• Aucun résultat trouvé

Basic Knowledge

N/A
N/A
Protected

Academic year: 2021

Partager "Basic Knowledge"

Copied!
40
0
0

Texte intégral

(1)

HAL Id: cel-02130071

https://hal.inria.fr/cel-02130071

Submitted on 15 May 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de

Basic Knowledge

Philippe Martinet

To cite this version:

Philippe Martinet. Basic Knowledge. Doctoral. GdR Robotics Winter School: Robotica Principia, Centre de recherche Inria Sophia Antipolis – Méditérranée, France. 2019. �cel-02130071�

(2)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Classification

Homogeneous transformation

x

y

z

R

R

R

R

i

x

y

z

R

R

R

R

f

Geometry

i

T

f

i

T

f

Homogeneous transformation matrix

P

i

R

i

i

R (A): Orientation

(3)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Classification

Homogeneous transformation

Geometry

Consider a 3D point in space

f i R R

1

z

y

x

f

T

i

1

z

y

x





=





f R

1

z

y

x





Then

f

P

i

z

y

x

f

R

i

z

y

x

f R i R

+

=

(4)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Classification

Homogeneous transformation

Geometry

i

T

f

Homogeneous transformation matrix

R : Orientation

s, n, a Cosinus directors

RPY angles (Roll (z), Pitch(y), Yaw(x))

Briant angles (x,y,z)

Euler angles (z,x,z)

u.

θθθθ

, u.sin(

θθθθ

), u.sin(

θ/2

θ/2

θ/2

θ/2

),

Quaternion

λλλλ

1

,

λλλλ

2

,

λλλλ

3

,

λλλλ

4

P : Position

Cartesian coordinates

Cylindrical coordinates

Spherical coordinates

Different representations

(5)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Classification

Homogeneous transformation

Geometry

i

T

f

Homogeneous transformation matrix

R : Orientation

s, n, a Director Cosinus

P : Position

Cartesian coordinates

Different representations (i.e)

=

z z z y y y x x x

a

n

s

a

n

s

a

n

s

R

=

z y x

P

P

P

P

No rotation

No translation

P=(0,0,0)

T

(6)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Classification

Homogeneous transformation

Geometry

i

T

f

Homogeneous transformation matrix

R : Orientation

s, n, a Director Cosinus

Main properties of the rotation matrix

1

a

n

s

=

=

=

0

n

a

0

a

s

0

n

s

=

=

=

n

s

a

s

a

n

a

n

s

=

×

=

×

=

×

=

y y y x x x

a

n

s

a

n

s

R

(7)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Classification

Homogeneous transformation: Rotation matrix

Geometry

i

R

f

Rotation matrix Rot(x,

θθθθ

x

)

Matrix to change the frame for one vector

(8)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Classification

Homogeneous transformation: Rotation matrix

(9)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Classification

Homogeneous transformation: Rotation matrix

(10)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Classification

Homogeneous transformation properties

Geometry

i

T

f

Homogeneous transformation matrix

Prop. 1)

(11)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Classification

Homogeneous transformation properties

Geometry

i

T

f

Homogeneous transformation matrix

Prop. 3)

(12)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Classification

Homogeneous transformation properties

Geometry

i

T

f

Homogeneous transformation matrix

Prop. 5)

(13)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Classification

Homogeneous transformation properties

Geometry

i

T

f

Homogeneous transformation matrix

Prop. 7)

T is defined in R

i

(14)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Classification

Homogeneous transformation properties

(15)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Classification

Homogeneous transformation properties

Geometry

i

T

f

Homogeneous transformation matrix

(16)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Cartesian coordinates

Classification

(17)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Cylindrical coordinates

Classification

(18)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Spherical coordinates

Classification

Rigid body pose parameterization: position

(19)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Euler angles

Classification

Rigid body pose parameterization: orientation

(20)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

RPY angles (z,y,x)

Classification

Rigid body pose parameterization: orientation

A

RPY

(21)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Bryant angles (x,y,z)

Classification

Rigid body pose parameterization: orientation

(22)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Orientation (u,

θθθθ

)

Classification

Rigid body pose parameterization: orientation

(23)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Orientation (u.

θθθθ

)

Classification

Rigid body pose parameterization: orientation

Rodrigues formula

(24)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Orientation (u.

θθθθ

)

Classification

Rigid body pose parameterization: orientation

( )

u

θ

I

u

s

θ

u

(

c

θ

)

A

,

T

=

3

ˆ

.

+

ˆ

2

.

1

( ) ( )

u

θ

A

u

θ

u

s

θ

A

,

,

T

=

2

.

ˆ

.

[ ] [ ]

( ) ( )

2

,

,

.

.

T

u

A

u

A

s

u

s

u

θ

×

=

θ

=

θ

θ

( )

(

A

u

θ

)

Trace

(

I

u

s

θ

u

(

c

θ

)

)

Trace

,

=

3

+

ˆ

.

+

ˆ

2

.

1

( )

(

)

(

)

( )

2

ˆ

.

1

3

,

c

Trace

u

u

A

Trace

θ

=

+

θ

( )

(

A

u

,

θ

)

=

3

+

(

1

c

θ

)( )

.

2

Trace

( )

(

A

u

θ

)

c

θ

Trace

,

=

1

+

2

.

( )

(

A

u

θ

)

c

θ

Tr

,

=

1

+

2

.

( )

(

)

2

1

,

cos

θ

=

Tr

A

u

θ

s

y

- n

x

= 2 u

z

s

θθθθ

a

x

- s

z

= 2 u

y

s

θθθθ

n

z

- a

y

= 2 u

x

s

θθθθ

          − − − − − − =           −           0 0 0 y z x z z y x y z x y x z y x z y x z y x z z z y y y x x x a n a s n a n s s a s n a a a n n n s s s a n s a n s a n s

(

)

(

)

(

)

1

y z

a

n

1

(25)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Quaternion (

λλλλ

1

,

λλλλ

2

,

λλλλ

3

,

λλλλ

4

)

Classification

(26)

x

y

z

R

R

R

R

0

Case of serial manipulator

robot

x

y

z

R

R

R

R

1

x

y

z

x

y

z

R

R

R

R

k

R

R

R

R

k+1

C

k

C

0

C

n

Consider a robot with n+1 rigid bodies C

k

We associate n+1 frames

y

z

x

R

R

R

R

e

C

1

C

2

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Classification

Multi-Rigid bodies

(27)

Case of serial manipulator robot

The problem to solve is to obtain the position and orientation

of the end effector frame R

e

in the fixed frame R

0

=

+ + +

1

000

P

R

T

k 1 k 1 k k 1 k k

e

n

n

1

n

3

2

2

1

1

0

e

0

T

T

T

T

T

T

=

L

Elementary frame transform

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Classification

Multi-Rigid bodies

(28)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Classification

Rigid body kinematics

Circular motion

v: tangential velicity

(29)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Classification

Rigid body kinematics

Rotating frame

R

f

: fixed frame (origin O fixed)

R

m

: mobile frame just in rotation w.r.t R

f

(30)

R

R

R

R

f

: fixed frame

R

R

R

R

m

: Mobile frame

P : one point in

R

R

R

R

x

y

z

R

R

R

R

f

x

y

z

R

R

R

R

m

D

d

x P

P

O

P

V

O

V

P

V

m R R m Rf

=

(

)

f

+

(

)

m

+

ω

ωω

ω

×

)

(

d

d

dt

d

D

d

dt

d

m f R R

×

+

+

=

(

)

ω

ωω

ω

)

(

&

O

m

O

f

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Classification

(31)

Kinematic

P

O

P

V

P

V

m R Rf

=

(

)

m

+

ωω

ω

ω

×

)

(

Remarks :

If D=0 then

If D=0 and then

V

P

0

m R

=

)

(

d

P

O

P

O

P

V

m m Rf

×

×

=

=

=

ω

ωω

ω

ω

ωω

ω

ω

ωω

ω

~

)

(

]

ˆ

[

]

[

]

[

0

0

~

ωω

ω

ω

ω

ωω

ω

ω

ωω

ω

ωω

ω

ω

ω

ωω

ω

ω

ωω

ω

ω

ωω

ω

ω

ωω

ω

=

=

=

=

AS

x z y z

Using this relation we can established

The kinematic evolution of a multi-rigidbody robot

See next slide

P

O

P

V

O

V

P

V

m R R m Rf

=

(

)

f

+

(

)

m

+

ω

ωω

ω

×

)

(

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Classification

(32)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Classification

Multi-Rigid bodies kinematics

Angular velocity of Riw.r.t R0 expressed in Ri Velocity of Oi+1 w.r.t Ri expressed in Ri

(33)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Classification

Multi-Rigid bodies kinematics

Angular velocity of Ri w.r.t R0 expressed in Ri

Angular velocity of Ri w.r.t Ri-1 expressed in Ri

Angular velocity of Ri-1 w.r.t R0 expressed in Ri-1

=

C

i

C

i+1

(34)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Classification

Multi-Rigid bodies kinematics

Angular velocity of Ri w.r.t R0 expressed in Ri

Angular velocity of Ri w.r.t Ri-1 expressed in Ri

Angular velocity of Ri-1 w.r.t R0 expressed in Ri-1

=

C

i

C

i+1

(35)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Classification

Multi-Rigid bodies kinematics

Considering two frames R

a

and R

b

rigidly linked

(case for R

n

and R

E

)

(36)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Classification

Multi-Rigid bodies kinematics

Considering two frames R

i

and R

j

and a twist V

i

=(v

i

,

ω

i

)

T

expressed in O

i

Projection

with

(37)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Classification

Differential translation and rotation of frames

Consider a differential translation vector dPi expressing the translation

of the origin of frame Ri, and of a differential rotation vector

δ

i, equal to

ui.d

θ

, representing the rotation of an angle d

θ

about an axis, with

unit vector ui, passing through the origin Oi.

(38)

R

=

a

R

b

R.R

T

= I3

x

y

z

R

R

R

R

bbbb

x

y

z

Ra

Ra

Ra

Ra

aaaa T TT Tbbbb ==== a a a aRRRR b bb b aaaattttbbbb 0 00 000000000 1111

b/a

|

a

˙

R.R

T

+ R. ˙

R

T

= 0

R.R

˙

T

= −R. ˙

R

T

= −

R.R

˙

T

T

˙

R.R

T

= S(t)

R

˙

= S(t).R

˙p

a

(t) = ˙

R

(t).p

b

(t)

˙p

a

(t) = S(t).R.p

b

(t)

˙p

a

(t) = Ω × p

a

(t)

˙p

a

(t) = Ω × (R.p

b

(t) )

˙p

a

(t) = [Ω]

×

.R.p

b

(t)

S

(t) = [Ω]

×

p

a

(t) = R(t).p

b

(t)

Consider p

b

(t) constant

Application fields History and Bibliography Definitions

Basic Knowledge

Classification

(39)

x

y

z

R

R

R

R

bbbb

x

y

z

Ra

Ra

Ra

Ra

a a a aTTTT b bb b ==== a a a aRRRR b bb b aaaattttbbbb 0 00 000000000 1111 b bb bTTTT a a a a ==== b bb bRRRR a a a a bbbbttttaaaa 0 00 000000000 1111 b

t

a

represents the position

b

R

a

represents the orientation

a/b

|

b

b/a

|

a ×

=

a

R

˙

b

.

a

R

T

b

a/b

|

b ×

=

b

R

˙

a

.

b

R

T

a

b/a

|

a

b/a

|

a

b/a

|

a

= −Ω

a/b

|

a

b/a

|

a

=

a

R

b

.

b/a

|

b

a/b

|

b

a/b

|

b

= −Ω

b/a

|

b

a/b

|

b

=

b

R

a

.

a/b

|

a

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Classification

(40)

Application fields History and Bibliography Definitions Basic Knowledge

Basic Knowledge

Classification

Representation of forces (wrench)

A collection of forces and moments acting on a body can be reduced to a wrench Fi

at point Oi, which is composed of a force fi at Oi and a moment mi about Oi:

Note that the vector field of the moments constitutes a screw where the vector of the

screw is f

i

. Thus, the wrench forms a screw.

Consider a given wrench

i

F

i

, expressed in frame R

i

. For calculating the equivalent

wrench

j

F

Références

Documents relatifs

The purpose of building a Knowledge Evaluation service in Palette is to provide support for the evaluation of CoP tools and resources, such as the CoP-dependent ontology,

- The main components of global care are: counselling, access to prophylaxes, treatment for HIV- related morbidities and antiretroviral therapy accompanied by clinical and

The Applications Software Development Standards Manual presents generally accepted methods and procedures for system design, programming and documentation for

received from the host computer when PC- Link attempted to inform the applicable host program (SEND or RECV) of the~. descriptive parameters of the

Nous sommes au bureau; si vous avez besoin de nous, téléphonez-nous.. Ils sont au bureau; si vous avez besoin

τό δραμα είναι τό γΈίδος*της ποιήσεως καί άποτελειται άπό τό επος, τό όποιον σημαίνει διηγησιν γεγονότων όνομαστων καί μεγάλων οχι οπως Εγιναν, άλλά οπως επρεπε να

EBU recommendations were implemented by several software developers and audio technology companies. Audio quality

Note that this definition corresponds to universall termination and strong normalization; we may start from an arbitrary term and the reductions take place at any position, using