• Aucun résultat trouvé

BSA-Seq : an efficient method to decipher a complex trait on Poplar, a highly heterozygous diploid genome

N/A
N/A
Protected

Academic year: 2021

Partager "BSA-Seq : an efficient method to decipher a complex trait on Poplar, a highly heterozygous diploid genome"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-02736419

https://hal.inrae.fr/hal-02736419

Submitted on 2 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

BSA-Seq : an efficient method to decipher a complex trait on Poplar, a highly heterozygous diploid genome

Aurelie Canaguier, Véronique Jorge, Vanina Guérin, Odile Rogier, Vincent Segura, Aurélie Chauveau, Elodie Marquand, Aurélie Berard, Marie-Christine

Le Paslier, Catherine Bastien, et al.

To cite this version:

Aurelie Canaguier, Véronique Jorge, Vanina Guérin, Odile Rogier, Vincent Segura, et al.. BSA-Seq : an efficient method to decipher a complex trait on Poplar, a highly heterozygous diploid genome.

PAG XXVI - Plant and Animal Genome Conference, Jan 2018, San Diego, United States. 1 p., 2018.

�hal-02736419�

(2)

MATERIAL AND METHODS

MATERIAL

- Phenotyping for traits associated to the resistance to Melampsora larici-populina (Mlp) leaf rust of parents and 1414 progenies from an interspecific cross :

Populus deltoides clone 73 028-62 (Pd) x Populus trichocarpa clone 101-74 (Pt) - Independently DNA extractions with Qiagen Kit and genotyping (2,3).

METHOD – BULK CONSTITUTION

The selection of 62 progenies, based on genotyping of markers physically linked to Rus and the phenotypic information, was realized as described in Figure 1. Then, the corresponding DNA were pooled equimolarly into 4 bulks.

BSA-Seq : an efficient method to decipher a complex trait on Poplar,

a highly heterozygous diploid genome

Plant Biology and Breeding Division F-78026 Versailles, France

EPGV group contact

aurelie.canaguier@inra.fr

CONCLUSION & PERSPECTIVES

THANKS TO CEA-CNG : A. Boland-Augé group for performing DNA samples QC, M.T Bihoreau and D. Lechner for providingINRA-EPGV group with access to their IIlumina Sequencing Platform.

Aurélie Canaguier

1

, Véronique Jorge

2

, Vanina Guérin

2

, Odile Rogier

2

, Vincent Segura

2

, Aurélie Chauveau

1

, Elodie Marquand

1

, Aurélie Bérard

1

, Marie-Christine Le Paslier

1

, Catherine Bastien

2

and Patricia Faivre Rampant

1

1 - INRA, US 1279 Etude du Polymorphisme des Génomes Végétaux, F-91000 Evry, France 2 – INRA, UR 0588 AGPF, Centre INRA Val de Loire, Orléans, France

RESULT 1

ANALYSIS WORKFLOW

Figure 1. Population phenotyping and genotyping to select progenies for extreme and intermediate Bulks.

STEP

TOOLS DESCRIPTION RESULTS

12345

020 4060

[RUS] [rUS]

Fine-Mapping of Rus (2)

Fructification Size

Individual Number

First Step :

•  Pt ó Individual [RUS], RUS+

•  Bulk1 ó 16 Individuals [RUS], RUS+

•  Bulk2 ó 14 Individuals [intermediate], rUS-

•  Bulk3 ó 16 Individuals [intermediate], RUS+

•  Bulk4 ó 16 Individuals [rUS], rUS-

•  Pd ó Individual [rUS], rUS-

Resistance [Rus]

Susceptibility [rUS]

Second Step :

Individual selection on phenotype and genotype

RUS/rUS

1 2 3 4

rUS/rUS

[RUS] [intermediate] [rUS]

METHOD – BULK COMPARISON

The RUS markers are expected to be polymorphic between the 2 parents and to cosegregate with [

R

US] and RUS+. More precisely, a variant was considered as RUS whenever it fulfilled the following two conditions: (i) its alleles differed between the 2 parents; and (ii) its P. trichocarpa allele was present in bulks 1 and 3 and absent in bulks 2 and 4.

Positions which segregates in conformity with the resistance leaf rust and not with RUS+.are called

« other » (OTH).

REFERENCES INTRODUCTION

The efficiency of the Bulk Segregant Analysis (BSA) has clearly been demonstrated to detect genomic regions and genes involved in various traits. It allows large experiments reducing the cost and time and preserving the power of full individual's population analysis. Over the past few years the combination of BSA and Next Generation Sequence (NGS) data (BSA-Seq) has given a new accuracy and robustness to the discovery of genes and genomics regions underlying traits of interest, mainly on crop and model species (1).

In our study, we applied the BSA-Seq on Poplar, a heterozygous and diploid genome, to decipher the genetic determinism of leaf rust resistance. As a proof of concept, we focused on Rus, a major gene previously fine-mapped on Chromosome 19 and controlling the uridenia size during the rust-Poplar interaction (2,3).

•  Paired-end reads ( 2x76bp and 2x101bp)

•  Sizing 450-650bp

Pt : 131 823 814 Pd : 314 757 684 B1 : 242 963 534 B2 : 216 556 986 B3 : 174 374 986 B4 : 197 757 684

Sequencing

•  TruSeq DNA Illumina

•  GA or HiSeq2000

•  Min Length = 36pb

•  No N ; PHRED score > 20 on 4 bases (sliding windows)

Trimmed reads

Pt : 72 634 382 Pd : 284 660 324 B1 : 206 186 462 B2 : 186 221 932 B3 : 152 344 640 B4 : 178 663 234

Trimming

•  Trimmomatic/0.32 (5)

•  Ref : P. trichocarpa Nisqually v3.0 softmasked

(4) (Default parameters) Mapped

reads

Pt : 70 713 777 Pd : 269 209 371 B1 : 200 949 595 B2 : 181 161 530 B3 : 148 398 543 B4 : 173 148 769

>95%

Mapping

•  BWA/0.7.12 (6)

•  Reads with unique mapping in pair with quality score ≥ 30

Pt : 51 903 451 Pd : 173 489 464 B1 : 129 698 163 B2 : 121 026 257 B3 : 99 723 832 B4 : 114 707 114

Merging and filtration

•  SAMtools/1.3.1 (7)

•  Multi samples detection on Chromosomes and scaffolds ≥ 50Kb

•  Multi samples Depth ≥ 30

Variant frequency : Chr. : 32,7 variant/kb

Sc. >50kb : ~25 variant/kb Variant

detection

•  FreeBayes/0.9.21 (8)

•  Conformity of the Mendellian segregation in the 4 Bulks (Pearson’s Chi2)

•  Parental depth > 10

•  Information on the 4 bulks

~15%

~3%

Filtered variant frequency : Chr. : 5 variant/kb

Sc. >50kb : ~0,7 variant/kb Variant

validation

•  R/3.3.1

•  Identification in each Bulk, of the specific allele(s) of P. trichocarpa and/or P. deltoides.

•  Characterization of the segregation by bulk comparison

On chromosomes : On scaffolds :

0,01 to 0,43%

~26%

RUS Segregation

identification

•  In-house Perl scripts

•  At least 2 consecutive variants with the same segregation.

Intervals RUS

Intervals OTH 74 int.

91 int.

Interval identification

•  In-house Perl scripts

•  Interval size > 20nt and/or

•  More than 1 interval in 500Kb Int. RUS on Chr19, sc.20, sc.25, sc.232 Int. OTH on Chr01, 02, 03,

04, 05, 06, 08, 09, 10, 11, 12, 15, 16, 18 and sc.20

Interval selection

•  Manual selection

•  Primer3/BLAST (9,10) Interval

validation

•  Primer3 on 32 Int. sequences (4 Regions)

•  Validation by BLAST of primers and amplicon on BAC sequences.

Design of 128 primer pairs

29 validated primer pairs on 29 int. 29 NewM Raw

reads

Filtered mapped

reads

B1 : Bulk1 B3 : Bulk3 B2 : Bulk2 B4 : Bulk4

Figure 2. Analysis workflow and general results.

Note : P. trichocarpa Nisquallyó Individual [rUS]

Pt

>85% 55%

~60%

0,02 to 0,07%

~32%

32 int.

4 regions 47 int.

23 regions

128 NewM

OTH

600 660

820

16N23 97G09

720 780

93I12

25F19

78I01

15M01

170

scaffold_20 (kb) 190

97C12

0 60

220

70L19

120 180

36M18

22N18

106H06

scaffold_25 (kb)

0 60

53O19

74H06

11N09

scaffold_232 (kb)

140 200 380

11N09

53O19

74H06

260 320

50A15

41A14

36M18

110E15 25F19

97C12

58F04

112P13

04J18-97F12

30F11

78I01

500

Chr19 (kb) 440

1, 2 or 3 new marker(s) : 2 primers and amplicon Interval on P. trichocarpa Nisqually v3.0

Chromosome 19 or scaffolds of P.

trichocarpa Nisqually v3.0

Pt BACs related to Rus allele Pt BACs related to rus allele

BACs anchoring by new markers on one scaffold and on the Chromosome 19

1 partial new marker : one primer and partial amplicon

Previous genetic and physical markers linked to Rus (2).

74H06, 97C12 25F19…

Figure 3. Description of the Rus gene environment.

Legend

RESULT 2

DESIGN OF NEW MARKERS ON A SPECIFIC REGION

•  (1) Cheng Z et al.: Genetic sample analysis in genetics and crop improvement. Plant Biotechnology Journal (2016) 14: 1941-1955.

•  (2) Bresson A et al.: Qualitative and quantitative resistances to leaf rust finely mapped within two nucleotide-binding site leucine-rich repeat (NBS-LRR)-rich genomic regions of chromosome 19 in poplar. New Phytologist (2011) 192: 151–163.

•  (3) Jorge V et al.: Genetic architecture of qualitative and quantitative Melampsora larici-populina leaf rust resistance in hybrid poplar: genetic mapping and QTL detection. New Phytologist (2005) 167: 113-127.

•  (4) Tuskan G et al.:The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray) Science (2006) 313:1596-1604.

•  (5) Bolger A et al.: Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics ( 2014) 30: 2114–2120.

•  (6) Li H and Durbin R: Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics ( 2009) 25: 1754–1760.

•  (7) Li H et al.: The Sequence Alignment/Map format and SAMtools. Bioinformatics ( 2009) 25: 2078–2079.

•  (8) Garrison E and Marth G.: Haplotype-based variant detection from short-read sequencing. arXiv preprint arXiv:1207.3907 [q-bio.GN]2012.

•  (9) Untergasser A et al.: Primer3—new capabilities and interfaces. Nucleic Acids Res (2012) 40(15): e115.

•  (10) Altschul S et al.: Basic local alignment search tool. Journal of Molecular Biology (1990) 215(3): 403-410.

Pd : Populus deltoides clone 73 028-62 Pt : Populus trichocarpa clone 101-74 NewM : New marker Int. : Interval Chr. : chromosome sc. : scaffold

BSA-seq method allows identification of P. trichocarpa and/or P. deltoides specific variants for complex trait in a diploid and heterozygous context and this, even if the mapping reference doesn’t carry the searched region of interest.

Next steps are first to proceed the PCR experiments with the new markers on the parents and progenies to enrich the Rus fine-map ; second to characterize the 23 other regions in segregation with the resistance to leaf rust.

Moreover this pipeline, usable on any heterozygous species, releases to the scientific community a high-confidence set of variant positions based on the conformity of the allele frequencies within the bulks.

Poster Online

Références

Documents relatifs

Sept patients ont été traités par une combinaison de la technique d’Ilisarov et de péroné libre vascularisé, la consolidation a été atteinte dans tous les cas,

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

The experimental sideband intensities in the 31 P spectrum of Figure 4a, obtained after spinning a sam- ple at 400 Hz for 14 hours, are well described by a powder distribution of

Contents of bottles that gave positive results were plated on Columbia sheep blood agar (Oxoid) and incubated under aerobic and anaerobic conditions at 37°C.. Cultures were

Sorghum sequence Sugarcane monoploid mosaic genome a Whole genome profiling b BAC aligned on sorghum using tags c Selection and sequencing of a MTP of BAC Sugarcane

A minimum tiling path of 4,660 sugarcane BAC clones that best cover the gene-rich part of the sorghum genome was selected, sequenced and assembled in a 382 Mb single tiling path

Dans des études précédentes, nous avions montré que les chromosomes hom(e)ologues du génome de la canne à sucre partagent entre eux un très haut niveau de micro-colinéarité

The method for evaluating complex poly- nomials discussed in this paper can be extended to evaluation of complex rational functions and complex operators such as multiply-add and sum