• Aucun résultat trouvé

Basics elements on linear elastic fracture mechanics and crack growth modeling

N/A
N/A
Protected

Academic year: 2021

Partager "Basics elements on linear elastic fracture mechanics and crack growth modeling"

Copied!
162
0
0

Texte intégral

(1)

HAL Id: cel-01636731

https://hal.archives-ouvertes.fr/cel-01636731

Submitted on 16 Nov 2017

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Basics elements on linear elastic fracture mechanics and crack growth modeling

Sylvie Pommier

To cite this version:

Sylvie Pommier. Basics elements on linear elastic fracture mechanics and crack growth modeling. Doctoral. France. 2017. �cel-01636731�

(2)

Basics elements on linear elastic fracture

mechanics and crack growth modeling

Sylvie Pommier

,

LMT

(3)

Fail Safe

Damage Tolerant Design

• Consider the eventuality of damage or of the presence of defects,

• predict if these defects or damage may lead to fracture, • and, in the event of failure,

predicts the consequences (size, velocity and trajectory

(4)

2700 Liberty Ships were built between 1942 and the end of WWII

• The production rate was of 70 ships / day

• duration of construction: 5 days

30% of ships built in 1941 have suffered catastrophic failures • 362 lost ships Li berty ship s hi ve r 1 94

1 The fracture mechanics concepts were still

unknown

Causes of fracture:

• Welded Structure rather than bolted, offering a substantial assembly time gain but with a continuous path offered for cracks to propagate through the structure.

• Low quality of the welds (presence of cracks and internal stresses)

• Low quality steel, ductile/brittle

Foundations of fracture mechanics : The Liberty Ships

(5)
(6)

LEFM - Linear elastic fracture mechanics

Georges Rankine Irwin “the godfather of fracture mechanics »

• Stress intensity factor

K

• Introduction of the concept of fracture toughness

K

IC

• Irwin’s plastic zone (monotonic and cyclic)

• Energy release rate

G

and

Gc

(G in reference to Griffith) Geo rge s Ra nki ne Irw in

(7)

Historical context

Previous authors

Griffith A. A. - 1920

"

The phenomenon of rupture and flow in

solids", 1920, Philosophical Transactions of the Royal Society, Vol.

A221 pp.163-98

Westergaard H. M. – 1939 -

Bearing Pressures and Cracks, Journal

of Applied Mechanics 6: 49-53.

Muskhelishvili N. – 1954

- Ali Kheiralla, A. Muskhelishvili, N.I. Some

Basic problems of the mathematical theory of elasticity. Third revis.

and augmented. Moscow, 1949, J.Appl. Mech.,21

(1954)

, No 4,

417-418.

(8)

Fatigue crack growth: De Havilland Comet

3 accidents

26/10/1952, departing from Rome

Ciampino

March 1953, departing from Karachi

Pakistan

10/01/1954, Crash on the Rome-London

flight (with passengers)

Paris & Erdogan 1961

They correlated the cyclic fatigue

crack growth rate

da / dN

with the

stress intensity factor amplitude

DK

Introduction of the

Paris’ law

for

modeling fatigue crack growth

(9)

Fatigue remains a topical issue

8 Mai 1842 - Meudon (France) Fracture of an axle by fatigue

3 Juin 1998 - Eschede (Allemagne) Fracture of a wheel by Fatigue

(10)

Development of rules for the EASA certification

Los Angeles, June, 2nd 2006,

Aloha April, 28th 1988,

(11)

Rotor Integrity Sub-Committee (RISC)

AIA Rotor Integrity Sub-Committee (RISC) : Elaboration of AC 33.14-1

UAL 232, July 19, 1989 Sioux City, Iowa

DC10-10 crashed on landing

• In-Flight separation of Stage 1 Fan Disk

Failed from cracks out of material anomaly

-Hard Alpha produced during melting

• Life Limit: 18,000 cycles. Failure: 15,503 cycles. • 111 fatalities

• FAA Review Team Report (1991)recommended: - Changes in Ti melt practices, quality controls

- Improved mfg and in-service inspections - Lifing Practices based on damage tolerance

(12)

Elaboration of AC 33.70-2

DL 1288, July 6, 1996 , Pensacola, Florida

• MD-88 engine failure on take-off roll • Pilot aborted take-off

• Stage 1 Fan Disk separated; impacted cabin • Failure from abusively machined bolthole

• Life Limit: 20,000 cycles. Failure: 13,835 cycles. • 2 fatalities

• NTSB Report recommended ...

- Changes in inspection methods, shop practices - Fracture mechanics based damage tolerance

(13)

Damage

tolerance

Why ?

• To prevent fatalities and disaster

Where ?

• Public transportation (trains, aircraft, ships…)

• Energy production (nuclear power plant, oil extraction and transportation …)

• Any areas of risk to public health and environment

How ?

• Critical components are designed to be damage tolerant / fail safe

• Rare events (defects and cracks) are assumed to be certain (deterministic

(14)

Fracture mechanics

One basic assumption :

The structure contains a singularity (ususally a

geometric discontinuity, for example: a crack)

Two main questions :

What are the

relevant variables

to characterize the

risk of fracture and to be used in fracture criteria ?

What are the

suitable criteria

to determine if the

crack may propagate or remain arrested, the crack

growth rate and the crack path ?

(15)

Classes of material behaviour : relevant variables

Linear elastic behaviour

: linear elastic fracture mechanics (K)

Nonlinear behavior: non-linear fracture mechanic

s

Hypoelasticity : Hutchinson Rice & Rosengren, (J)

Ideally plastic material : Irwin, Dugdale, Barrenblatt etc.

Time dependent material behaviours

: viscoelasticity,

viscoplasticity (C*)

Complex non linear material behaviours :

Various local and non local approaches of failure, J. Besson, A.

(16)

Classes of fracture mechanisms : criteria

Brittle fracture

Ductile fracture

Dynamic fracture

Fatigue crack growth

Creep crack growth

Crack growth by corrosion, oxydation, ageing

Coupling between damage mechanisms

(17)

Mechanisms acting at very different scales of time and

space, an assumption of scales separation

Atomic scale (surface oxydation, ageing, …)

Microstructural scale (grain boundary corrosion, creep,

oxydation, persistent slip band in fatigue etc… )

Plastic zone scale or damaged zone (material

hardening or softening, continuum damage, ductile

damage...)

Scale of the structure (wave

propagation …)

Atomic cohesion energy 10 J/m2 Brittle fracture energy 10 000 J/m2

(18)

Classes of relevant assumptions : application of

criteria

Long cracks

(2D problem, planar crack with a straight crack)

Curved cracks, branched cracks, merging cracks

(3D problem,

non-planar cracks, curved crack fronts)

Short cracks

(3D problem, influence of free surfaces, scale and gradients

effects)

Other discontinuities and singularities

:

Interfaces / free surfaces,

Contact front in partial slip conditions,

acute angle ending on a edge,

(19)

Griffith’ theory

Threshold for unsteady crack growth

(brittle or ductile)

Relevant variable :

energy release rate

G

Criteria

:

An unsteady crack growth occurs if the cohesion

energy released by the structure because of the creation of new

cracked surfaces reaches the energy required to create these

new cracked surfaces

G = Gc

(20)

da

W

U

G

where

G

ext elastic

D

2

Criteria :

Griffith’ theory

elastic ext surface ext surface elastic

U

W

da

U

W

U

U

U

D

D

D

D

D

2

:

work of external forces

:

variation of the elastic energy of the structure

:

variation of the surface energy of the structure

ext

W

elastic

U

D

surface

U

D

(21)

0

0

0

0

ext surface volume ext ext

W

dF

dF

W

dF

Q

TdS

dT

conditions

isothermal

in

SdT

TdS

dF

dU

Q

TdS

where

Q

W

dU

Evolution by Bui, Erlacher & Son

da

W

F

G

da

F

G

where

da

G

G

ext volume surface c c

D

D

2

0

Free energy instead of internal energy

Isothermal conditions instead of adiabatic

(22)

Eschelby tensor : energy density

J Integral (Rice)

J integral , (Rice’s integral if q is coplanar)

q vector: the crack front motion

da

W

F

(23)

J contour integral

If the crack faces are free

surfaces (no friction, no

fluid pressure …),

If volume forces can be

neglected (inertia, electric

field...)

Then the J integral is shown

to be independent of the

choice of the selected

integration contour

𝐺 = 𝐽=

Γ

𝜑

𝑓𝑟𝑒𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝑑𝑦 − 𝜎𝑛.

𝜕𝑢

𝜕𝑥

x y

(24)

C. Stoisser, I. Boutemy and F. Hasnaoui

(25)

Limitations

• The crack faces must be free surfaces

(no friction, no fluid pressure)

• Gc is a material constant (single

mechanism, surfacic mechanism only)

• What if non isothermal conditions are

considered ?

• Unsteady crack growth criteria, non

applicable to steady crack

propagation,

• The surfacic energy 2 may be

negligible compared with the energy

dissipated in plastic work or continuum

damage / localization process

(26)

Linear Elastic Fracture

Mechanics (LEFM)

Characterize the state of the structure

where useful (near the crack front where

damage occurs) for a linear elastic

behavior of the material

(27)

Stress concentration factor

Kt

of an elliptical hole,

With a length

2a

and a curvature radius

r

r

a

K

t

loc

1

2

2a

r

Preliminary remarks:

From the discontinuity to the singularity

2a

r

r

loc loc

a

2

0

Singularity

(28)

 

   

 

(

)

)

(

,

0

* *

r

f

q

r

f

r

r

g

r

f

r

r

2a

Remarks: existence of a singularity

r : distance to the discontinuity

Warning: implicit choice of scale

Geometry locally-self-similar → self-similar solution

→ principle of simulitude

(29)

 

r

Cr

r 0

 

r

Br

r 0

 

2

2

2

2

2 2 max 0 0 1 2 0 0 0 max max

           

 

       

r

A

E

dr

r

A

E

dr

rd

r

r

A

E

r elast r r r r elast r r r r elast

Order of this singularity

Linear elasticity:

0

1

1

0

2

2

2

2

2

0

2 2 max 0

 

r

A

E

r elast

For a crack : =-0.5

(30)

n

elastic

n o o



1



 

n r

Br

r

0 

 

   

1

2

2

2

2 1 max 0 0 1 1 0 0 0 max max

             

 

       

n

r

C

E

dr

r

C

E

dr

rd

r

r

C

E

n r elast r r r n r elast r r r n r elast

 

r

Ar

r 0

n

n

1

2

0

2

1

n=4

Non linear material behaviour ?

(31)

LEFM

KI, KII, KIII

T, Tz, G

A. Modes

B. Airy stress functions

C.

Westergaard’s solution

D.

Irwin’s asymptotic

development

E. Stress intensity factor

F. Williams analysis

G. Fracture Toughness

(32)

Fracture modes

(33)

Tubes (pipe line)

(34)

Various fractures in compression

(35)

Various fractures in torsion

(36)

LEFM

KI, KII, KIII

T, Tz, G

A. Modes

B. Airy stress functions

C.

Westergaard’s solution

D.

Irwin’s asymptotic

development

E. Stress intensity factor

F. Williams analysis

G. Fracture Toughness

(37)

Case of mode I

Analysis of Irwin based on Westergaard’s analysis

and Williams expansions

(38)

a

f

Div

v

r

2D problem, quasi-static, no volume force

Balance equation

0

0

0

z

y

x

z

y

x

z

y

x

zz

yz

xz

yz

yy

xy

xz

xy

xx

(39)

Linear isotropic elasticity : E, n

xy

xy

xx

yy

yy

yy

xx

xx

E

E

E

n

n

n

n

n

1

1

1

2

2

 

1

1

n

n

Tr

E

E

(40)

Compatibility equations





x

u

y

u

y

u

x

u

y x xy y yy x xx

2

1

y

x

u

y

x xx 2 3 2 2

x

y

u

x

y yy 2 3 2 2

y

x

u

x

y

u

y

x

x y xy 2 3 2 3 2

2

y

x

y

x

xx yy xy 2 2 2 2 2

2

(41)

Combination

=

3

Equations,

3

unknowns

Balance equations

Compatibility

Linear elasticity

y

x

y

x

xx yy xy 2 2 2 2 2

2

xy xy xx yy yy yy xx xx

E

E

E

n

n

n

n

n

1

1

1

2 2

y

x

y

x

xx yy xy 2 2 2 2 2

2

+

0

0

y

x

yy xy xy xx

+

(42)

Airy function F(x,y)

-1862-1

equation,

1

unknow

F(x,y)

Balance equation Compatibility

Assuming

0

y

x

y

x

yy xy xy xx

y

x

y

x

xx yy xy 2 2 2 2 2

2

0

2

4 4 2 2 4 4 4

y

F

y

x

F

x

F

y

x

F

x

F

y

F

xy yy xx

2 2 2 2 2

(43)

Z(z) , z complex,

A point in the plane is defined by a complex number

z = x + i y

Z

a function of

z

:

Z(z)=F(x,y)

F=F(x,y)

Z (z)

always fulfill all the

equations of the problem

Z(z)

must verify the symmetry

and the boundary conditions

0

2

4 4 2 2 4 4 4

y

F

y

x

F

x

F

z

Z

y

Z

z

Z

y

x

Z

z

Z

x

Z

4 4 4 4 4 4 2 2 4 4 4 4 4

(44)

LEFM

KI, KII, KIII

T, Tz, G

A. Modes

B. Airy stress functions

C.

Westergaard’s solution

D.

Irwin’s asymptotic

development

E. Stress intensity factor

F. Williams analysis

G. Fracture Toughness

(45)

Irwin’s or Westergaard’s analyses

Away from the crack (x & y >> a) : sxx= S syy= S & sxy= 0

2a S S S S x y

Singularities in y=0 x=+a & y=0 x=-a Symmetric with respect to y=0 & x=0 2D problem, plane (x,y) : Szz=n(Sxx+Syy)

6 boundary or symmetry conditions 2 singularities,

0 boundary conditions along the crack faces Exact solution

Taylor’s development with respect to the distance to the crack front

Separated variables Similitude principle

(46)

Boundary conditions & Symmetries

symmetries

0

,

   xy yy xx

S

2 3 4 2 2

2

y

x

a

x

a

y

a

S

F

4 2 2

2

y

x

a

S

F

&

y

x

F

x

F

y

F

xy yy xx

2 2 2 2 2

(47)

Construction of Z(z)

Relation

4 2 2

2

y

x

a

S

F

4 2

2

z

a

S

Z

 

 





z

Z

yI

Z

R

y

Z

yR

Z

R

F

e e e m

F

x

F

y

F

yy xx

2 2 2 2 2





















3 3 3 2 2 3 3 2 2

Z

yR

z

Z

yI

z

Z

R

z

Z

yI

z

Z

R

m e yy m e xx

(48)

Solution

Solution:

4 2

2

z

a

S

Z

0

,

   xy yy xx

S

At infinity

Valid for any 2D problem, with symmetries along the

planes y=0 & x=0, and biaxial BCs





















3 3 3 3 2 2 3 3 2 2

z

Z

yR

z

Z

yI

z

Z

R

z

Z

yI

z

Z

R

e xy m e yy m e xx

At infinity

(49)

LEFM

KI, KII, KIII

T, Tz, G

A. Modes

B. Airy stress functions

C.

Westergaard’s solution

D.

Irwin’s asymptotic

development

E. Stress intensity factor

F. Williams analysis

G. Fracture Toughness

(50)

Exact solution for a crack

Singularities

in y=0 x=+a

& y=0 x=-a

+

+

Exact solution

a

z 

1

a

z 

1

Sz

z

Z

a

z

S

Z

  4 2

2

z

2

a

2

1

2

S

z

Z





















3 3 3 3 2 2 3 3 2 2

z

Z

yR

z

Z

yI

z

Z

R

z

Z

yI

z

Z

R

e xy m e yy m e xx

(51)

Asymptotic solution -

Irwin-x r y

Local coordinates (r,), r → 0

2 2

12 2 2

a

z

Sz

z

Z

2 2

32 2 3 3

a

z

Sa

z

Z

i

re

a

z

12 2 2 2

2

2

  i i

e

r

a

S

are

Sa

z

Z

2 3 2 3 2 3 3

2

1

2

  i i

e

r

a

S

r

are

Sa

z

Z

Exact Solution

z

2

a

2

12

S

z

Z

(52)

Westergaard’s stress function :

2 2 2

2

i

e

r

a

S

z

Z

2 3 3 3

2

1

i

e

r

a

S

r

z

Z

 

 

2

3

cos

2

sin

2

cos

2

3

sin

2

sin

1

2

cos

2

2

3

sin

2

sin

1

2

cos

2

a

S

r

a

S

r

a

S

xy yy xx





















3 3 3 3 2 2 3 3 2 2

z

Z

yR

z

Z

yI

z

Z

R

z

Z

yI

z

Z

R

e xy m e yy m e xx

x r y

(53)

Irwin-Error associated to this Taylor development along

=0

Exact solution

𝜎𝑦𝑦 𝑟, 𝜃 = 0 = 𝑆𝑦𝑦 𝑎 + 𝑟 𝑟 2𝑎 + 𝑟 = 𝐾𝐼 𝑎 + 𝑟 𝜋𝑎𝑟 2𝑎 + 𝑟

Asymptotic solution

𝜎𝑦𝑦 𝑟, 𝜃 = 0 = 𝐾𝐼 2𝜋𝑟 1 + 3 4 𝑟 𝑎 + 5 32 𝑟 𝑎 2 + 𝑂 𝑟52 0.1 0.2 0.3 0.4 0.5 10 4 0.001 0.01 0.1 Error 1 term 2 terms

Erreur = 1%

1 term 𝑟 𝑎 = 𝟎. 𝟎𝟏𝟑 2 terms 𝑟 𝑎 = 𝟎. 𝟐𝟗 3 terms 𝑟 𝑎 = 𝟎. 𝟔𝟗

𝑒𝑟𝑟𝑜𝑟~

3

4

𝑟

𝑎

(54)

LEFM

KI, KII, KIII

T, Tz, G

A. Modes

B. Airy stress functions

C.

Westergaard’s solution

D.

Irwin’s asymptotic

development

E. Stress intensity factor

F. Williams analysis

G. Fracture Toughness

(55)

Mode I, non equi-biaxial conditions

Equibiaxial Biaxial (Superposition)

              Sxx Syy T

(56)

Stress intensity factors

KI &T

Crack geometry and boundary conditions

Spatial distribution, given once for all, in the crack front region

gij() f(r)=r

Similitude principle

(geometry locally planar, with a

straigth crack front, self-similar,

singularity)

Same

KI & T

→ Same local field

2 cos 2sin 2 cos32

2 3 sin 2 sin 1 2 cos 2 2 3 sin 2 sin 1 2 cos 2                r K r K T r K I xy I yy I xx                  

(57)

von Mises stress field

Plane stress, Mode I, T=0

Plane strain, Mode I, T=0

 

 

 

1

3

,

,

,

D

r

r

Tr

r

 

 

,

:

 

,

2

3

,

r

r

r

D D eq

(58)

Plane strain, Mode I

T / K = 0 m

-1/2

T / K = 10 m

-1/2

T / K = -10 m

-1/2

T / K = -5 m

-1/2

T / K = 5 m

-1/2

Mechanisms controlled by shear

 Plasticity,

 Visco-plasticity

 Fatigue

von Mises stress field

yy xx

S

S

T

(59)

Hydrostatic pressure

Plane stress, Mode I, T=0

Plane strain, Mode I, T=0

 

r

,

Tr

Fluid diffusion (Navier Stokes),

Diffusion creep (Nabarro-Herring)

Chemical diffusion

(60)

Plane strain, Mode I

T / K = 0 m

-1/2

T / K = 10 m

-1/2

T / K = -10 m

-1/2

T / K = -5 m

-1/2

T / K = 5 m

-1/2

Hydrostatic pressure

 

r

,

Tr

Fluid diffusion (Navier Stokes),

Diffusion creep (Nabarro-Herring)

Chemical diffusion

yy xx

S

S

(61)

Other T components, in Mode I

General triaxial loading Equibiaxial plane strain Superposition non equibiaxial conditions Superposition non plane strain

(62)

Full solutions KI, KII, KIII, T, Tz & G

Mode I

 

                       cos 2 sin 2 2 cos 2 cos 2 2 2 3 cos 2 sin 2 cos 2 2 3 sin 2 sin 1 2 cos 2 2 3 sin 2 sin 1 2 cos 2                       r K u r K u r K r K T r K I y I x I xy I yy I xx

 

                       cos 2 2 cos 2 2 cos 2 2 sin 2 2 2 3 sin 2 sin 1 2 cos 2 2 3 cos 2 cos 2 sin 2 2 3 cos 2 cos 2 2 sin 2                         r K u r K u r K r K r K II y II x II xy II yy II xx Mode II 2 sin 2 2 4 2 cos 2 2 sin 2          r K u r K r K III z III yz III xz   G    Mode III

) 4 3 ( n    n       xx yy z zz T Déformation plane

n

n     1 ) 3 ( Contrainte plane

(63)

Mode I

Mode II

von Mises stress field

 

 

 

1

3

,

,

,

D

r

r

Tr

r

 

2

 

,

:

 

,

3

,

r

r

r

D D eq

(64)

Summary

- Exact solutions for the 3 modes, determined for one specific geometry

- Taylor development, 1st order → asymptotic solution generalized to any other cracks

- First order

- Solution expressed with separate variables f (r) g () and f (r) self-similar - Solution : f (r) a power function, r, with  = - 1/2

- Higher Orders

- A unique stress intensity factor for all terms

- The exponent of (r/a) increasing with the order of the Taylor’s development - Boundary conditions

- Singularity along the crack front, symmetries, planar crack and straight front - no prescribed BCs along the crack faces,

- Boundary conditions defined at infinity

6 independent components of the stress tensor at infinity → 6 degrees of freedoms in MLER: KI, KII, KIII and T, Tz, and G

(65)

LEFM

KI, KII, KIII

T, Tz, G

A. Modes

B. Airy stress functions

C.

Westergaard’s solution

D.

Irwin’s asymptotic

development

E. Stress intensity factor

F. Williams analysis

G. Fracture Toughness

(66)

Williams expansion

A self-similar solution in the form is sought directly as follows : x r y

0

2

4 4 4 2 2 4 4 4

F

y

F

y

x

F

x

F

 

 

g

r

r

F

,

2

 

 

 

  

 

 

  

 

 





     4 4 2 2 2 2 2 2 2 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 4 2 2 2 2 2 2 2

2

2

2

2

2

1

1

      

g

g

g

r

F

g

r

g

r

g

r

g

r

F

g

r

g

r

F

r

r

F

r

r

r

F

(67)

x r y

2

  

2

 

 

4

0

4 2 2 2 2 2 2 2 4





g

g

g

r

F

 

 

  

0

2

2

2 2 2 2 2 2 4 4

g

d

g

d

d

g

d

Dans ce cas g() doit vérifier

Williams expansion

A self-similar solution in the form is sought directly as follows :

 

 

g

r

r

F

,

2

(68)

The solution is sought as follows : x r y

 

ip

Ae

g

2

2

0

2

2

2 2 2 2 2 2 2 2 2 4

p

p

p

p

p

p

 

 

  

0

2

2

2 2 2 2 2 2 4 4

g

d

g

d

d

g

d

Williams expansion

(69)

x r y

 

 2

   2  2

Re

,

r

Ae

i

Be

i

Ce

i

De

i

r

F

Boundary conditions are defined along the crack faces which are defined as free surface (fluid pressure & friction between faces are excluded)

,

,

0

0

,

,

2 2

 

r

r

F

r

r

r

r

F

r

r

Williams expansion

(70)

x r y

 

 2

   2  2

Re

,

r

Ae

i

Be

i

Ce

i

De

i

r

F

0

2

2

Re

0

2

2

Re

0

,

0

Re

0

Re

0

,

2 2 2 2 2 2 2 2

                                         

i i i i i i i i r i i i i i i i i

De

Ce

Be

Ae

De

Ce

Be

Ae

r

De

Ce

Be

Ae

De

Ce

Be

Ae

r

Williams expansion

(71)

A sery of eligible solutions is obtained : x r y

 

 

                                                         

1 2 sin 1 2 sin 1 2 cos 1 2 cos 1 2 n C n A g n D n B g n n even n odd

 

r

r

g

 

F

n 1 2

,

La solution en contrainte s’exprime alors à partir des dérivées d’ordre 2 de F, toutes les valeurs de n sont possibles, tous les modes apparaissent

(72)

Williams versus Westergaard

- The boundary conditions are free surface conditions along the crack faces (apply on 3 components of the stress tensor), no boundary condition at infinity → absence of T, Tz, and G

- Super Singular terms → missing BCs

- The first singular term of the Williams expansion is identical to the first term of the Taylor expansion of the exact solution of Westergaard

- The stress intensity factors of the higher order terms are not forced to be the same as the one of the first term,

- advantage, leaves some flexibility to ensure the compatibility of the solution with a distant, non-uniform field

- drawbacks, it replaces the absence of boundary conditions at infinity by condition of free surface on the crack, and it lacks 3 BCs, it is obliged to add constraints T, Tz, and G arbitraitement

(73)

LEFM

KI, KII, KIII

T, Tz, G

A. Modes

B. Airy stress functions

C.

Westergaard’s solution

D.

Irwin’s asymptotic

development

E. Stress intensity factor

F. Williams analysis

G. Fracture Toughness

(74)

J contour integral

The J integral is shown to be

independent of the choice of the

selected integration contour

The integration contour G can be

chosen inside the domain of

validity of the Westergaard’s

stress functions to get G in linear

elastic conditions

𝐺 = 𝐽=

Γ

𝜑𝑑𝑦 − 𝜎𝑛.

𝜕𝑢

𝜕𝑥

x y

𝐺 =

1 − 𝜈

2

𝐸

𝐾

𝐼2

+ 𝐾

𝐼𝐼2

+

1 + 𝜈

𝐸

𝐾

𝐼𝐼𝐼2

𝐺

𝑐

=

1 − 𝜈

2

𝐸

𝐾

𝐼𝑐2 Energy release rate

(75)

LEFM

KI, KII, KIII

T, Tz, G

A. Modes

B. Airy stress functions

C.

Westergaard’s solution

D.

Irwin’s asymptotic

development

E. Stress intensity factor

F. Williams analysis

G. Fracture Toughness

(76)

Mode I, LEFM, T=0

Syy

Syy

Syy

(77)

LEFM stress field (Mode I)

(78)

Irwin’s plastic zones size, step 1: r

Y

Along the crack plane,

=0

,

,

0

0

2

2

0

,

,

2

0

,

0

,

n

r

r

K

r

r

K

r

r

yy I zz I xy xx

n

1

3

2

2

0

,

r

K

r

p

H I

r

K

r

I eq

n

2

2

1

0

,

Yield criterion :

eq

r

Y

,

 0

Y

2 2 2

2

2

1

Y I Y

K

r

n

(79)

Irwin’s plastic zones size, step 2: balance

Hypothesis: when plastic deformation occurs, the stress tensor

remains proportionnal to the LEFM one

yy(r,

=0)

r

Elastic field



Y

(80)

Limitations

Crack tip blunting

modifies the

proportionnality ratio

between the

components of the

stress and strain

tensors

FE results, Mesh size 10 micrometers, Re=350 MPa,

Rm=700 MPa, along the crack plane

(81)

Irwin’s plastic zones size, step 2: balance

yy(r,

=0)

r

Elastic field



Y

r

Y

r

p

      

r r r Y I r r r Y r r I pm pm

dr

r

r

K

dr

dr

r

K

n

1

2

2

2

max 0 0 max

2 2 2

2

1

2

Y I Y pm

K

r

r

n

(82)

Irwin’s plastic zone versus FE computations

Ideally elastic-plastic material

Y

=600 MPa, E=200 GPa, n=0.3

plane strain, along the plane =0

(83)

Irwin’s plastic zone versus FE computations

Ideally elastic-plastic material

Y

=600 MPa, E=200 GPa, n=0.3

plane strain, along the plane =0

(84)

Irwin’s plastic zone versus FE computations

Ideally elastic-plastic material

Y

=600 MPa, E=200 GPa, n=0.3

plane strain, along the plane =0

(85)

Mode I, Monotonic and cyclic plastic zones

Stress

(MPa

(86)

Mode I, Monotonic and cyclic plastic zones

Monotonic plastic zone

Cyclic plastic zone

2 2 max 2

2

1

Y I mpz

K

r

n

2 2 2

4

2

1

Y I cpz

K

r

n

D

(87)

T-Stress effect





S

a

K

I yy





S

xx

S

yy

T

(88)
(89)

T-Stress effect

Irwin’s plastic zone,

Y

=400 MPa, K

I

=15MPa.m

1/2

a

S

K

I

yy

yy

S

T

(90)

Ductile fracture

Measurement

of the crack tip

opening angle

at the onset of

fracture

(91)
(92)
(93)
(94)

Measurements

J.Petit

COD

Potential drop

Direct optical measurements

Digital image correllation

F

COD

Crack length increasing

(95)

a

a

N

Load cycle N Fmax Fmin Fop

R=F

min

/F

max

DF

DF

eff

da/dN = f(a)

(96)

Paris’ law

IC I

K

K

max

A - threshold regime B – Paris’ regime C - unstable fracture

th

eff

K

K

D

D

Subcritical crack

growth if DK is over

the non propagation

threshold

MPa

m

K

eff

(97)

[Neumann,1969]

(98)

Titanium alloy TA6V [Le Biavant, 2000]. The fatigue crack grows along slip planes.

N18 nickel based superalloy at room temperature, [Pommier,1992]. The crack grows at the intersection between slip planes

(99)

“pseudo-cleavage” facets at the initiation site

(100)

INCO 718

(101)

Paris’ law

IC I

K

K

max

A - threshold regime B – Paris’ regime C - unstable fracture

th

eff

K

K

D

D

Subcritical crack

growth if DK is over

the non propagation

threshold

MPa

m

K

eff

Références

Documents relatifs

The stored elastic energy and deformation of a given configuration are determined assuming that each aggregate behaves as if it was embedded in an infinite cement paste matrix..

The cracks we are considering are ring cracks developing in a symmetry plane of the spherical cavity (See Fig.. neighbouring aggregates on crack propagation into account. The

• The pessimum concentration effect, according to which there is an aggregate volume fraction that leads to maximum expansion cannot be reproduced since the volume fraction

Test case: square plate with an edge crack with a small kink loaded in vertical

Key words: crack propagation, interacting cracks, energy release rate, extended finite element method, linear elasticity, energy minimisation.. In computational fracture mechanics

This antenna is based on the principle of broadband and frequency independent antenna like spiral antenna, which in free space simulation has a reflection coefficient less than

Ainsi nous avons d’abord synthétisé toute une série de dérivés hétérocycliques originaux (14 composés) par une réaction de couplage impliquant le chlorure de

Concerning propagation in an homogeneous media, Lazarus (2003) stud- ied the asymptotic behaviour of the SIF near an angular point of the front and retrieved the theoretical results