• Aucun résultat trouvé

ANALYSE QUANTITATIVE PAR CHROMATOGRAPHIECHAPITRE III

N/A
N/A
Protected

Academic year: 2022

Partager "ANALYSE QUANTITATIVE PAR CHROMATOGRAPHIECHAPITRE III"

Copied!
17
0
0

Texte intégral

(1)

ANALYSE

QUANTITATIVE PAR CHROMATOGRAPHIE

CHAPITRE III

(2)

A – PRINCIPE

A – 1 – Détecteur sensible au débit massique (F.I.D). Le détecteur à ionisation de flamme donne une réponse proportionnelle au débit massique.

b b

A = ∫ hdt = ∫ k(dm/dt)dt = kmT

a a

dm

masse de soluté de la tranche :

dm h = k

dt H

h

h

a b

dm h = k

dt t

l’integrale du pic

+∞ b

A = ∫ hdt = ∫ hdt

-∞ a En pratique

(3)

L’aire du pic est directement proportionnelle à la masse de

soluté traversant le détecteur. Cette aire est indépendante du débit du gaz vecteur.

b b

A = ∫ hdt = ∫ k(dm/dt)dt = kmT

a a

A – 2 – Détecteur sensible à la concentration (T.C.D)

Le catharomètre donne une réponse proportionnelle à la concentration. 1 dn

h = kc =

Q dt

dn : nombre de moles de soluté passant par le

détecteur pendant dt

Q : débit volumique du gaz GV + soluté = G.V 1 dn h = k =

Q dt t h

h

dn moles dans La tranche dt

a dt b

(4)

1 dn Q dt

a

A = ∫ hdt = k ∫ hdt dt = k

b nT

Q

L’aire du pic est directement proportionnelle au nombre de moles de soluté traversant le détecteur et inversement proportionnelle au débit du gaz Vecteur.

Nécessité absolue de maintenir le débit constant tout au long de l’analyse.

(5)

B – MESURES DES AIRES DES PICS

On assimile la surface du pic gaussien à celle du triangle ABC construit sur les tangentes aux poins d’inflexion I et J.

hT AT = ½ l.hT

Apic = ∫ hdt avec +∞

-∞

h = hM exp (-t2/2σ2) Soit Apic = hM σ.√2π = 2,507hM

I 2π J

C

hm

hm

√c

A B

0 t

I

(6)

dh -hM

Première dérivée : = t exp (-t22) dt σ2

d2h -hM

Deuxième dérivée : = t exp (-t22) [ 1 – t2/σ2]

d2t σ2

* I et J sont bien situés à t = -σ et t = +σ et h = hM / √c * dérivée en J égale à hM / σ√c

* tangente en J : ligne passant par J (σ, hM / √c) de pente - hM / √c = α

L’équation de cette tangente h = αt + hM / √c – α.σ intercepte l’axe des t à l/2 = 2σ

l = 4σ intercepte l’axe des h à hT = 2hM / √c

(7)

Largeur à mi hauteur

hM

hM/2 b

0 t

Ab = bhM = 2 √2log2 . σhM Apic = √2π.hM

D’où = = 1,064Apic √2π Ab 2√2log2

donc AT = 4 σ et

hM

√c

As √2πc

= = 1,034 AT 4

(8)

La surface Ab correspond à environ 94 % de la surface réelle.

L’écart est un peu plus important qu’avec la triangulation. Mais :

♣ La méthode de mesure est plus simple (b et hM sont plus faciles à déterminer quel et hT).

♣ On peut toujours corriger la valeur obtenue par le facteur 1,064.

C – INTEGRATEURS

Les intégrateurs électroniques ont pratiquement remplacé les méthodes manuelles.

Principe :

Convertisseur tension fréquence et compteur de fréquence.

Ou convertisseur analogique digital et compteur par tranche de ∆t Résultat :

Généralement donné en unités

µVx s

(9)

Paramètres principaux d’intégration :

■ La largeur à mi hauteur du pic à intégrer c’est le paramètre

principal qu’il faut toujours fixer. Il détermine l’intervalle ∆t de l’intégration par " tranche".

■ Le correcteur de ligne de base.

■ Le détecteur de pic (relie directement à la largeur à mi hauteur).

Commence l’intégration dès que ∆v/∆t est >à une certaine valeur.

■ Le timer.

D – DETERMINATION DE LA COMPOSITION D’UN MELANGE

On distingue trois méthodes principales :

(10)

♣ Normalisation interne : on compare les aires des pics d’élution au cours d’une même injection.

♣ L’étalonnage externe ou "méthode des injections comparées ": on

compare sur deux chromatogrammes l’aire du pic d’élution de la substance de référence à celle du produit à doser.

♣ L’étalonnage interne : on compare les aires des pics de la substance de référence et du produit à doser à la surface du pic d’élution d’un produit témoin appelé "étalon interne" ajouté lors du dosage et de l’étalonnage.

(11)

1 – Normalisation interne Tous les pics sont élués :

Ax

Ay AZ

fx . Ax

% X =

fx.Ax + fy.Ay + fz.Az

idem pour y et z.

f : facteurs de réponse déterminés par rapport à un composé de référence fR = 1,000.

(12)

AR mx

Etalonnage : fx = (mélange de composition connu m ≈ mam)

Ax mR

Il existe des facteurs de réponses massiques comme dans l’équation précédente ou molaires.

AR mx On fait alors fx =

Ax mR

2 – Etalonnage externe

Cette méthode est basée sur la comparaison de deux chromatogrammes (étalonnage et dosage) effectués dans des conditions identiques.

(13)

Aéch Aréf

Chromatogramme de Chromatogramme la solution échantillon d’étalonnage.

Céch = K.Aéch Créf = K.Aréf

Aéch Céch = Créf

Aréf

(14)

La précision des résultats dépend :

◙ des pesées de la substance de référence et de l’échantillon ;

◙ des dilutions ;

◙ de la reproductibilité du volume d’injection ;

◙ du maintient des conditions chromatographiques strictement constantes pendant l’étalonnage et le dosage

3 – Etalon interne

On rajoute au mélange une quantité connue d’un corps pur (EI) : celui-ci doit :

♦ ne pas être présent dans le mélange de départ ;

♦ éluer en dehors de tout pic du mélange.

(15)

1

E

2 1

E

2

Chromatogramme Chromatogramme de la d’étalonnage solution échantillon

Solvant Solvant

(16)

A1 A2 AE

C1 C2 CE

A’1 A’2 A’E

C’1 ? C’2 ?

Aréf Créf Aéch Céch

mEI : masse d’étalon interne ajouté à la masse mM du mélange à analyser

Dans ce cas : Ax mEI

% X = x x 100 AEI mM

Avantages : Méthode absolue, ne nécessite pas d’éluer tous les pics du mélange.

à recommander au moins pour le contrôle de normalisation

(17)

Consiste à déterminer directement le coefficient de réponse du détecteur.

H = k.c

♠ injection directe à la seringue ;

♠ saturation condenseurs.

Méthodes peu utilisées en chromatographie analytique, permettent toutefois de suivre l’évolution d’un détecteur (son vieillissement ou son dérèglement).

E – CALIBRATION DIRECTE

Références

Documents relatifs

Lorsque les particules ensemencées dans l'écoulement traversent le volume de mesure formé par les faisceaux, celles-ci diffusent un signal lumineux, modulé par l'interférence,

Durant cette partie, on va apprendre comment passer d’une quantité d’informations réelles (collectées à travers des questionnaires) à une analyse de ces données sous forme de

Un rayon incident, se propageant dans le plan d’incidence (défini par le rayon lui-même et la normale au dioptre au point d’incidence I) donne naissance éventuellement à un

Plus on s’éloigne de la dorsale plus l’épaississement de la lithosphère entraîne une augmentation du poids, la lithosphère s’enfonce augmentant la profondeur moyenne du

[r]

La figure suivante montre le premier cycle de traitement thermomécanique qui a pour but de provoque l’affinement des grains dans notre acier... Pour ces traitement thermomécanique,

Dans chaque cycle il s’établit un compromis entre les énergies de torsion, de flexion et de Van der Waals, pour que chacune de ces molécules adopte la conformation correspondante

Pour prévoir l’évolution à long terme de la demande en eau potable, Metropolitan Water District utilise un modèle de prévision sophistiqué, développé à partir du