• Aucun résultat trouvé

An algorithm for solving the discrete log problem on hyperelliptic curves

N/A
N/A
Protected

Academic year: 2021

Partager "An algorithm for solving the discrete log problem on hyperelliptic curves"

Copied!
17
0
0

Texte intégral

(1)

HAL Id: inria-00512401

https://hal.inria.fr/inria-00512401

Submitted on 30 Aug 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

An algorithm for solving the discrete log problem on hyperelliptic curves

Pierrick Gaudry

To cite this version:

Pierrick Gaudry. An algorithm for solving the discrete log problem on hyperelliptic curves. Eurocrypt, 2000, Bruges, Belgium. pp.19-34, �10.1007/3-540-45539-6_2�. �inria-00512401�

(2)

Problem on Hyperellipti Curves

PierrikGaudry

?

LIX,

EolePolytehnique,

91128 PalaiseauCedex,Frane

gaudrylix.polytehnique.fr

Abstrat. Wepresentanindex-alulusalgorithmfortheomputation

of disrete logarithms in the Jaobian of hyperellipti urves dened

overniteelds.TheomplexitypreditsthatitisfasterthantheRho

methodfor genus greater than4. Todemonstratethe eÆieny ofour

approah,wedesribe ourbreakingofaryptosystembasedonaurve

ofgenus6reentlyproposedbyKoblitz.

1 Introdution

Theuseofhyperelliptiurvesinpubli-keyryptographywasrstproposedby

Koblitzin1989[24℄.Itappearsasanalternativetotheuseofelliptiurves[23℄

[31℄, with theadvantagethat it uses asmaller base eld for thesame level of

seurity. Several authors havegivenways to build hyperelliptiryptosystems

eÆiently. The seurity of suh systems relies on the diÆulty of solving the

disrete logarithm problem in the Jaobianof hyperelliptiurves.If an algo-

rithmtries tosolvethisproblem performing \simple"groupoperationsonly,it

wasshownbyShoup[39℄thattheomplexityisatleast( p

n),wherenisthe

largestprime dividingtheorderofthegroup.Algorithmswithsuhaomplex-

ityexist for generigroupsand anbe applied to hyperelliptiurves,but are

stillexponential.ThePollardRhomethodanditsparallelvariantsarethemost

importantexamples[34℄,[46℄,[17℄.

Fortheellipti urvedisretelogarithm problem, thereare somepartiular

aseswhereasolutionanbefoundwithaomplexitybetterthanO(

p

n).See

[30℄, [38℄,[40℄,[37℄. Similarases were disovered for hyperellipti urves [14℄,

[35℄.Howevertheyareverypartiularandanbeeasilyavoidedwhendesigning

aryptosystem.

In 1994, Adleman, DeMarrais and Huang [1℄ published the rst algorithm

(ADH for short) to ompute disrete logs whih runs in subexponential time

when the genus is suÆiently large ompared to the size of the ground eld.

Thisalgorithmwasrathertheoretial,andsomeimprovementstoit weredone.

FlassenbergandPaulus[13℄ implementedasieveversionof thisalgorithm,but

?

ThisworkwassupportedbyAtionCOURBESofINRIA(ationooperativedela

(3)

provedtheoriginalalgorithmandgaveapreiseevaluationoftherunningtime,

but didnotimplement his ideas.Muller, Stein and Thiel[32℄ extended there-

sultstotherealquadrationgruenefuntion elds.SmartandGalbraith [16℄

alsogavesomeideasintheontextoftheWeildesent,followingideasofFrey;

theydealtwithgeneralurves(not hyperellipti).

Ourpurposeistopresentavariantofexistingindex-alulusalgorithmslike

ADHorHafner-MCurley[19℄,whihallowedustobreakaryptosystembased

on a urve of genus 6 reently proposed by Koblitz. The main improvement

is due to the fat that the ostly HNF omputation in lassialalgorithms is

replaed bythat of the kernelof asparse matrix.A drawbakis that wehave

to assumethat theorder ofthegroupin whihweareworkingis known. This

is notaonstraintin aryptographial ontext, beausetheknowledgeof this

order is preferable to build protools. But from a theoretial point of view it

diersfrom ADH orHafner-MCurleyalgorithm where the orderof thegroup

wasabyprodut ofthe disretelogarithm omputation (in fat theaim ofthe

HNFomputation wastondthegroupstruture).

Wewillanalyse ourmethodfor smallgenus andshowthatit isfaster than

thePollardRhomethodassoonasthegenusisstritlygreaterthan4.Indeedits

omplexityisO(q 2

)whereqistheardinalityofthebaseeld.Wewillexplain

belowsomeonsequenesforthehoieoftheparameters,urveandbaseeld,

whenbuildingaryptosystem.

Moreover,thepreseneofanautomorphismofordermontheurveanbe

usedtospeeduptheomputation,justasintheRhomethod [9℄[17℄ [48℄.This

is the ase in almost all the examples in the literature. The gain in the Rho

methodisafator p

m,butthegainobtainedhereisafatorm 2

,whihisvery

signiantin pratie.

Theorganizationofthepaperisasfollows:insetion2aftersomegeneralities

on hyperelliptiurves,our algorithm is desribed. It is analyzedin setion3,

and in setion 4 we explain how the presene of an automorphism an help.

Finally thesetion5givessomedetails onourimplementationand theresults

ofourexperimentswithKoblitz's urve.

2 Desription of the Algorithm

2.1 HyperelliptiCurves

We give an overview of the theory of hyperelliptiurves.More preise state-

mentsan be foundin [24℄, [4℄,[15℄.Wewill restrit ourselvesto theso-alled

imaginaryquadratiase.

AhyperelliptiurveCofgenusgoveraeldK isasmoothplaneprojetive

urvewhihadmitsanaÆneequationoftheformy 2

+h(x)y=f(x),wheref is

apolynomialofdegree2g+1,and his apolynomialofdegreeat mostg, both

withoeÆientsinK.

A divisor on theurveC is anite formal sum ofpointsof theurve.The

(4)

D=

i n

i P

i

2Div(C),wheretheP

i

arepointsontheurve,wedenethedegree

ofD bydeg (D)= P

i n

i

.Theset ofalldivisorsofdegreezeroisasub-groupof

Div(C)denoted byDiv 0

(C).

For eah funtion '(x;y) onthe urve, wean dene adivisor denoted by

div (') by assigning at eah point P

i

of the urve the value n

i

equal to the

multipliity of the zeroif '(P

i

)=0, ortheopposite of themultipliity of the

poleifthefuntion isnotdenedat P

i

.It anbeshownthat thesumisnite,

and moreover that the degree of suh a divisor is always zero. The set of all

divisorsbuilt from afuntion a subgroupof Div 0

(C) denoted byP(C)and we

all thesedivisorsprinipal. TheJaobian oftheurveC isthen denedbythe

quotientgroupJa(C)=Div(C) 0

=P(C).

If the base eld of the urve is a nite eld with ardinality q, then the

Jaobianoftheurveisaniteabeliangroupoforderaroundq g

.TheHasse-Weil

boundgivesapreiseintervalforthisorder:( p

q 1) 2g

#Ja(C)( p

q+1) 2g

.

In[4℄, Cantor gavean eÆientalgorithm for theomputation of thegroup

law.Wedonotreallhismethod,butwerealltherepresentationoftheelements.

Proposition1 IneverylassofdivisorsinJa(C),thereexistsanuniquedivi-

sorD=P

1

++P

g

g1,suhthatforalli6=j,P

i andP

j

arenotsymmetri

points.Suhadivisorisalledredued,andthereisauniquerepresentationofD

bytwopolynomials[u;v℄,suhthatdegv<degug,andudividesv 2

+hv f.

Inthisrepresentation,therootsofthepolynomialuareexatlytheabsissae

ofthepointswhih ourintheredueddivisor.

ThegroupJa(C)annowbeusedinryptographialprotoolsbasedonthe

disretelogarithmproblem,forexampleDiÆe-HellmanorElGamal'sprotools.

TheseurityreliesonthediÆultyofthefollowingproblem.

Denition1 The hyperellipti disrete logarithm problem takes on input a

hyperellipti urve of given genus, an element D

1

of the Jaobian, itsordern,

andanotherelementD

2

inthesubgroupgeneratedbyD

1

.Theproblemistond

an integermodulo nsuhthatD

2

=:D

1 .

2.2 SmoothDivisors

Likeanyindex-alulusmethod,ouralgorithmisbasedonthenotionsofsmooth-

ness,andprimeelements.Wewillreallthesenotionsfordivisorsonhyperellipti

urves,whihwererstdened inADH.

Denition2 With the polynomial representation D = [u;v℄, a divisor will be

saidtobeprimeif the polynomialuisirreduible overF

q .

ForaprimedivisorD,whenthereisnopossibleonfusionwiththedegreeof

Dasadivisor(whihisalwayszero),wewilltalkaboutthedegreeofDinstead

ofthedegreeof u.

Proposition2 A divisor D of Ja(C) represented by the polynomials [u;v℄ is

equal tothe sumof prime divisors[u

i

;v

i

℄,where theu

i

arethe prime fators of

(5)

smoothness bound.

Denition3 A divisor is said to be S-smooth if all its prime divisors are of

degree atmost S. When S =1, a 1-smooth divisor will be a divisor for whih

the polynomialusplits ompletelyoverF

q .

TheaseS=1isthemostimportantfortworeasons:therstoneisthatfor

arelativelysmallgenus(sayatmost9),andareasonableeldsize,thishoieis

thebestinpratie.Theseondoneisthatifwewanttoanalyzeouralgorithm

foraxed gandaqtendingtoinnity, thisisalsothegoodhoie.

Thedenitionofasmoothdivisoranbeseendiretly ontheexpressionof

D asasumofpointsoftheurve.NotethatadivisordenedoverF

q

isdened

bybeinginvariantundertheGaloisation.Butitdoesnotimplythatthepoints

ouringin itare dened overF

q

; theyanbeexhangedbyGalois. Hene an

equivalentdenitionof smoothnessisgivenbythefollowingproposition.

Proposition3 A divisor D =P

1

++P

g

g1 is S-smooth if and only if

eah pointP

i

is denedoveranextensionF

q

k with kS.

Wedenealsoafatorbasis,similartotheoneusedforlassialdisretelog

problemoverF

p .

Denition4 Thefatorbasis,denotedbyG

S

,isthesetofalltheprimedivisors

of degreeatmostS.ForS =1wesimply writeG.

Inthefollowing,wewillalwaystakeS =1and wewillsay`smoothdivisor'

for1-smoothdivisor.

2.3 Overview ofthe Algorithm

Forthe sakeof simpliity, wewill suppose that the Jaobianof theurvehas

an orderwhih isalmost prime and that we haveto omputeadisrete login

thesubgroupoflargeprime order(thisisalwaystheasein ryptography).Let

n =ord(D

1

)be this prime order,and D

2

bethe elementfor whih we searh

thelog.

Weintrodue apseudo-randomwalk(as in [45℄)in thesubgroup generated

by D

1 : LetR

0

=

0 D

1 +

0 D

2

bethe startingpointof thewalk,where R

0 is

theredueddivisorobtainedbyCantor'salgorithm, and

0 and

0

arerandom

integers.Forjfrom1tor,weomputerandomdivisorsT (j)

= (j)

D

1 +

(j)

D

2 .

ThewalkwillthenbegivenbyR

i+1

=R

i +T

(H(R

i ))

,whereHisahashfuntion

from thesubgroupgenerated byD

1

totheinterval[1;r℄. Thishash funtion is

assumedto havegood statistial properties; inpratie,it anbe givenbythe

last bitsin theinternalrepresentationofthedivisors.One theinitializationis

nished,weanomputeanewpseudo-randomelementR

i+1

attheostofone

additionintheJaobian.MoreoverateahstepwegetarepresentationofR

i+1

as D + D ,where and areintegersmodulon.

(6)

i1 i2

thedisretelogarithm= (

i1

i2 )=(

i1

i2

)modn.Weanhowevermake

useofthesmoothdivisors.ForeahR

i

oftherandomwalk,testitssmoothness.

Ifitissmooth,expressitonthefatorbasis,elsethrowitaway.Thusweextrat

asubsequeneofthesequene(R

i

)whereallthedivisorsaresmooth.Wedenote

alsoby(R

i

)thissubsequene.Heneweanputtheresultofthis omputation

in a matrix M, eah olumn representing an element of the fator basis, and

eahrowbeingaredueddivisorR

i

expressedonthebasis:forarowi,wehave

R

i

= P

k m

ik g

k

, where M = (m

ik

). We ollet w+1 rows in order to have

a (w+1)w matrix.Thus the kernelof thetranspose of M is of dimension

at least1.Using linearalgebra,wend anon-zerovetorof thiskernel,whih

orrespondstoarelationbetweentheR

i

's.Thenwehaveafamily(

i

)suhthat

P

i

i R

i

=0.Going baktothe expressionofR

i

infuntion of D

1 andD

2 , we

get:

P

i

i (

i D

1 +

i D

2

)=0,andthen

= P

i

i

i

P

i

i

i :

Thedisrete logarithmis nowfoundwith highprobability(the denominator is

zerowithprobability1=n).

Wesummarizethisalgorithmin thegure1.

2.4 Details onCritial Phases

Intherststep,wehavetobuildthefatorbasis,andforthat,wehavetond,

ifit exists,apolynomialv orresponding to agivenirreduible u.This anbe

rewritteninsolvinganequationofdegree2overF

q

,whihanbedonequikly.

Theinitialization ofthe randomwalkis onlyamatter of operationsin the

group;afterthat,omputingeahrandomdivisorR

i

requiresasingleoperation

in thegroup.

Oneruial point is to test the smoothness of a divisor, i.e. to deide ifa

polynomialofdegreeg(the uofthedivisor)splitsompletely onF

q

. Awayto

dothatistoperformthebeginningofthefatorizationofu,whihisalledDDF

(standsfordistintdegreefatorization).Byomputinggd(X q

X;u(X)),we

get theprodut ofall theprime fators ofuof degree1.Thus ifthe degreeof

thisprodutisequaltothedegreeofu,itprovesthatusplitsompletelyonF

q .

In the ase where a smooth divisor is deteted, the fatorization an be

ompleted,oratrialdivisionwiththeelementsofthebasisanbeperformed.

Thelinear algebrais the last ruial point. The matrixobtained is sparse,

andwehaveatmostg termsineahrow.ThensparsetehniquelikeLanzos's

[27℄ or Wiedemann's [47℄ algorithm an beused, in order to get a solutionin

timequadratiinthenumberofrows(insteadofubibyGaussianelimination).

Someother optimizations anbedone to speedup theomputation. They

(7)

1 q

ord(D1),adivisorD22hD1i,andaparameterr.

Output:AnintegersuhthatD2=D1.

1. /*BuildthefatorbasisG*/

ForeahmoniirreduiblepolynomialuioverFqofdegree1,trytond

v

i

suhthat[u

i

;v

i

isadivisoroftheurve.Ifthereisasolution, store

gi =[ui;vi℄ inG(we onlyputoneof thetwooppositedivisors inthe

basis).

2. /*Initializationoftherandomwalk*/

Forjfrom1tor,selet (j)

and (j)

atrandomin[1::n℄,andompute

T (j)

:=

(j)

D1+ (j)

D2.

Selet0 and0 atrandomin[1::n℄ andomputeR0:=0D1+0D2.

Setk to1.

3. /*Mainloop*/

(a) /*Lookforasmoothdivisor*/

Computej:=H(R0),R0:=R0+T (j)

,0:=0+ (j)

modn,and

0 :=

0 +

(j)

modn.

RepeatthisstepuntilR0=[u0(z);v0(z)℄isasmoothdivisor.

(b) /*ExpressR0 onthebasisG*/

Fatoru

0

(z)overF

q

,anddeterminethepositions ofthefatorsin

the basis G.Storethe result as arow Rk = P

mikgi of amatrix

M =(m

ik ).

StoretheoeÆientsk=0 andk=0.

Ifk<#G+1,thensetk:=k+1,andreturntostep3.a.

4. /*Linearalgebra*/

Findanonzero vetor(k)ofthekernelofthetransposeofthematrix

M.TheomputationanbedoneintheeldZ=nZ.

5. /*Solution*/

Return= ( P

kk)=(

P

kk) modn.(Ifthedenominatoriszero,

returntostep2.)

Fig.1.Disretelog algorithm

3 Analysis

3.1 Probability fora Divisor to Be Smooth

Thefollowingpropositiongivestheproportionofsmoothdivisorsandthenthe

probabilityofsmoothnessinarandomwalk.Thisisakeytoolfortheomplexity

analysis.

Proposition4 Theproportionofsmoothdivisorsinthe Jaobianofaurveof

genus g overF

q

tendsto1=g!whenq tendstoinnity.

Proof: ThispropositionisbasedontheHasse-Weilboundforalgebraiurves:

(8)

equaltoq+1withanerrorofatmost2g q,i.e.forlargeenoughqweanneglet

it.MoreovertheardinalityofitsJaobianisequaltoq g

withanerrorbounded

byapproximatively2gq g

1

2

.HeretheapproximationholdswhenqissuÆiently

largeomparedto4g 2

,whihistheasein theappliationsonsidered.

To evaluate the proportion of smooth divisors, weonsider the number of

pointsoftheurveoverF

q

whihisapproximativelyq.Now,thesmoothdivisors

of the Jaobianare in bijetion with the g-multiset of points of the urve: we

haveq g

=g!smoothdivisors,andthesearhedproportionis1=g!. 2

3.2 Complexity

Theomplexityof thealgorithmwill beexponentialinthesize ofq, sowewill

ountthe numberof operations whih anbe donein polynomial time. These

operations areof four types:wedenote by

J

theost of agroupoperationin

the Jaobian,

q

the ostof anoperationin the base eld,

q;g

the ost of an

operationon polynomialsofdegreeg overthebase eld, and

n

theost ofan

operationin Z=nZ,wherenq g

istheorder oftheJaobian.Weonsiderthe

enumerationofstepsingure1.

Step1.Forthebuildingofthefatorbasis,wehavetoperformqtimes(i.e.the

numberofmoniirreduiblepolynomialofdegree1)aresolutionofanequation

ofdegree2overF

q

.HenetheomplexityofthisphaseisO(q

q ).

Step 2.Theinitialization ofthe randomwalkis onlyapolynomialnumberof

simpleoperations.HenewehaveO((logn)

J

)forthisstep.

Step 3.Wehavetorepeat#G=O(q)timesthesteps3.a. and3.b.

Step3.a.Theomputationofanewelementoftherandomwalkostsanaddi-

tionintheJaobianandtwoadditionsmodulon,andthetestforitssmoothness

ostsarststep ofDDF.Byproposition4, wehaveto omputeg! divisorson

averagebefore getting asmoothone and goingawayfrom step 3.a. Hene the

ostofthisstepisO(g!(

J +

n +

q;g )).

Step 3.b. Thenal splitting of thepolynomial in order to express thedivisor

on the fator basisan notbe proved to be deterministi polynomial(though

it isveryfast in pratie).Fortheanalysis,weanthen suppose that wedoa

trial division with all the elements of the basis. This leads to a omplexity of

O(q

q;g ).

Henetheomplexityofstep3.isO(qg!(

J +

n +

q;g

))+O(q 2

q;g ).

Step 4. This linear algebra step onsists in nding a vetor of the kernel in

asparse matrixof size O(q), and ofweightO(gq);theoeÆient arein Z=nZ.

Hene Lanzos'salgorithmprovidesasolutionwithostO(gq 2

n ).

Step 5. This last step requires only O(q) multipliations modulo n, and one

inversion.Hene theomplexityisO(q

n ).

Finally,theoverallomplexityofthealgorithmisO(g!q

J

)+O((g!q+gq 2

)(

n +

q;g

))+O(q

q

).Now,byCantor'salgorithm

J

ispolynomialinglogq,andlas-

sialalgorithmonniteeldsandpolynomialsgive polynomialinn=glogq,

Références

Documents relatifs

In this section we shall explain how to adapt such procedure to compute equations of hyperel- liptic quotients of Shimura curves by Atkin-Lehner involutions.. We expect that the

Level lines of the likelihood function obtained by PSO on the measured test case with an adaptive database generated according to norm 1 (left) and norm 2 (right).. The circles

The proposed algorithm has been applied on a real problem for locating stations of a Carsharing service for electrical vehicles.. The good results we obtained in comparison to PLS

Later, it was briefly mentioned in [10] that the meet-in-the-middle trick can be used to solve the discrete logarithm problem if votes are packed homomorphicly using the

Abstract—In this paper, we propose an improvement of the attack on the Rank Syndrome Decoding (RSD) problem found in [1], usually the best attack considered for evaluating the

We show how to speed up the discrete log computations on curves having automorphisms of large order, thus generalizing the attacks on anomalous binary elliptic curves.. This

Some particular elliptic curves admit an embedding into another group in which discrete logarithms are considerably easier to compute, but these curves have a very low density: They

Rene Schoof gave a polynomial time algorithm for counting points on elliptic curves i.e., those of genus 1, in his ground-breaking paper [Sch85].. Subsequent improvements by Elkies