• Aucun résultat trouvé

Numerical Approach to the Optimal Control and Efficiency of the Copepod Swimmer

N/A
N/A
Protected

Academic year: 2021

Partager "Numerical Approach to the Optimal Control and Efficiency of the Copepod Swimmer"

Copied!
19
0
0

Texte intégral

(1)

HAL Id: hal-02483321

https://hal.inria.fr/hal-02483321 Submitted on 18 Feb 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Numerical Approach to the Optimal Control and Efficiency of the Copepod Swimmer

Jérémy Rouot, Bernard Bonnard, Monique Chyba, Daisuke Takagi

To cite this version:

Jérémy Rouot, Bernard Bonnard, Monique Chyba, Daisuke Takagi. Numerical Approach to the Optimal Control and Efficiency of the Copepod Swimmer. 55th IEEE Conference on Decision and Control, Sep 2016, Las Vegas, United States. �hal-02483321�

(2)

Numerical Approach to the Optimal Control and Efficiency of the Copepod Swimmer.

55th IEEE Conference on Decision and Control

Bernard Bonnard, Monique Chyba, J´er´emy Rouot and Daisuke Takagi

(3)

Context

• Geometric optimal control . Maximum principle

. Second order optimality conditions (local, conjugate points)

• Swimming at low Reynolds number

. sub-Riemannian (SR) geometry framework

. Varational approach to find trajectoires of a Hamiltonian system with periodic projections

. Find optimal stroke (efficiency concept)

(4)

Smooth optimal control system in Rn

min c(q(0),e q(T ))e

subject to q˙= F(q, u), q˙0 = L(q, u) (q(0),e q(T )) ∈ Be

• final time T is fixed

• qe= (q, q0), q state, q0 ∈ R

• u(.) ∈ L∞([0, T ],U ), U ⊂ Rm

• B : smooth closed set of Rn× Rn, (q(0),e q(T )) ∈ Be stands for mixed boundary conditions.

Ex. : B= {q(0) = q(T ), q0(0) = 0},

B= {q(0) = q0, q(T ) = qf, q0(0) = 0}...

(5)

Pontryagin Maximum Principle

Necessary condition. (q, u)e optimal =⇒ ∃ pe= (p, p0) : [0, T ] → (Rn× R) abs.

continuous and λ ≥ 0 cst with (p, λ ) 6= (0, 0)e and s.t.

˙ e q= ∂ H ∂pe, ˙ e p= −∂ H ∂qe, H(q,e p, u) = maxe v∈U H (eq,p, v)e where H (q,e p, u) = p · F(q, u) + pe 0L(q, u). Transversality conditions: (p(0), −e p(T )) − λe  ∂ c ∂q(0)e (q(0),e q(T )),e ∂ c ∂q(T )e (q(0),e q(T ))e  ∈ (T( e q(0),q(T ))e B)⊥

Definition 1. (q,e p, λ , u)e is a normal extremal if λ > 0, abnormal if λ = 0. An

(6)

Life at low Reynolds number - Purcell, 1977

Reynolds number

(7)

Copepod Model (Takagi, 2014)

Symmetric 2-link swimmer

x(t) x θ1(t) θ1(t) l l θ2(t) θ2(t) θ = π θ = 0

Controlled dynamic (Takagi, 2014) ˙ x= ∑ 2 i=1l2θ˙isin(θi) 2 + ∑2i=1sin2(θi) , θ˙i = ui, i = 1, 2 , state constraints: 0 ≤ θ1≤ θ2 ≤ π.

Criterion : min of the dissipative energy: qS(q) ˙˙ q| where q= (x, θ1, θ2) and S is a

(8)

2 types of swimming

Definition 2. An admissible stroke is a periodic motion of the shape variables (θ1, θ2)

associated with a periodic control and producing a displacement of the position variable after one period T (we can fix T = 2π).

Time t Position x0 (t ) Angle Time t Position x0 (t ) A ng le

(Left) Trigonometric controls. (Right) Piecewise controls.

(9)

SR problem E =Geometric Efficiency= x(T )/lSR(q) SR length: lSR(q) = Z T 0 p L(q, u) dt, L(q, u) = a(q) u21+ 2b(q) u1u2+ c(q) u22 min lSR(q) ⇐⇒ min Z T 0 | ˙q|2L dt = min Z T 0 L(q, u)dt With c(q(0),e q(T )) = qe 0(T ) : ˙ q= 2

i=1 uiFi ← min Z T 0 L(q, u)dt, max E ⇐⇒      min Z T 0

L(q, u)dt with x(T) fixed, then select max

x(T ) E | {z } transversality cond.     

Compute points on the SR-sphere →

(10)

Application of the Pontryagin Maximum Principle ˙ q= 2

i=1 uiFi(q), q= (x, θ1, θ2) Fi = sin(θi) ∆ ∂ ∂ x+ ∂ ∂ θi , ∆ = 2 + sin2(θ1) + sin2(θ2) PMP: H (z,u) = u1H1(z) + u2H2(z) + p0L(q, u), z = (q, p) with Hi= p · Fi, i = 1, 2.

• normal case: p0 = −1/2 and ui, i = 1, 2 given by ∂H /∂u = 0

Hn = 1/2 (a(q) H12+ 2b(q) H1H2+ c(q) H22)

• abnormal case: p0 = 0 hence H1 = H2 = {H1, H2} = 0, then

u1{{H1, H2} , H1} + u2{{H1, H2} , H2} = 0.

(11)

Abnormals extremals

Proposition 3. The surface Σ : { q; det(F1(q), F2(q), [F1, F2](q)) = 0 } contains

abnor-mal trajectories and is characterized by • θi = 0 or π, for i= 1, 2,

• θ1 = θ2.

→ physical boundary of the state domain.: θi ∈ [0, π], i = 1, 2, θ1 ≤ θ2.

0 . . π π θ1 : abnormal trajectories in the plane (θ1, θ2) θ2

(12)

For normal extremals

Boundary conditions defined by

x(0) = 0, x(T ) = xf, θi(0) = θi(T ), i = 1, 2 Transversality conditions pθi(0) = pθi(T ), i = 1, 2 Shooting problem        ˙z = −→Hn(z) x(0) = 0, x(T ) = xf (fixed) , θi(0) = θi(T ), i = 1, 2 pθi(0) = pθi(T ), i = 1, 2

• HamPath indirect method : based on the PMP, Newton type algorithm and compute necessary second order optimality conditions, not robust w.r.t. initialization.

• Bocop direct method : give an initialization of the shooting algorithm of the HamPath code.

(13)

Exponential mapping

First conjugate time tttccc: the exponential mapping

expq

0 : IR ×C → M, (t, p0) 7→ q(t, q0, p0)

is not an immersion at (tc, p0).

Theorem 4. Let q : [0, T ] −→ IRn a strict normal stroke. If q(.) has at least one conjugate point on ]0, T [, then q is not a local minimizer for the L∞ topology on

controls, considering the fixed extremities problem.

expq0

C = { p0| H12(q0, p0)+H22(q0, p0) = 1 }

(14)

0.5 1 1.5 2 2.5 3 3.5 4 θ1 θ2 −0.3 −0.2 −0.1 0 0.1 0.2 t x0 0 π 2 π Conjugate point 0.5 1 1.5 2 2.5 3 3.5 4 0 π 2 πt θ1 , θ2 θ1 θ2 −1 −0.5 0 0.5 1 0 π 2 πt u1 , u 2 u 1 u 2 0.1598 0.1598 0.1598 0 π 2 πt Hn 0.5 1 1.5 1.5 2 2.5 θ1 θ2 −0.6 −0.4 −0.2 0 0.2 t x0 0 π 2 π Conjugate point 0.5 1 1.5 2 2.5 0 π 2 πt θ1 , θ2 θ1 θ2 −1 −0.5 0 0.5 1 0 π 2 πt u1 , u 2 u 1 u 2 0.1404 0.1404 0.1404 0 π 2 πt Hn −1 0 1 2 0.5 1 1.5 2 2.5 θ 1 θ2 0 0.1 0.2 0.3 0.4 t x0 0 π

C onj u gate p oint

−1 −0.5 0 0.5 1 1.5 2 2.5 0 π t θ1 , θ2 θ1 θ2 −1 0 1 0 π t u1 , u2 u1 u2 1.2591 1.2591 1.2591 1.2591 1.2591 0 π t H n 0.4 0.6 0.8 1 1.2 2 2.2 2.4 2.6 2.8 θ 1 θ2 0 0.1 0.2 t x0 0 π

C onj ugate p oint

0.5 1 1.5 2 2.5 0 π t θ1 , θ2 θ1 θ 2 −1 −0.5 0 0.5 1 0 π t u1 , u2 u1 u2 0.7834 0.7834 0.7834 0 π t H n 13

(15)

θ1 θ2 0 π/2 π π/2 π 0 0.2 0.4 0.6 0.8 t x0 0 π 2π 0.5 1 1.5 2 2.5 3 0 π t 2π θ1 , θ2 θ1 θ2 −1 −0.5 0 0.5 1 0 π t 2π u1 ,u 2 u1 u2 0.5049 0.5049 0.5049 0.5049 0.5049 0 π t 2π Hn θ1 θ2 0 π/2 π π/2 π 0 0.2 0.4 0.6 0.8 1 t x0 0 π 2 π 0.5 1 1.5 2 2.5 3 0 π 2 π t θ1 , θ2 θ1 θ2 −1 −0.5 0 0.5 1 0 π 2 π t u1 , u2 u1 u2 0.7489 0.7489 0 π 2 π t Hn θ1 θ2 0 π/2 π π/2 π −0.2 0 0.2 0.4 t x0 0 π Conjugate point 0.5 1 1.5 2 2.5 3 0 π t θ1 , θ2 θ1 θ2 −1 −0.5 0 0.5 1 0 π t u1 ,u 2 u1 u2 0.552 0.552 0.552 0 π t Hn θ1 θ2 0 π/2 π π/2 π −0.1 −0.05 0 0.05 t x0 0 π 2π 0.5 1 1.5 2 2.5 0 π t 2π θ1 , θ2 θ1 θ2 −0.2 0 0.2 0 π t 2π u1 ,u 2 u1 u2 0.0542 0.0542 0.0542 0 π t 2π Hn

(16)

Numerical fact:

Only simple loops doesn’t have a conjugate point on ]0, T [: they are the only candidates for optimality.

Theorem 5 (Numerical result). For each fixed displacement x(T ), one can find a simple loop associated with an energy level =⇒ one parameter family of strokes.

θ1

θ2

D

(17)

Select a stroke with transversality conditions. Geometric efficiency, ccc(((eqqq(((000))),,,eqqq(((TTT)))))) === −−−xxx(((TTT))) /// lllSR(((eqqq))) Transversality conditions. px(T ) = q0(T )/x(T ), p0(T ) = −1/2 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04 x0(T ) x0 (T )/ L Abnorm alO ptim al θ1 θ2 0 π/2 π π/2 π −0.4 −0.2 0 0.2 t x0 0 π 2π 0.5 1 1.5 2 2.5 3 0 π t 2π θ1 , θ2 θ1 θ2 −1 −0.5 0 0.5 0 π t 2π u1 ,u 2 u1 u2 0.0832 0.0832 0 π t 2π Hn

Efficiency curve with continuation method on x(T ). Corresponding optimal stroke

Theorem 6. The abnormal stroke is not minimizing for the two costs (length with fixed displacement and geometric efficiency).

(18)

Perspectives

• More general models, • Local geometric study

Nilpotent model ˙ x= u11+ u22, min Z T 0 (u21+ u22) dt

. Interior point of the triangle: weigths x1, x2← 1, x3 ← 2

ˆ F1 = ∂ ∂ x1 + x2(1 + Q(x1, x2)) ∂ ∂ x3 , Fˆ2 = ∂ ∂ x2 − x1(1 + Q(x1, x2)) ∂ ∂ x3

=⇒ simple loops and lima¸cons families

. Point on the edges and 6= vertices of the triangle: weghts x1, x2 ← 1,

x3 ← 3 ˆ F1 = ∂ ∂ x1 +x 2 2 2 ∂ ∂ x3 , Fˆ2 = ∂ ∂ x2 . metric : g= (1 + αx2)2dx1+ (1 + β x1+ γx2)2dx2. =⇒ eight strokes 17

(19)

Perspectives −0.5 0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 θ1 θ2 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 θ1 θ2 −1 −0.5 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 θ 1 θ2 0 1 2 3 0 1 2 3 θ1 θ2 0 0.1 0.2 0.3 0.4 0 π 2 π t x0 0.5 1 1.5 2 2.5 3 0 π 2 π t θ1 , θ2 θ1 θ2 −0.5 0 0.5 0 π 2 π t u1 , u2 u1 u2 −6 −5 −4 −3 −2 0 π 2 π t pθ 1 −6 −5 −4 −3 −2 −1 0 π 2 π t pθ 2 21 22 0 π 2 π t px 0.3497 0.3497 0.3497 0 π 2 π t Hn

Références

Documents relatifs

The maximum principle is used to compute periodic controls candidates as minimizing controls and is a decisive tool combined with appropriate numerical simulations using

préparation

We describe an algorithm for computing the value function for “all source, single desti- nation” discrete-time nonlinear optimal control problems together with approximations

To compute the maximal solution – the optimal cost of the original optimal control problem – we present a complete discrete method based on the use of some finite elements

In section III, the inverse problem we propose to solve is presented, namely the reconstruction of the optical absorption coefficient from acoustic wave measurements.. In section IV,

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Geometric and numerical methods in optimal control for the time minimal saturation in Magnetic Resonance.. Jérémy Rouot, Bernard Bonnard, Olivier Cots,

It is natural to expect that the overall support for an argument will decrease in pro- portion to the strength of its attacking arguments and the intensity with which these attacks