• Aucun résultat trouvé

On osp(M|2n) integrable open spin chains

N/A
N/A
Protected

Academic year: 2021

Partager "On osp(M|2n) integrable open spin chains"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: hal-00002967

https://hal.archives-ouvertes.fr/hal-00002967

Submitted on 29 Sep 2004

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires

On osp(M|2n) integrable open spin chains

Daniel Arnaudon, Jean Avan, Nicolas Crampé, Anastasia Doikou, Luc Frappat, Eric Ragoucy

To cite this version:

Daniel Arnaudon, Jean Avan, Nicolas Crampé, Anastasia Doikou, Luc Frappat, et al.. On osp(M|2n) integrable open spin chains. Czechoslovak Journal of Physics, Springer Verlag, 2004, 54, pp.1153.

�hal-00002967�

(2)

ccsd-00002967, version 1 - 29 Sep 2004

On osp(M |2n) integrable open spin chains

D. Arnaudon, N. Cramp´ e, A. Doikou, L. Frappat, ´ E. Ragoucy Laboratoire d’Annecy-le-Vieux de Physique Th´eorique LAPTH CNRS, UMR 5108, associ´ee ` a l’Universit´e de Savoie LAPP, BP 110, F-74941

Annecy-le-Vieux Cedex, France J. Avan

Laboratoire de Physique Th´eorique et Mod´elisation Universit´e de Cergy, 5 mail Gay-Lussac, Neuville-sur-Oise F-95031 Cergy-Pontoise Cedex Pacs : 02.20.Uw, 03.65.Fd, 75.10.Pq

LAPTH-Conf-1054/04

Abstract

We consider open spin chains based on osp(m|2n) Yangians. We solve the reflection equations for some classes of reflection matrices, including the diagonal ones. Having then integrable open spin chains, we write the analytical Bethe Ansatz equations. More details and references can be found in [1, 2].

1 RT T presentation for osp(M |2n) Yangians

Let us consider an M + 2n dimensional

Z2

-graded vector space, with the M first indices bosonic and the 2n last ones fermionic.

Define

R(u) =

I

+ P

u − Q u + κ .

P being the super permutation, and Q = P

t1

= P

t2

being P partially transposed.

The R-matrix R(u) satisfies the super Yang–Baxter equation R

12

(u) R

13

(u + v) R

23

(v) = R

23

(v) R

13

(u + v) R

12

(u) if 2κ = (M − 2n − 2), with a graded tensor product .

One defines the Yangian of osp(M |2n) by the generators T (u) = X

n∈Z≥0

T

(n)

u

−n

T (0) =

I

(3)

and the relations

R

12

(u − v) T

1

(u) T

2

(v) = T

2

(v) T

1

(u) R

12

(u − v) T

t

(u − κ) T (u) =

I

(i.e. RTT=TTR relations and “orthogonality relation”) [3].

2 Closed chain integrability

The closed chain monodromy matrix is defined by T

a

(u) = R

aL

(u)R

a,L−1

(u) · · · R

a2

(u)R

a1

(u)

Using the Yang–Baxter equation, one proves that the closed chain transfer matrices, given by the super trace t(u) = Tr

a

T

a

(u), commute for all values of the spectral parameter u:

h

t(u), t(v) i

= 0, ∀u, v

3 Reflection equation and open chain integrabil- ity

We consider K

(u) ∈ End(

CM+2n

), solution of the reflection equation:

R

ab

(u

a

− u

b

) K

a

(u

a

) R

ba

(u

a

+ u

b

) K

b

(u

b

) = K

b

(u

b

) R

ab

(u

a

+ u

b

) K

a

(u

a

) R

ba

(u

a

− u

b

) Let

T

a

(u) = R

aL

(u)R

a,L−1

(u) · · · R

a2

(u)R

a1

(u) and

T ˆ

a

(u) = R

1a

(u)R

2a

(u) · · · R

L−1,a

(u)R

La

(u) The open chain monodromy matrix is the super trace

t(u) = Tr

a

K

a+

(u) T

a

(u) K

a

(u) ˆ T

a

(u) ,

where K

+t

(−λ − iκ) is another solution of the reflection equation. Again,

as was first proved by Cherednik and Sklyanin using the Yang–Baxter and

reflection equations, [4, 5], [t(u), t(v)] = 0, ∀u, v.

(4)

4 Solutions of the reflection equation

4.1 Diagonal solutions

We solve the reflection equation for K of the form K (u) = diag

k

1

(u), · · · , k

M

(u) ; k

M+1

(u), · · · , k

M+n

(u)

There are three families of generic diagonal solutions and two particular cases

D1: Solutions of sl(M + 2n) type, with one free parameter, for M even k

i

(u) = 1 ,

k

¯ı

(u) = 1 + cu

1 − cu , ∀ i ∈ {1, ..., M

2 ; M + 1, ..., M + n}

This solution has no extension to odd M.

D2: Solutions with three different values of k

l

(u), depending on one free parameter

k

1

(u) = 1 + c

1

u

1 − c

1

u , k

M

(u) = 1 + c

M

u

1 − c

M

u , k

j

(u) = 1 ∀ j 6= 1, M where (κ − 1)c

1

c

M

+ c

1

+ c

M

= 0. This solution does not hold for M = 0, 1.

D3: Solutions without any free continuous parameter, but with two integer parameters m

1

, n

1

, and c =

κ−(2m 2

1−2n1−1)

k

i

(u) = k

¯ı

(u) = 1 ∀ i ∈ {1, ..., m

1

; M + 1, ..., M + n

1

} k

i

(u) = k

¯ı

(u) = 1 + cu

1 − cu otherwise

D4: In the particular case of so(4), the solution takes the more general form:

K(u) = diag

1 , 1 + c

2

u

1 − c

2

u , 1 + c

3

u

1 − c

3

u , 1 + c

2

u 1 − c

2

u

1 + c

3

u 1 − c

3

u

This solution contains the three generic solutions D1 (c

2

c

3

= 0), D2 (c

2

+ c

3

= 0) and D3 (c

2

= c

3

= ∞).

D5: In the particular case of so(2), any function-valued diagonal matrix is

solution.

(5)

4.2 Antidiagonal and mixed solutions

The classification of such solutions is best shown by a few examples.

One finds the two following solutions for osp(4|2) : so diagonal :

 1

1

−1

−1

k

5

5

6

−k

5

where k

52

+ ℓ

5

6

= 1.

sp diagonal :

1 0

0 ℓ

2

−12

0

0 1

1 1

For osp(2|4) the two solutions take the form so diagonal :

 1

−1

k

3

3

k

4

4

5

−k

4

6

−k

3

where k

32

+ ℓ

3

6

= 1 and k

24

+ ℓ

4

5

= 1.

sp diagonal :

0 ℓ

1

−11

0

1

−1

−1 1

(6)

5 Pseudovacuum and one eigenvalue of the trans- fer matrix for the open chain

We now choose an appropriate pseudo-vacuum, which is an exact eigenstate of the transfer matrix t(u) of the open chain; it is the state with all “spins”

up, i.e.

+

i =

L

O

i=1

|+i

i

where |+i =

 1 0 .. . 0

CM+2n

.

Then t(λ) | ω

+

i = Λ

0

(λ) |ω

+

i , where Λ

0

(λ) = a(λ)

2L

g

0

(λ) + b(λ)

2L

2n+M−2

X

l=1

(−1)

[l+1]

g

l

(λ) + c(λ)

2L

g

2n+M−1

(λ) with

a(λ) = (λ + i)(λ + iκ), b(λ) = λ(λ + iκ), c(λ) = λ(λ + iκ − i) the functions g(λ) being written as (in the case osp(2m + 1|2n), with K

±

=

I

)

g

l

(λ) = λ(λ +

2

2i

)(λ + iκ)

(λ +

2

)(λ +

il2

)(λ +

i(l+1)2

) , l = 0, . . . , n − 1, g

l

(λ) = λ(λ +

2

2i

)(λ + iκ)

(λ +

2

)(λ + in −

il2

)(λ + in −

i(l+1)2

) ,

l = n, . . . , n + m − 1 g

n+m

(λ) = λ(λ + iκ)

(λ + i

n−m2

)(λ + i

n−m+12

) if M = 2m + 1 g

l

(λ) = g

2n+M−l−1

(−λ − iκ), l = 0, 1, ..., M + 2n

The dressing consists in the insertion of factors A

l

(λ) to get the other eigenvalues Λ(λ) of the transfer matrix

Λ(λ) = a(λ)

2L

g

0

(λ)A

0

(λ) + b(λ)

2L

2n+M−2

X

l=1

(−1)

[l+1]

g

l

(λ)A

l

(λ)

+ c(λ)

2L

g

2n+M−1

(λ)A

2n+M−1

(λ)

(7)

The factors A

l

take the form A

0

(λ) =

M(1)

Y

j=1

λ + λ

(1)j

2i

λ + λ

(1)j

+

2i

λ − λ

(1)j

2i

λ − λ

(1)j

+

2i

,

A

l

(λ) =

M(l)

Y

j=1

λ + λ

(l)j

+

il2

+ i λ + λ

(l)j

+

il2

λ − λ

(l)j

+

il2

+ i λ − λ

(l)j

+

il2

×

M(l+1)

Y

j=1

λ + λ

(l+1)j

+

il2

2i

λ + λ

(l+1)j

+

il2

+

2i

λ − λ

(l+1)j

+

il2

2i

λ − λ

(l+1)j

+

il2

+

2i

l = 1, . . . , n − 1

Analyticity around the poles introduced in the factors A

l

now imposes the so-called Bethe equations in the λ

i

:

e

1

(1)i

)

2L

= Y

ǫ=±1 M(1)

Y

j=1,j6=i

e

2

(1)i

− ǫλ

(1)j

)

M(2)

Y

j=1

e

−1

(1)i

− ǫλ

(2)j

)

1 = Y

ǫ=±1 M(l)

Y

j=1,j6=i

e

2

(l)i

− ǫλ

(l)j

) Y

τ=±1 M(l+τ)

Y

j=1

e

−1

(l)i

− ǫλ

(l+τ)j

) l = 2, . . . , n + m − 1, l 6= n

1 = Y

ǫ=±1 M(n+1)

Y

j=1

e

1

(n)i

− ǫλ

(n+1)j

)

M(n−1)

Y

j=1

e

−1

(n)i

− ǫλ

(n−1)j

)

1 = Y

ǫ=±1 M(n+m)

Y

j=1,j6=i

e

1

(n+m)i

− ǫλ

(n+m)j

)

M(n+m−1)

Y

j=1

e

−1

(n+m)i

− ǫλ

(n+m−1)j

)

with

e

x

(λ) = λ +

ix2

λ −

ix2

.

(8)

Acknowledgments

This work has been financially supported by the TMR Network EUCLID:

“Integrable models and applications: from strings to condensed matter”, contract number HPRN-CT-2002-00325.

References

[1] D. Arnaudon, J. Avan, N. Cramp´e, A. Doikou, L. Frappat, and E. Ragoucy. ´ Classification of reflection matrices related to (super) Yan- gians and application to open spin chain models. Nucl. Phys. B668:469 (2003) and

math.QA/0304150.

[2] D. Arnaudon, J. Avan, N. Cramp´e, A. Doikou, L. Frappat, and E. Ragoucy. ´ Bethe Ansatz equations and exact S matrices for the osp(M|2n) open super spin chain. Nucl. Phys. B687:257 (2004) and

math-ph/0310042.

[3] D. Arnaudon, J. Avan, N. Cramp´e, L. Frappat and ´ E. Ragoucy, R ma- trix presentation for (super)-Yangians Y (g), J. Math. Phys. 44 (2003) 302 and

math.QA/0111325.

[4] I.V. Cherednik, Factorizing particles on a half line and root systems, Theor. Math. Phys. 61 (1984) 977.

[5] E.K. Sklyanin, Boundary conditions for integrable quantum systems,

J. Phys. A21 (1988) 2375.

Références

Documents relatifs

models and associated solvable quantum spin Hamiltonians of spin one are shown in tables I and II; we aise show related solvable t- J models m table III.. There we shall point Dut

• Case II: We take a specific initial spin state and vary the values of the reservoir temperature and of the coupling constant.. We find that the effect of the coupling to the

The classifications of finite dimensional irreducible representations for the Yangian (closed spin chains) and for the reflection algebras (open spin chains) are directly linked to

We have found a Bethe Ansatz solution of the open spin-s XXZ chain with general integrable boundary terms (3.18) - (3.21), which is valid for generic values of the bulk

To give a first insight to the technique we develop, we first review in section 2 the usual closed spin chain associated to the XXX Heisenberg model (generalized to gl(N )), adopting

We shall here describe the construction, and present the resolution by analytical Bethe Ansatz methods [16, 27], of open spin chains based on the simplest rational R matrix solutions

equations for ground state and excited states (note that there is no obvious relation between closed spin chains Bethe Ansatz equations and open spin chain Bethe Ansatz

On the other hand, if one thinks that solving an integrable model means that one is able to reduce the complexity of the system using unified mathematical structures (quantum