).

6.3 Optical connections

AcriticalpointoftheproposedarchitectureistheopticalconnectionfromtheWLS berstothe

photo-detectors. The mosteÆcient wayto performthis connection isto use clear bers which havealonger

attenuationlengththan theWLS bers. Forinstance theMINOS collaborationquotes anattenuation

lengthof14mforthe1.2mmKuraray bers. Thisconnectiongivesthepossibilitytodecouplethe

scin-tillatorsub-modules(passiveelements)fromthereadout(photo-detectorandelectronics). Thedrawback

isthelightlossintheconnector. Neverthelessthe MINOScollaborationhavedesignedconnectorswith

above90% absolutetransmission.

For 90%absolute transmission,thenthemaximal lightlossalonga berstartingfrom thecenter

ofthedetectorandgoingtoaphoto-detectorcookielocatedinacorner(weassume4m length)is30%.

Fortheshorterclear bers(withamaximallengthassumedto be1m)theattenuationis15%.

Twotypesof opticalconnectionscould be foreseen(Fig.35). The rst one(type(a))(MINOS like)

(29)

HPD (x2)

HPD (x2)

HPD (x2)

HPD (x2)

mirror

160 clear

fibers

160

160

cells

cells

HPD (x2)

HPD (x2)

HPD (x2)

HPD (x2)

160 clear

fibers

160

cells

cells

80

Figure34: Possiblesketchesforthetrackerarchitecturewithoneortwoendsreadout(resp. leftandrightplot).

The gureshowsthexandycells. Theclear bersarealsodrawn(greenlines). TheyareconnectedontheHPD

boxeswhichhouse2HPD's160pixelsto xthesegmentation. Intheleftplot,Thehatchedareasrepresentthe

mirrorsattheendofthe bers.

with clear bers. This o ers theadvantageto have short connectors (with agood relativealignment)

thatshouldbeeasiertoproduce. Inthesecondprocedure(type(b))weuselongbarsinwhichthe bers

areglued. TheWLS bersarecutat theexactdimensionofthesub-modules, withoutextralength. As

theabsorptionin these bersvariesrapidlyatshort distances,weavoidlargespreadsin thelightyield.

Thetotalextralengthofthe bersoutofthesub-modulesisalsoreducedw.r.t. the rstprocedure. The

weakpointofthisprocedureis theabsolutetransmissionthat couldbeachievedwith such aconnector.

StudiesareunderwayinLyononaliquidscintillatorprototyperealizedincollaborationwithCERN(see

Sec.6.4).

detector

Photo-detector

Photo-WLS fibers

type (a)

type (b)

clear fibers

clear fibers

WLS

fibers

(30)

Thepurposeofthisprototypeisthestudyofthelightyieldwiththestandardliquidscintillatorusedby

thecollaboration,thestandard11cm

2

polycarbonatecellsloadedwithTiO

2

andclear berconnection

ofthesecondtype(so-calledtype(b)inthepreviousSection). Ageneralviewoftheprototypeisshown

inFig.36. Itconsistsof60cellsclosedateachendsbya3cmsiliconglueend-capandthe rsthalfof

anopticalconnector. Eachcellis cutatitsendover1cmin ordertoallowtheliquidtogofrom cell

tocellduringthe llingprocedure(seedetailonFig.36).

Figure36: Designoftheliquidscintillator prototype.

The rsthalfoftheopticalconnectorismadeoftwo33cmplastic bars(PVCwill beusedforthe

prototype)thataredetailedinFig.37. Eachbarhas30holesforthe bers(wewilluse1.2mmWLSand

clear bers), 30holesonthetopforthe bergluing,6alignmentpinsand6screws. One5mmdiameter

holeispiercedintothebarfor lling. A5cmtubegoesfromthisholeinsidethedetector(outsideofthe

siliconglueend-cap). Anexternaltubeisusedtoconnecttothe llingpump. Oncethe llinghasbeen

completed this externaltube isremovedand replaced withadedicated screw forliquid tightness. The

(31)
(32)

Theupcomingmilestonedoesnotconcernthe triggerandthedata acquisition. Neverthelessthechoice

of a tracking device and detector imposes constraintsdue to singles rates, data loads, dead-timesand

spuriousextractionofbricks.

Furthermore,alargepartoftheLyongrouptestbeamactivityconcernedthevalidationofafulldata

acquisition and readout chain from the photodetector to theworkstation. We analyzethe possibilities

o eredbysuchaschemefortriggeringand readout. Theschemedoesnotdepend onthephotodetector

(MaPMTorHPD)optionanditcanimplementeitherfullautotriggerabilityorax-ycoincidencetrigger.

Ifoneappliessomemodi cationstothefrontendthis schemeisalsoapplicableto RPC's.

7.1 Dead time

Intheprevioussections,wepresentedtheVATAcg front-endscheme.

Webrie yrecallitsprinciple: itconsistsof64-channelchipswherethechargeispreampli edandthen

shapedthroughafastandaslowshaper. Theslowshaper(VA)hasarise-timeof1-2microsecondsand

thefastshaper(TAcg)hasarise-timeof70nanoseconds. Thesignalsofthefastshaperpassthrough

adiscriminator,andtheirORservesasaholdsignaltosampleonthepeakthechargeaccumulatedover

the64channelsoftheVApart. Thesamesignalinitiates thereadout sequencewhich clocksthe64fold

multiplexed dataintoanADC. Onethushasafullytrigerlessscheme(schemeA).Thecurrentreadout

speeddeterminedbythemultiplexer(5 MHz) doesnotpermitthe dead-timelessreadoutof a160pixel

HPDbyonlyone ADC

3 .

Thedead-timesofschemeAisgivenbytheformula:

Deadtime=(1 e D ) D=Nr(t p +Nt r )

whereNisthenumberofchannels(e.g64)andristhesinglesrateperchannel.Weassumeashaping

time oft

p

=2microsecondsand a5MHzreadout clock(t

r

=200ns/channel). ForD 1 wehaveof

course (1 e

D

) !D. Figure 39 showsthe percentof deadtime asa function of thesingles rateof

onechannelfor a64foldreadout and 3clock speeds. A nominal 5% deadtime is reached for asingles

rateof 50Hz and5MHzclockreadout. Bydoublingthereadout speedone obtainsthesamelimitfor

100 Hz, and at 20 MHz oneobtains 150 Hz. For comparison the same limit for an optionwhere 160

pixels aremultiplexed in oneADC, and20 MHzreadout is30 Hz. Inconclusion,with thepresentand

forseable readout speeds the full autotriggerability withoutdead time canbe achieved only ifwekeep

the64granularityforthereadoutchain.

Alternativelyone canuse ax-ycoincidence. Wecallthis schemeB. Thecurrentprototypereadout

cardORCAacceptsexternaltriggersandthuspermitstheformationofaglobalbi-plane(XY)coincidence

usingthefast TAORlogicalsignalsofthe16to 20front-ends. The longestlengthalong theperimeter

of one plane is  14m adding a maximum round-trip delay of 100 ns, well below the 2 microseconds

available. In this scheme the TA signal of an x front-end issues a hold, only after validation from a

coincidenceintimewiththecorrespondingy-plane. Thesamehappensforthey-plane. Thisschemehas

theadvantagethat it keepsthepropertimingbetweentheTA and thepeaktime oftheVA, that only

thefront-endswithasignalarereadout,andthatitexhibitsasisshownbelowrobustnesstohighrates.

Thedisadvantageof thisschemeistheneedfor twoextracables comingoutand in fromthe card,and

theneedforanextracoincidenceformingmodule.

Wecalculatetherateofcoincidencesforthisschemebyusingtheformula:

r c =2N 2 r 2 G

where N is the number of strips in a plane and Gis the coincidencegate. For the 2.6cm strip width

optionwehave512channels/planewhileforthe1cmoptionwehave640channels/plane. A100nsgate

Gcanlargelyaccommodatedelaysanddi erentdecaytimes.

Figure 39showsthepercent ofdead-timefor a160foldreadout, 1cmwidth stripsread onone side

(640channels/plane)asafunctionofsinglesrate. Wehavethenominal5%deadtimeforsinglesratesof

150,200and250Hzwith 5,10and20 MHzreadoutclockfrequencyrespectively. The160fold readout

(1ADC for160channels)becomesrobustto uctuations insinglesrates.

3

Note that inthe caseof the 160 channel HPD, we would need ve 32channel VATACGchipsthat couldeitherbe

readoutbyasingleADC,orhave2HPD'sreadby3separateautotriggerable64ADCchains;keepingthe64foldelectronics

(33)

11

-1

2

3

4

5

6

7

8

9

10

20

30

40

50

60

70

0

50

100

150

200

250

300

350

400

450

500

01/07/15 15.28

Singles rate r (Hz)

DeadTime

%

12

-1

2

3

4

5

6

7

8

9

10

20

30

40

50

60

70

80

90

0

50

100

150

200

250

300

350

400

450

500

01/07/15 15.28

Singles rate r (Hz)

DeadTime

%

Figure 39: Left: %ofDeadtimeas afunction ofasinglechannelrate,inthecase ofa64foldmultiplexingA)

Solidline: 5MHzclock B)Dashedline: 10MHzclockC)Dottedline: 20MHzclock Right: %ofDeadtimeas

afunctionofasinglechannelrate,inthecase ofax-y coincidenceina640channelplaneA)Solidline: 5MHz

clockB)Dashedline: 10MHzclock C)Dottedline: 20MHzclock

7.2 False extractions

Anotherquestion by thereferees is thepossibility of arandom coincidencesimulating aneventtrigger

within thespilltime. We rstapplied2kindsoftriggerforthemostsensitiveevents:  !eand !

quasielastic(QE) events. The rsttriggerdemands thecoincidence of at least2 consecutive planes(4

planesin allifonecountsXandY planes),andthesecond demandsasingleplanex-ycoincidencebut

asks for alarge number of pe's (10)and at least 3 stripshit. The e ect of theOR of these 2triggers

onthe QEeventsmentionedabovecanbeseenat table 4. ThePlastic and Liquidscintillatoroptions

aretakenwith6and9p.e'sat thecenterrespectively. Thetable intendstoshowthattheabovetrigger

criteriahaveagoodtriggereÆciency.

Condition Liq !e Liq ! Plast !e Plast !

1planecoincidence 0.99 0.995 0.99 0.995

2planescoincidence 0.75 0.93 0.73 0.93

2planesORelectron 0.92 0.975 0.905 0.97

Table4: Trigger eÆciency for di erent scintillatoroptions and the most sensitive QEevents. For the

detailsofthetriggerssee thetext.

Nowthenextquestioniswhether these veryloosecriteria,will induce anunacceptablerateof false

extractions. Thenominaltolerablelevelhasbeensetto0.3bricks/day. Wedidnotevaluatetheelectron

triggerrandomratesinceitdemandsamoredetailedknowledgeofthep.e. spectrum(including

radioac-tivity) that wedo notcurrentlyhave. Thecut of 10p.e is suÆciently high to ensure that we will not

haveanysurprises.

Comingtothe2XYplanecoincidencetrigger,oncanusethefollowingformulatoestimatetherates:

N extr=day =72N 2 [2(23r 2 G) 2 G]t livetime=day

wheretheterm(23r

2

G) calculatestherandomdoublet coincidenceofaxstrip with3adjacent

(34)

has to be multiplied with the numberof strip combinations/plane N (N=256 or640),the numberof

consecutiveplanes(72)thetotallive-timewithbeamonperday(220milliseconds).

Onecanseein gure 40thatuptoextremevaluesofsinglesratetheacceptablelimitforfalsebrick

extractionsperdayissatis ed.

16

-0

0.005

0.01

0.015

0.02

0.025

0.03

0

50

100

150

200

250

300

350

400

450

500

01/07/15 15.28

640/256 channels r (Hz)

Nextr/day

Figure 40: Number of eventsperday that satisfy thecriterium of adouble x-yplane coincidence asa

function ofsinglesrateperchannel. Solid linea640stripplane,Dasheda256stripone.

Inconclusiona100Hzrateisacceptableforfullyautotriggerablerates(schemeA)and64foldreadout,

while plane coincidences (scheme B) can raise the tolerance to 150-200 Hz. These rates are largely

Références

Documents relatifs

A ROD module receives data from 1024 calorimeter cells through eight 1.6 Gbit/s optical fibers and consists of one mother board with four daughter boards (called processing units)

Lower panel: modified sawtooth signal to search for fringes when the fringe tracker is in SEARCHING state.. Here the research is made on all tele- scopes, meaning that the rank

The OPERA experiment observes as well muon neutrinos 730 km away from the source, with a sensitivity significantly better than MINOS thanks to the higher number of interactions in

Ethernet network from the EBWS to each Ethernet Controller (used for data transfer but also for detector configuration, mon- itoring & slow control) and the clock

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

successfully tested under 6 kW of a 30 MeV proton beam at Louvain La Neuve(l). Figure 2: picture of the conical sliced target used during the Louvain la Neuve tests. 2

Instead all event fragments are routed to the Event Builder Farm and then transmitted to Event Filter Farm where the events reconstruction and selection is performed.. Figure

variation of shielding at the solid-vacuum boundary. In grazing incidence scattering experiments or for ion collisions in gaseous targets the full symmetry is lowered by selection