• Aucun résultat trouvé

On the first experimental realization of a quantum state feedback

N/A
N/A
Protected

Academic year: 2022

Partager "On the first experimental realization of a quantum state feedback"

Copied!
31
0
0

Texte intégral

(1)

On the first experimental realization of a quantum state feedback

55th IEEE Conference on Decision and Control Las Vegas, USA, December 12-14, 2016

Pierre Rouchon

Centre Automatique et Systèmes, Mines ParisTech, PSL Research University Quantic Research Team, Inria

1 / 31

(2)

Technologies for quantum simulation and computation

1

© OBrien

Superconduc�ng circuits

Photons

© S. Kuhr

Ultra-cold neutral/Rydberg

atoms

© Bla� & Wineland

Trapped ions

© Pe�a

Quantum dots

© IBM

Requirement:

Scalable modular architecture

Control software from the very beginning

1Courtesy of Walter Riess, IBM Research - Zurich.

2 / 31

(3)

Nobel Prize in Physics 2012

Serge Haroche David J. Wineland

" This year’s Nobel Prize in Physics honours the experimental inventions and discoveries that have allowed themeasurement and control of individual quantum systems. They belong to two separate but related technologies: ions in a harmonic trap and photons in a cavity"

From the Scientific Background on the Nobel Prize in Physics 2012 compiled by the Class for Physics of the Royal Swedish Academy of Sciences, October 9, 2012.

3 / 31

(4)

Outline

The photon-box experiment of the Haroche group Modelling based on three quantum rules Measuring photons without destroying them Stabilizing measurement-based feedback

Model structures (decoherence, measurement back-action) Discrete-time models (hidden Markov chain)

Diffusive models (Wiener process) Jump models (Poisson process) Feedback for quantum systems

Measurement-based feedback

Coherent (autonomous) feedback and dissipation engineering

4 / 31

(5)

The first experimental realization of a quantum-state feedback microwave photons

(10 GHz)

Experiment:C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini,M. Brune, J.M. Raimond,S. Haroche:

Real-time quantum feedback prepares and stabilizes photon number states.

Nature,2011, 477, 73-77.

Theory:I. Dotsenko,M. Mirrahimi,M. Brune,S. Haroche, J.M. Raimond,P. Rouchon:

Quantum feedback by discrete quantum non-demolition measurements: towards on-demand generation of photon-number states.Physical Review A,2009, 80:

013805-013813.

M. Mirrahimi et al. CDC 2009, 1451-1456,2009.

H. Amini et al. IEEE Trans. Automatic Control, 57 (8): 1918–1930,2012.

R. Somaraju et al., Rev. Math. Phys., 25, 1350001,2013.

H. Amini et. al., Automatica, 49 (9): 2683-2692,2013.

5 / 31

(6)

Three quantum features emphasized by the photon box

2 1. Schrödinger: wave funct.|ψiof norm one in Hilbert spaceH

d

dt|ψi=−i

~H|ψi, H=H0+uH1, uclassical control input Dirac notations:|ψi ≡

,|ψi=hψ| ≡ • •

,H=H≡ • •

• •

. 2. Origin of dissipation: collapse of the wave packetinduced by the

measurement of observableOwith spectral decomp.P

yλyPy:

I measured outputy with probabilityPy =hψ|Py|ψi;

I back-action:

|ψi 7→ |ψi+= Py|ψi phψ|Py|ψi 3. Tensor product for composite system(S,M):

I Hilbert spaceH=HS⊗ HM

I HamiltonianH=HSIM+Hint+ISHM I observable on sub-systemM only:O=ISOM.

2S. Haroche and J.M. Raimond.Exploring the Quantum: Atoms, Cavities and Photons.Oxford Graduate Texts, 2006.

6 / 31

(7)

Composite system

(S,M): harmonic oscillator⊗

qubit.

I SystemS

corresponds to a quantized harmonic oscillator:

HS = (

X

n=0

xn|ni

(xn)n=0∈l2(C) )

,

where

|ni

is the photon-number state with

n

photons (hn

1|n2i=δn1,n2

).

I MeterM

is a qubit, a 2-level system:

HM =

xg |gi+xe|ei

xg,xe∈C

,

where

|gi

(resp.

|ei) is the ground (resp. excited) state

(hg|gi

=he|ei=

1 and

hg|ei=

0)

I State of the composite system|Ψi∈ HS⊗ HM

:

|Ψi=

+∞

X

n=0

xng |ni ⊗ |gi+xne |ni ⊗ |ei, xne,xng ∈C.

Ortho-normal basis:

|ni ⊗ |gi,|ni ⊗ |ei

n∈N

.

7 / 31

(8)

The hidden Markov chain (1)

C

B

D R

1

R

2

B R

2

I When atom comes outB, the quantum state|ΨiBof the composite system isseparable:|ΨiB=|ψi ⊗ |gi.

I Just before the measurement inD, the state is in general entangled(not separable):

|ΨiR

2=USM |ψi ⊗ |gi

= Mg|ψi

⊗ |gi+ Me|ψi

⊗ |ei whereUSM is a unitary transformation (Schrödinger propagator) defining measurement operatorsMgandMeonHS.

USM unitary impliesMgMg+MeMeI.

8 / 31

(9)

The hidden Markov chain (2)

Just beforethe atom detectorDthe quantum state isentangled:

|ΨiR

2 =Mg|ψi ⊗ |gi+Me|ψi ⊗ |ei

Just afteroutcome3y ∈ {g,e}, the state becomesseparable:

|ΨiD= q My

hψ|MyMy|ψi|ψi

!

⊗ |yi with probabilityhψ|MyMy|ψi.

Hidden Markov chain:|ψi ⊗ |gi −→ q My

hψ|MyMy|ψi|ψi

!

⊗ |yi

k+1i=

Mg

q

k|MgMgkiki, yk =gwith probabilityhψk|MgMgki;

Me

k|MeMekiki, yk =ewith probabilityhψk|MeMeki;

with state|ψkiand outputyk ∈ {g,e}at time-stepk:

3Measurement operatorO=IS⊗(|eihe| − |gihg|).

9 / 31

(10)

Why density operators ρ instead of wave functions |ψi

Assume known|ψ0ianddetector out of order:what about1i?

I Expectation value of|ψ1ihψ1|knowing|ψ0i:4 E

1ihψ1|

| {z }

ρ1

0i

=Mg0ihψ0|

| {z }

ρ0

Mg+Me0ihψ0|

| {z }

ρ0

Me.

I SetK(ρ),MgρMg+MeρMefor any operatorρ.

I ρk expectation of|ψkihψk|knowingρ0=|ψ0ihψ0|:

ρ1=K0), ρ2=K1), . . . ,ρk =Kk−1).

Linear mapK: positivity and trace preserving (MgMg+MeMe=I) calledKraus mapor quantum channel.

Density operatorsρ: Hermitian non-negative operators of trace one.

4|ψihψ|:orthogonal projector on line spanned by unitary vector|ψi.

10 / 31

(11)

The Markov chain with

ρ

as hidden state

Detector efficiencyη∈[0,1]. Measured outputy ∈ {g,e,∅}:

ρk+1=

















Kgk)

Tr Kgk),yk =gwith probability Tr Kgk)

; Kek)

Tr(Kek)),yk =ewith probability Tr(Kek));

Kk)

Tr(Kk)),yk =∅with probability Tr(Kk));

with Kraus maps

Kg(ρ) =ηMgρMg, Ke(ρ) =ηMeρMe K(ρ) = (1−η)

MgρMg+MeρMe . We still have:

E

ρk+1ρk,K(ρk) =MgρkMg+MeρkMe=X

y

Kyk).

Imperfections, decoherence modeled similarly

11 / 31

(12)

A controlled Markov process (input

u, hidden stateρ, outputy

)

Inputu: classical amplitude of a coherent micro-wave pulse Stateρ: the density operator of the photon(s) trapped in the cavity Outputy: measurement of the probe atom

ρk+1=

















DukKgk)Duk

Tr Kgk) ,yk =gwith probability Tr Kgk)

; DukKek)Duk

Tr(Kek)) ,yk =ewith probability Tr(Kek));

DukKk)Duk

Tr(Kk)) ,yk =∅with probability Tr(Kk));

Controlled displacement unitary operator(u∈R):Du=eu(a−a)with a=upper diag(√

1,√

2, . . .)the photon annihilation operator.

Measurement Kraus operators with linear dispersive interaction Mg =cos

φ0N+φR

2

andMe=sin

φ0N+φR

2

:MgMg+MeMe=I with N=aa=diag(0,1,2, . . .)the photon number operator.

12 / 31

(13)

Open-loop dynamics (u

=

0): experimental data

y

diag(ρ) ρ

13 / 31

(14)

u =

0: Quantum Non Demolition (QND) measurement of photons.

ρk+1=









Kgk)

Tr(Kgk)),yk =gwith probability Tr Kgk)

;

Kek)

Tr(Kek)),yk =ewith probability Tr(Kek));

Kk)

Tr(Kk)),yk =∅with probability Tr(Kk));

Photon-number state|¯nih¯n|is a steady-state:Ky(|¯nih¯n|)∝|¯nih¯n|.

MartingalesWg(ρ) = Tr(g(N)ρ) for any functiong:

E

Wgk+1)/ρk=Wgk).

Convergence:W(ρ) =1−P

nhn|ρ|ni2super-martingale,

E

Wk+1)/ρk

=W(ρk)−Q(ρk)

whereQ(ρ)≥0 andQ(ρ) =0 iff∃¯nsuch thatρ=|¯nih¯n|.

Probability to converge to|nih¯ n|: Tr¯ (|nih¯ n|ρ¯ 0) =hn|ρ¯ 0|¯ni.

14 / 31

(15)

Feedback stabilization around 3-photon state: experimental data

y

u

diag(ρ) ρ

15 / 31

(16)

Structure of the stabilizing quantum-state feedback scheme

With a sampling time of 80µs, the controller is classical

I Goal: stabilization towards|¯nih¯n|.

I Stepk−1 to stepk

1. readyk−1the measurement outcome for probe atomk−1.

2. computeρkfromρk−1viaρk =Duk−1Kyk−1k−1)Duk−1 Tr Kyk−1k−1) , 3. computeuk as a function ofρk(state feedback).

4. apply the micro-wave pulse of amplitudeuk. Observer/controllerstructure:

1. real-time state estimation: the quantumBelavkinfilter 2. u=f(ρ)based on astrict control Lyapunov functionV(ρ)

derived from open-loop martingales Tr(g(N)ρ):

E

Vk+1)ρk,uk =f(ρk)

=V(ρk)−Q(ρk) whereQ(ρ)≥0 andQ(ρ) =0 iffρ=|¯nih¯n|.

16 / 31

(17)

Experimental closed-loop data

C. Sayrin et. al., Nature 477, 73-77, Sept. 2011.

Decoherence due to finite photon life-time (70 ms) Detection efficiency 40%

Detection error rate 10%

Delay 4 sampling periods The quantum filter includes decoherence, detector imperfections and delays (Bayes law).

Truncation to 9 photons

Stabilization around 3-photon state

V u y

17 / 31

(18)

Outline

The photon-box experiment of the Haroche group Modelling based on three quantum rules Measuring photons without destroying them Stabilizing measurement-based feedback

Model structures (decoherence, measurement back-action) Discrete-time models (hidden Markov chain)

Diffusive models (Wiener process) Jump models (Poisson process)

Feedback for quantum systems Measurement-based feedback

Coherent (autonomous) feedback and dissipation engineering

18 / 31

(19)

Discrete-time Stochastic Master Equations (SME)

Trace preserving Kraus mapKudepending onu:

Ku(ρ) =X

ξ

Mu,ξρMu,ξ with X

ξ

Mu,ξMu,ξ=I.

Take aleft stochastic matrix ηy,ξ

and setKu,y(ρ) =P

ξηyMu,ξρMu,ξ. Associated Markov chain reads:

ρk+1= Kuk,ykk)

Tr(Kuk,ykk)) withyk with probability Tr(Kuk,ykk)). Classical inputu, hidden stateρ, measured outputy.

Ensemble average given byKusince

E

ρk+1ρk,uk=Kukk).

Markov model useful for:

1. Monte-Carlo simulations of quantum trajectories(decoherence, measurement back-action).

2. quantum filteringto get the quantum stateρk fromρ0and(y0, . . . ,yk−1) (Belavkin quantum filterdeveloped for diffusive models).

3. feedback design and Monte-Carlo closed-loop simulations.

19 / 31

(20)

Stochastic master equation driven by Wiener process

Lindblad equation(HHermitian,Larbitrary, depending onu):

d

dtρ,L(ρ) = −i

~[H,ρ]

| {z } Schrödinger

+LρL1

2(L+ρLL)

| {z } ,DL(ρ)decoherence For anyt≥0,ρ07→etL0) =ρt is a trace preserving Kraus map.

Continuous-time outputt7→ytwithdyt=√

ηTr (L+Lt

dt+dWt: dρt =

i

~[H,ρt] +tL1

2(LttLL)

dt +√

η

ttL− Tr

(L+Lt ρt

dWt

driven by Wiener processdWt (ηdetection efficiency).

Another formulation withIt¯o differentiation rule:

ρt+dt = Kdyt(ρ)

Tr(Kdyt(ρ))with proba. density Tr(Kdyt(ρ))fordyt

Kdy(ρ) =edy

2 2dt

MdyρMdy+ (1−η)LρtLdt Mdy =I+ −i

~H12 LL dt+√

ηdyL.

20 / 31

(21)

Stochastic master equation driven by Poisson process

Lindblad equation: dtdρ,L(ρ) =−i

~[H,ρ] +LρL12(L+ρLL) Countert7→y(t)∈N(detection imperfectionsϑ≥0,η∈[0,1]):

dy(t) =0or1:

E

dy(t)ρt=ϑ+ηTrtL dt

Dynamics:

t =

i

~[H,ρt] +tL1

2(LttLL)

dt

+ ϑρt+ηLρtL ϑ+ηTr tL−ρt

!

dy(t)−

ϑ+ηTr

tL dt

dy(t) =0:ρt+dt = K0t)

Tr(K0t))with probability Tr(K0t)) dy(t) =1:ρt+dt = K1t)

Tr(K1t))with probability Tr(K1t)) K0(ρ) =

M0ρM0+ (1−η)LρLdt

(1−ϑdt), K1(ρ) = ϑρ+ηLρL dt M0=I+ −i

~H12LL dt

21 / 31

(22)

Outline

The photon-box experiment of the Haroche group Modelling based on three quantum rules Measuring photons without destroying them Stabilizing measurement-based feedback

Model structures (decoherence, measurement back-action) Discrete-time models (hidden Markov chain)

Diffusive models (Wiener process) Jump models (Poisson process)

Feedback for quantum systems Measurement-based feedback

Coherent (autonomous) feedback and dissipation engineering

22 / 31

(23)

Measurement-based feedback

system

controller

quantum world

classical world

y

u

decoherence

P-controller (Markovian feedbacka):

foru(t) =f(y(t)), average closed-loop dynamics ofρremains governed by a Lindblad master equation.

PID controller:no Lindblad master equation in closed-loop;

Nonlinear hidden-state stochastic systems:convergence analysis, Lyapunov exponents, dynamic output feedback, delays, robustness, . . .

aH.M. Wiseman:Quantum Trajectories and Feedback. PhD Thesis,

University of Queensland, 1994.

Short sampling times limit feedback complexity

23 / 31

(24)

First SISO measurement-based feedback for a superconducting qubit5

Analog Multiplier

d Feedback circuit

X*Y

Rabi reference 3.0 MHz 10 MHz

Phase error = Feedback signal X Y

a Signal generation

Rabi drive c Homodyne setup

I LO Readout

drive Q

LO Digitizer/

computer Q RF

RF I

b Dilution refrigerator

Transmon qubit

IN

(x2) Paramp HEMT

Q Q

OUT |0>

I Readout

cavity

|1>

|0>

|1> I

5R. Vijay, . . . , I. Siddiqi.Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback.Nature 490, 77-80, October 2012.

24 / 31

(25)

First MIMO measurement-based feedback for a superconducting qubit6

FM Rabi

b)

~ ~

FM

~ ~

~

Rabi

JPC out in

Drift

a) ,

c) 3 inputs

2 outputs

6P. Campagne-Ibarcq, . . . , B. Huard:Using Spontaneous Emission of a Qubit as a Resource for Feedback Control.Phys. Rev. Lett. 117(6), 2016.

25 / 31

(26)

Measurement-based feedback stabilization of 1

2(|gi⊗|ei+|ei⊗|gi) 7

Alice Bob

7D. Ristè,. . . , L. DiCarlo:Deterministic entanglement of superconducting qubits by parity measurement and feedback. Nature 502, 350-354 (2013).

26 / 31

(27)

Coherent (autonomous) feedback (dissipation engineering)

Quantum analogue of Watt speed governor: adissipative mechanical system controls another mechanical system8

system

controller quantum world classical world

decoherence

decoherence

u

y

u

c

y

c

Optical pumping (Kastler1950), coherent population trapping (Arimondo1996) Dissipation engineering, autonomous feedback: (Zoller, Cirac, Wolf, Verstraete, Devoret, Schoelkopf, Siddiqi, Lloyd, Viola, Ticozzi, Mirrahimi, Sarlette, ...)

(S,L,H) theoryandlinear quantum systems: quantum feedback networks based on stochastic Schrödinger equation, Heisenberg picture (Gardiner, Yurke, Mabuchi, Genoni, Serafini, Milburn, Wiseman, Doherty,Gough, James, Petersen, Nurdin, Yamamoto, Zhang, Dong, . . . )

Stability analysis: Kraus maps and Lindblad propagators are always contractions (non commutative diffusion and consensus).

8J.C. Maxwell:On governors.Proc. of the Royal Society, No.100, 1868.

27 / 31

(28)

Reservoir engineering to stabilize "Schrödinger cats"|αi+|-αi9 Cavity mode (system)

atom (controller) R1

R2

Box of atoms

Aim:

engineer atom-mode interaction, to stabilize |-α +|α

DC field:

(controls atom frequency) ENS experiment

Jaynes-Cumming Hamiltionian

H(t)/~=ωcaaIMq(t)IS⊗σz/2+iΩ(t) a⊗σ-a⊗σ+ /2 with the open-loop controlt7→ωq(t)combiningdispersiveωq6=ωc andresonantωqcinteractions.

Key issues:convergenceofρk+1=K(ρk) =MgρkMg+MeρkMe.

9A. Sarlette et al:Stabilization of nonclassical states of the radiation field in a cavity by reservoir engineering.Phys. Rev. Lett. 107(1), 2011.

28 / 31

(29)

Autonomous feedback stabilization of

1

2(|gi⊗|ei−|ei⊗|gi)10

Lindblad master equation:

d

dtρ=−i[H(t),ρ] +κDa(ρ) + 1

T1ADσA

(ρ) + 1

2TφADσA z(ρ) + 1

T1BD

σB(ρ) + 1

2TφBD

σBz(ρ) with

H(t)/~=χ

A

2σzA+χ2BσBz aa +2ccos

χAB

2 t a+a + Ω0

σAx+σBx +Ωn

e−in

χAB 2 t

+Aσ+B) +h.c.

10S. Shankar, . . . , M.H. Devoret.Autonomously stabilized entanglement between two superconducting quantum bits.Nature, 504: 419-422, 2013.

29 / 31

(30)

Combining measurement-based feedback with dissipation engineering11

11Y. Liu, . . . , M.H. Devoret:Comparing and combining measurement-based and driven-dissipative entanglement stabilization.Phys. Rev. X 6, 2016.

30 / 31

(31)

Concluding remarks

I Three key quantum rules (highlighted by Haroche photon-box) 1. Schrödinger equationsdefining unitary transformations, 2. partial collapseof the wave packet: dissipation induced by

measurement of observables withdegeneratespectra, 3. tensor productforcomposite systems,

explain structure ofstochastic master equations, illustrate importance ofspin/spring models.

I Feedback control ofcoherenceandentanglementin composite systems: important issues for quantum computing, simulation, metrology and communication.

I Composite systems:curse of dimensionalityfor quantum networks with delays in coherent feedback loops.

Importance of collaborations with experimental quantum physicists for defining relevant control engineering questions

31 / 31

Références

Documents relatifs

The quantum feedback operation injects energy and entropy or information into the system and thus modifies the energy balance the first law as well as the entropy balance the

The reliable estima- tion of the cavity state at each feedback cycle allows us to follow in real time the quantum jumps of the photon number and then to efficiently compensate

1: (Color online) (a) Average Purity for initial pure state (solid black line) and initial completely mixed state (dashed black line) calculated using the Euler-Milstein method

The observation of resonant tunneling in p-type double barrier structures (15) revealed fine structure corresponding to each bound state of both heavy and light

To get the highest homodyne efficiency, the phases of the quantum field and local oscillator have to be matched (see Section III). Assuming the phase θ LO of the local oscillator to

Dans cette étude on propose une conception d’un système de cycle combiné solaire intégré (ISCCS) à deux niveaux de pression (HP, LP) avec réchauffement de la

Using PQS analysis for the quantum non-demolition photon number counting in a cavity, we can reveal information hidden in the standard approach and resolve a wider range of

We also note that given a well-known down- conversion process, the nonlocal phase of the daughter photon pair encodes the phase of the pump pulse and is invariant under local