• Aucun résultat trouvé

Towards a temporal modeling of the genetic network controlling systemic acquired resistance in Arabidopsis thaliana

N/A
N/A
Protected

Academic year: 2021

Partager "Towards a temporal modeling of the genetic network controlling systemic acquired resistance in Arabidopsis thaliana"

Copied!
9
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

2010 IEEE Symposium on Computational Intelligence in Bioinformatics and

Computational Biology (CIBCB), pp. 1-8, 2010-05-05

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.1109/CIBCB.2010.5510589

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Towards a temporal modeling of the genetic network controlling

systemic acquired resistance in Arabidopsis thaliana

Tchagang, Alain; Shearer, Heather; Phan, Sieu; Famili, Fazel; Fobert, Pierre;

Pan, Youlian

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=0a781464-afcc-445b-8641-add274937326 https://publications-cnrc.canada.ca/fra/voir/objet/?id=0a781464-afcc-445b-8641-add274937326

(2)

—We studied defense mechanism of the

subjected to Salicylic Acid (SA) treatment for 0, 1, and 8 hours using a broader application of the frequent itemset approach. Four genotypes of the plant were used in this study, Columbia wild type, mutant , double mutant and triple mutant . We defined the major patterns of transcription regulation governing pathogen defense mechanism, thereby creating a model of the Systemic Acquired Resistance (SAR) at three time points. The temporal model describes the relationships among the regulators and defines groups of genes that are subject to similar regulation. The results obtained offered a first glimpse into the temporal pattern of the gene network controlling SAR in plant. We found that most of the genes that responded to SA challenge are in fact dependent on one or more of the NPR1 and TGA transcription factors tested in this study.

! ! ! ! " ! # $ # % & ' $ ' ( ' )*+$),+ -" ! ' # " ( ! ! ).+$)/+ Arabidopsis% # * $ " ! # $ * ! $ )0+$)*1+ # & npr1 ! ( ' # * ( % # * " ! # & $( ! 2 % 3 ! ! (4 # ! )/+ ( ! ' 3 ! ( 5 ' ( *,% 6117 & 8 ( 3 9 ' ! ! ! ( ::::: ! ; % # % 9 ;< (<% 2 2 % = # & ! ! ! ! % *611 5 % & % >* 1 .% ? .*@$77@$ /077A ! "? .*@$7,6$16*,A $ ? B % % ( ( % ! C ! % D E $ 9 # 2 ( & # ; ! % **1 3 # % 8 % > / 1F7% $ ? B % ! ( D E $ !! ( ! ! ! % ( ! ! ! )**+ *1 3 2 Arabidopsis )*6+ ! & ' 3 *$ 3 / ' ( & & # * )**+% )*@+ ' 3 ( ' ( )*G+ 3 ! 3 * 3 G% ( ! & & 3 ! A ! & ( ! $

& # * Arabidopsis ' )*,+A 3

! 3 6% 3 , 3 .A ! 3 @ 3 / 5 ! & 8 & ( ! ! & 8 ( !! ! ' ! ! & )*.+ ( ! 8 " ! & 8% ! ( ! ( $& ! ( " ! -" ! ( ! A ! " % ( $ )*/+% ! $ ' ! !! )*0+% C ! $ % mpk4 )*7+ pmr4 )61+% & 8 Arabidopsis Pseudomonas syringae ' maculicola 6G ! )*.+ 5 ( ' ' ( ! ! " & ! ! ! " ( !! " % !% ! 8 ( ( ! % ! & ( ' ! ' ( 2 ' % ! ( % ! &$ " ! npr1 )6*+% & !! ! # * 3 ! ! F ! % ( & % npr1, ( ! 3 ! tga1 tga4

! 3 ! tga2 tga5 tga6

(H ' ( ' ! # *

Towards a Temporal Modeling of the Genetic Network Controlling

Systemic Acquired Resistance in

;

% Member, IEEE% 9

%

#

% 9

;< (<% 2 C

2

%

#

2 (

%

=

#

% Member, IEEE

(3)

' 3 ! ! F ( ! ! " ! ( ! ( ! 8 2 )66+$)6@+ 8 ! ! ( ( % ! ( " ! * !! ! & ! & ' ' )6G+$)6,+% ( ' ( ! ( ! ( ! )6.+$)6/+ ' ( & (H ( % ( " % ! " % H ' ! ( ! ! !! ! ! 9 % 8 !

& all 1 ( "% &

" ! & & ! & "

( ! ! all 1 ( ( ( ( & # * 3 ! ( & ! ! ! # * 3 ! ! C ! & F ! ( ' ! % & ! A % & ! & ( 5 - I -2 A. Definitions F ! " " J 5

" Eq. 1a)% Eq. 1b)

                    = % % 6 % * % % % 6 % * % % 6 % 6 6 % 6 * % 6 % * % * 6 % * * % * M N a m N a N a N a M n a m n a n a n a M a m a a a M a m a a a A * S = {G, C} *( & G = {g(1), g(2), …, g(n), …, g(N)} ! & ! " " C = {c(1), c(2), …, c(m), …, c(M)} ! " % % ! " " a(n,m) ! " " Eq. 1a " ' ! nth %

mth a(n,:) = [a(n,1) a(n,2) … a(n,m) … a(n,M)]

1 J M ' " ' ! g(n)

M a(:,m) = [a(1,m) a(2,m) … a(n,m) …

a(N,m)]T N J 1 ' "

' ! N c(m) mth

B. Gene Expression Data

" & (

!! " Arabidopsis ! 660*1

( ( & $ % npr1% (

tga1 tga4, tga2 tga5 tga6 &

& salicylic acid ! 1% *% 0 %

( ! C % & & 6.*@ & ! " ' F 8 ! % ( & $ ( 8 6 ! " ' ' & $ ' F C " " ( $*% 1% * ! ' δ% & $ % % $ ' ( & $ ' & % ! 6

a(n,m) δ & ' * ! a(n,m)

δ%

& ' $*% ' 1 ! $ δ < a(n,m) < δ !! ! δ C ( ! ' & δ ( ( ' )@*+ & ' ! δ ( & ( ' & δ = 0.2 & ! ( " ' ! " 9 % & & J 5 % ! ? 1 % * % 0 % & K 6.*@ & 5 K @ % ? npr1,

tga1 tga4% tga2 tga5 tga6

C ! " )60+ & ( ( ! ' ' ! & 8 ! ( ' " )67+$)@*+ 2 " % ( ' ! ! ; & 8 )@*+% & * “on” ' % 1 “off” ' 3 ' J 5 C " " D = [dnm] & ! G = {g1, …, gN} ! " C = {c1, …, cM}% ! ! ( 2 ' % !! ( & % ! & 8 A. thaliana 9 % & ( ! ( 8 ( & ! ( !

(4)

5- 9 I 3= & ? " ! ! all 1 ( A. Matrix Decomposition ! ! ! " C " " ! ' $*% 1% * ( D1, D0, D1 ? D = 1D1 + 0D0 + 1D1 2 " %             +             +             − =             − − − − = 1 1 1 * * 1 * 1 1 1 1 1 * 1 * 1 1 1 * 1 * * 1 * 1 1 * 1 * 1 1 1 1 1 1 * 1 * * * 1 * * * 1 * 1 1 * 1 * D 6 ! ! ; % ! % & ' ! & ( & % ( ! 2 2 " % D1 * ! & 2 ' ! 2 % D0 * & % 2 ' !! 2 % D1 * % 2 ' & ! % & & D1% D0% D1 % % & ' ' ! 2 NB. & ! 2 ! &

B. All 1 Submatrices Identification

! ! ! all 1 ( ! D1% D0% D1 all 1 ( " Bk = )bij+ ( " ! D1% D0% D1 & * 2 ! ( " & 8 & ! ! ( % ' N$( $M 1%* $ "% ! ( ! *L

& M ; largest & ( "

9 % 8 ! % & all 1 ( " ( all 1 ( ' ( & (H ( ! % ( ! ! all 1 ( ! ( " & ( NP$ & ! ( ( ' )6,+ 9 % & 8 '

! ! & & ! & "

( ! ! ( Eq. 3 uk .* r(n,:) = uk @ N OL & ! & ' 2 " % )1 * *+ O)* 1 *+ K )1 1 *+ & & "

npr1, tga1 tga4, tga2 tga5 tga6% U &

uk ! & ' / K 231

& ' ? U K B)1 1 *+A )1 * 1+A ) 1 * *+A )*1 1+A )* 1 *+A )*

* 1+A )* * *+D ! uk # *% 3 6 3 G 3 6 3 , 3 . ' 2 " uk = )* 1 1+ ! ! ( # * D1% & ( # * D1 ! & # * !! D0 uk K )* * *+ ! ! ( & % ( ! 2 # *% 3 6 3 G 3 6 3 , 3 . D1 D1 ' % ! ! ! 2 # *% 3 6 3 G 3 6 3 , 3 . D0 r(n,:) & ! D1% D0% D1 5 % U ! (

Eq. 2 ' ! ( % i.e. & !

D1% D0% D1% ( ( !

all 1 ( " Bk = )bij+ 2 " % ! & " ! ( ' Eq. 2 % uk = )* 1 *+ &

* G &

* @% (

2 ! % * G * @ !

all 1 ( " & ( '

& * & G ' ! Eq. 3 ( ' ? )* 1 *+ .* r(1,:) = )* 1 *+ )* 1 *+ .* r(4,:) = )* 1 *+% & r(1,:) r(4,:) * G & ! " ' ( ! & ! ! all 1 ( Bk = )bij+ ! D1% D0% D1 ! ! ( U " ( ! all 1 ( ( ! ( "% & / % ' & & ( ( % uk ! U ( ( ! ( ! 1 2M1 M ( % & M ( ! ! ( "

&( 8 ! brute force %

" ! & & " M

( ' ~O(2M J N J M J L

% ( ! ' ( ! %

(5)

C. Algorithms Algorithms 1 Algorithm 2 ! " ! ! all 1 ( ' & ' ! all 1 ( " ( ' ? Bk = [bij]% ( ! ? Bk = {Ik, Jk}% & IK ( ! IK

G % JK ( ! JK

C % & i

Ik j

Jk k = 1 K% & K " ( ! all 1 ( ( ! ( "? K = 2M1 L% N% M ( ! % & % ! D ' .

1) Algorithm 1: matrix decomposition.

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ : $ D = C " " $ α = [ 1 0 1+ ! ' : $ D1, D0, and D1 = ( & % % & ' , [N,M] = (D);

D1 = zeros(N,M); D0 =zeros(N,M); D1 = zeros(N,M);

n = 1 N m = 1 M D(n,m) == 1 D1(n,m) = 1 D(n,m) == 0 D0(n,m) = 1 D(n,m) == 1 D1(n,m) = 1 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

2) Algorithm 2: All 1 submatrices identification.

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ :

$ D1, D0, and D1 (from Algorithm 1)

$ U = {uk} = ! ( $ C = [c(1) c(2) … c(m) … c(M)] = ! $ G = [g(1) g(2) … g(n) …g(N)]T = ! : $ I = ! all 1 ( $ J = ! all 1 ( Z(:,:,1) = D1; Z(:,:,2) = D0; Z(:,:,3) = D1; [N,M,L] = (Z); I = []; J = []; l = 1 L k = 1 K J{k,l} =C( (b(k) == 1); n = to U(k,:). .* Z(n,:,l) == U(k,:) I{k,l} = [I{k};g(n)]; ! $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ D. Complexity Analysis F " ! " ( (NJM) ! all 1 ( ! O((NJM+N+P+PJM) JLJ 2M1)) ( & ! P 2M 1)NJM ( % N % P PLJ 2M 1) 9 % 2M1 " ( ! all 1 ( P ( ! ( Eq. 3 ' ! " ! ( ! P O(NJMJLJ2M) I K @

& & ' ! &

% & 5 K @ "

& ( PO(2613J3J3J 231))=164619 &

% & 5 ( ' % " " 2M & & ! all 1 ( ( ' ? M = 5 25 = 32A M = 7 27 = 128A M = 10 210 = 1024A M = 20 220 = 1048576 Q - I ( ' ( % & ( ! &

A. Potential Transcription Factor Gene Interactions

Fig. 113 & ( ! ( # *% 3 * 3 G% 3 6 3 , 3 . ' !! " ? 1 % * % 0 % ' ( & 2 " % 1 % ,@/ ,01 & ( # * ' 1 R* R0 & ( ! / & 7 ! ! # * !! ! ( # * !! ( ! & ( # * ! ! # * & ! ! 8 !! ! # *% ( ! ( 3 * 3 G ( ! ! % & " & * 2 * # * (

(6)

2 6 3 * 3 G ( 2 @ 3 6 3 , 3 . ( ( ! 3 6 3 , 3 . ! # * ( & # * ( ! ( # * ( 3 6 3 , 3 . 3 * 3 G % ( ! & ( 3 6 3 , 3 . ! 1 * 0 F % ! 1 * ! % ( & ! & ' ( & ! ( ' ! 2 !! ( ' ' ! ' ( ' !! ! !! ! !

B. Similarities and Differences between Transcription Factors

Fig. 417 & ! ( & !

2 !! ? 1 % * % 0 % ' ( & 2 G # * 3 * 3 G ( 2 , # * 3 6 3 , 3 . ( 2 . 3 * 3 G 3 6 3 , 3 . ( 2 / # *% 3 * 3 G% 3 6 3 , 3 . (

(7)

( ! & ( # * 3 * 3 G 2 % ( ! ! % & " * % & ( ( ! ! ! ( ! & ( # * 3 6 3 , 3 . 2 % ! ! % & ( ( ! ! ! I 8 3 * 3 G% ( ! ! ! ( 3 * 3 6 3 6 3 , 3 . ( ! ! % & " & * 2 % ( ! & ( ! 2 # *% 3 6 3 G 3 6 3 , 3 . ( ! ! % & " * % ( ! ! ! 9 % % ( & ! & ' ( & ! ( ! 2 !!

C. Time Varying Transcriptional Network Model

( ( ' % & ( &

! & 8 ! Arabidopsis

thaliana 1 % * % 0 ? Fig. 8110 ! &

%

( ' " ' % ▼ ! 8 & % % & % ? ( ! 1 ! " % *6* *6, & ' ( ( ! 2 2 % * @@@ */0 & % ' % ( ( ! 2 % & 0 6** *,0 & % ' % ( ( ! 2 ( ! # * ! 3 * 3 G 3 6 3 , 3 . 1 ; 0 % ' & ( ! # * ( 3 * 3 G 3 6 3 , 3 .% ' & ! # * " ( & & ( ! 1 0 ! Fig. 11 # * 3 * 3 G 3 6 3 , 3 . *,0 6** 6@G 6,/ 667 60@ .@1 ,*1 ,6G /1* /6. 0G0 7*, **07 2 *1 & 8 0 # * 3 * 3 G 3 6 3 , 3 . */@ @@@ @61 ,,* 6.6 G6G //1 000 @1. ,*0 .16 0/0 /1/ 007 2 7 & 8 * # * 3 * 3 G 3 6 3 , 3 . *6, *6* 6/, 606 66, 61/ /*G .6, 6*/ 66@ ,0G .17 ,01 ,@/ 2 0 & 8 1

(8)

8 9 10 11 0 2 4 6 8 Time is hours G e n e e xp re ss io n l e v e l (l o g 2 ) WT npr1 tga1xtga4 tga2xtga5xtga6 2 ** -" ! ! # * ( & F %

npr1, ( tga1 tga4 % tga2 tga5 tga6

3 3 3 I ! & )@6+ ) ?SS( ! S3 IS+ ' ' ! ( ! 2 # *% 3 * 3 G% 3 6 3 , 3 . 0 Fig.10 ! " & ( 3 ?11,107.A $' K 6 6 $1. % 3 ?111.7,1A $' K * 0 $1, % ( 3 ?1117.60A $' K , / $1G % ( 3 ?1117.1/A $' K 6 @ $1@ % ! 3 ?111.7,6A $' K. 7 $1@ " ( 8 ! ! 2 8 & H ! ( ' ! ( ! " ( ! 3 ?11*,7/7A $ ' K @ * $*1% >--3 & 11*7, $' K @ , $1G ! 8 % ( C ! ! Q & 8% & " ! ! & 8 ! ! & 8 F & 8 ' ! ! % & ! F ! $ ' & !! ( !! ! ! ! & ! F ' ! ! & 8 Arabidopsis

Fig. 117 & ! & ' ( &

( ! ( ' ! 2 !! ( ' ' ! ' ( ' !! ! ( ! !! ! & ( ' ! ( !! % & ! ! ( & & ! % % )*.+% ! ! ! C ( ( 8 ! ! ( Fig. 8110 & !! ( ( ! F ( ' % % ! ! ( ! ! 2 % & (H ' ! & ! ! 2 A ! (H ! ! 2 F

! ! & & ! % & %

! 2 ( ' ! ! ! # * 3 ! & ! # * ( ! 3 )*1+ ! ' ( ! # * ! 3 * 3 G 3 6 3 , 3 . 1 ; 0 % ( ' & ( ! # * ( 3 * 3 G 3 6 3 , 3 . # * 8 8 !! & 8 " ! 8 & ! # * H ! )7+$)*1+ % & ( ! ! 8 ( F " !

& & & & ! &

7 @ % ( ! all 1 ( T*U T$*U ( T1U ' ' " ! % ! " ! ( ( ' % ' ' & ( ' ! " ' F ! ' ( & % !! ! ' ( )66+$)6/+ % ! ! ! % & % ! ' ! ! % ( ! ( & ! % ' ( ! % " $ C ( ' ! ( ! ( !

(9)

Q I % & ! ! Arabidopsis thaliana ( ! F " ! ! & $ ! ! ! ! H ! ' % ( & ' ( ! ( ! ! ' ! ! ( ! % ! ! (H F ! & ! ! ( ! ! ( !! ! % ! ! ! ! % # * 3 ! -2- - -)*+ V 5 % V # % 2 > % 8 % T ? 8 ! ( ' ! U 6,1?*116$*11G% *771 )6+ V # 5< "% 9 % V % - F % 5 F $; C% V 3 % > !% - % F ; % ; ' % T ! ( U 6,1?*11G$*11.% *771 )@+ 3 !! % I 2 % ; Q H% % 3 % 8 % - F % 9 > % V % T ! ! ! U 6.*? /,G$ /,.% *77@ )G+ I Q I % - Q % T ! ! $ % ' % ' ! # $* U # 5 # # ,,? 0,$ 7/% *777 ),+ - % T ! ( ! %U - # % Q *1 6 2 ( 611, ).+ V V V I % W %W Nature, ' GGG% @6@$7% ' *. 611. )/+ < % I % 3 C % - I % # 2 ( % T ( # *S 5* ( ' ! ( ! 3 ! ! (4 # ! %U Plant Cell *6?6/7$671% 6111 )0+ # % I 2 % V % Arabidopsis ! ' ( # 76?..16$..1.% *77, )7+ 5 V # % I Q I % T # *? & ( ! & %U Current Opinion in Plant

Biology% /?G,.$G.G% 611G

)*1+ V % - ; % V % # *

! $ ' 3 2 ! 3

# ( %U The Plant Cell% Q *,% *0G.$*0,0% 611@ )**+ 5 > & % V = % : T3 ! 3 2 ! # $ 3 Arabidopsis thaliana"% # # GG?@@.$@G.% 611/ )*6+ 5 V 8 ( % ; F % F $I % V Q $ ( H % V % > H% 2 # % T(4 # ! ( U # /? *1.$***% 6116

)*@+ : % W # *% %W Curr Opin Plant Biol, ' /% ,G/$,6% 611G )*G+ : % 4 5 % - I % T $( % C " ! 3 .% & ( ! 3 ! ! (4 # ! ( U # 5 ; @G? G1@$G*,% *77/ )*,+ < % ( 8% % 8% ; % ' "% # 2 ( % T ( # * # ' ! ! " ! ; ' ; SI

4 2 3 *U% Plant Cell *,?6*0*$6*7*% 611@ )*.+ I F % 5 5 % > 9 % 5 % I I C$ F %

V % 2 > % V 3 C ( 8% W & 8

( #

' ? ! H "

%W Mol Plant Microbe Interact, ' 6*% *G10$61% ' 6110

)*/+ ; & 4 ! % W & ! ! ?

# 5#$ %W Curr Opin Plant

Biol, ' **% @07$7,% 6110 )*0+ F % 5 4 ( % 5 T !! " ( & & 8 ! ( ! U Plant J G.?*G$@@% 611. )*7+ 5 # % # ; % 9 % - % I % ; V % 9 ; % 5 I % 5 V % V - # 8 % ; % 2 > % 5 % 5 % ; V % % V 5 TArabidopsis 8 G ' U Cell *1@?****$**61 % 6111 )61+ 5 % 5 % ; 9 9 % V # Q % 9 - & % ' TI ! $ U Scienc @1*?7.7$7/6% 611@ )6*+ = # % V # 8% V % 2 2 % # 2 ( % T ' ! ! ! ( U% V; ;% Q 6% G % .@7$.,,% 611G )66+ % 9 5 " ( ! ; ! 611@ V A*7 * ?/7$0. )6@+ V I % # % : % F F % ( % V # % T5 " 2 # ! ?

%U SIAM Conference on Data Mining 5 % 611.

)6G+ & % 8 % & 5 ( & ! ( 35 *77@ )6,+ & % 9 5 % 8 % 9 ' % Q 8 2 ' ! 5 2 % 3 # 8 $ % # % % % ' > & ' 5 % *6% @1/@60 # *77. )6.+ ; % ; % ; V % V 2 ; % 3 $ $ ! $ " ? 5 " ( ! 3- 3 ; 6116 )6/+ 3 % > 9 % : : % # 2 % V = U2 5- ? 2 3 5 U )60+ 3 # % I % V ; % V 2 ; % T ! C ! ' ' ! " %U % G F 8 5 ; ! % 611G )67+ V 2 % 3 % T ' $ & 8 U Phys Life Rev 2? .,X00% 611,

)@1+ I ( ( % ; % T ( ' ! & 8 U Journal of Theoretical Biology%U 229% ,6@$,@/% 611G )@*+ ' % - % > % F 4 % W# ( ( ; & 8 ? $( 5 ! 3 & 8 %W Bioinformatics% Q *0% 6% 6.*$6/G% 6116 )@6+ % 3 & 8 % 9 ;< (<% # % 2 2 % = # T3 I? ! & ! ; ! ! 3 .” BMC Bioinformatics # % 6117

Figure

Fig.  113   &amp;   ( ! ( # *% 3 * 3 G% 3 6 3 , 3 . ' !! &#34; ? 1 % * % 0 % ' ( &amp; 2 &#34; % 1 % ,@/ ,01 &amp; ( # * ' 1 R* R0    &amp; ( ! / &amp; 7 ! ! # * !! ! ( # * !! ( ! &amp; ( # * ! ! # * &amp;    ! ! 8 !! ! # *%   ( ! ( 3 * 3 G ( ! ! % &amp;
Fig.  417   &amp;   ! ( &amp; !
Fig.  117   &amp;   ! &amp; ' ( &amp;

Références

Documents relatifs

(2013) Length-weight relationship and seasonal effects of the Summer Monsoon on condition factor of Terapon jarbua (Forsskål, 1775) from the wider Gulf of Aden including

Identification and detection of a novel point mutation in the Chitin Synthase gene of Culex pipiens associated with diflubenzuron resistance...

These depend on which actor controls the trait (the vector or the parasite) and, when there is manipulation, whether it is realised via infected hosts (to attract vectors) or

Brennan TP, Woods JO, Sedaghat AR, Siliciano JD, Siliciano RF, Wilke CO: Analysis of human immunodeficiency virus type 1 viremia and provirus in resting CD4+ T cells reveals a

The newly employed reactive magnetron co-sputtering technique has allowed us to enhance the absorption coefficient from the MLs owing to the high density of Si-ncs achieved and/or the

Market and communication schemes have taken a noticeable place in temples and some of them can be regarded as types of “mega-temples.” 2 This article describes the

Altogether, these results indicate that expression of the endogenous DRP1 protein is important for maintaining normal mitochondrial morphology in NHEK and that loss of this

sour rot symptoms in the field and in the laboratory (n = 5 bunches), ‘Post-harvest mild rot’ indicates fruit that were collected without rot symptoms but showed mild rot in