• Aucun résultat trouvé

Cosmic ray effects on the isotope composition of hydrogen and noble gases in lunar samples: Insights from Apollo 12018

N/A
N/A
Protected

Academic year: 2021

Partager "Cosmic ray effects on the isotope composition of hydrogen and noble gases in lunar samples: Insights from Apollo 12018"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: hal-02926751

https://hal.archives-ouvertes.fr/hal-02926751

Submitted on 1 Sep 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Cosmic ray effects on the isotope composition of

hydrogen and noble gases in lunar samples: Insights

from Apollo 12018

Evelyn Füri, Laurent Zimmermann, Etienne Deloule, Reto Trappitsch

To cite this version:

Evelyn Füri, Laurent Zimmermann, Etienne Deloule, Reto Trappitsch. Cosmic ray effects on the

isotope composition of hydrogen and noble gases in lunar samples: Insights from Apollo 12018. Earth

and Planetary Science Letters, Elsevier, 2020, 550, pp.116550. �10.1016/j.epsl.2020.116550�.

�hal-02926751�

(2)

Contents lists available atScienceDirect

Earth

and

Planetary

Science

Letters

www.elsevier.com/locate/epsl

Cosmic

ray

effects

on

the

isotope

composition

of

hydrogen

and

noble

gases

in

lunar

samples:

Insights

from

Apollo

12018

Evelyn Füri

a

,

,

Laurent Zimmermann

a

,

Etienne Deloule

a

,

Reto Trappitsch

b aCentredeRecherchesPétrographiquesetGéochimiques,UniversitédeLorraine,CNRS,F-54000Nancy,France

bLawrenceLivermoreNationalLaboratory,NuclearandChemicalSciencesDivision,7000EastAve,L-231,Livermore,CA94550,USA

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received19May2020

Receivedinrevisedform19August2020 Accepted21August2020 Availableonlinexxxx Editor:F.Moynier Keywords: hydrogenisotopes noblegases marebasalt cosmicrays cosmogenicnuclides exposureage

Exposure of rocks and regolithto solar (SCR)and galactic cosmic rays (GCR) at the Moon’s surface resultsinthe productionof‘cosmogenic’ deuteriumand noblegas nuclidesatarate thatdependson acomplex set of parameters,such as the energyspectrum and intensityof the cosmic rayflux,the chemical composition, size,and shape ofthe target as well as the shielding depth. Asthe effectsof cosmicraysontheDproductioninlunarsamplesremainpoorlyunderstood,wedetermineheretheD contentandnoblegas(He-Ne-Ar)characteristicsofnominallyanhydrousmineral(olivineandpyroxene) grainsandrockfragments,respectively,fromdifferentdocumenteddepths(0to4.8 cm)withinApollo olivinebasalt 12018.Deuterium concentrations,determined bysecondaryionmass spectrometry,and cosmogenic3He,21Ne,and38Arabundances,measuredbyCO

2laserextractionstaticmassspectrometry,

are constantover the depthrangeinvestigated. Neonisotope ratios (20Ne/22Ne 0.86and 21Ne/22Ne ≈0.85)ofthecosmogenicendmemberarecomparabletothetheoreticalsignatureofGCR-producedneon. TheseobservationsindicatethatthepresenceofsignificantamountsofSCRnuclidesinthestudied sub-samples canberuledout.Hence,Dwithintheolivines andpyroxenes musthavebeenpredominantly producedinsitu byGCR-inducedspallationreactionsduringexposureatthelunarsurface.Comparison ofthe amountofDwith the21Ne (184± 26 Ma) or38Ar(193± 25 Ma) exposureagesyields aD

productionratethatisingoodagreementwiththevalue of(2.17±0.11)×10−12 mol(g rock)−1Ma−1 fromFürietal.(2017).Theseresultsconfirmthatcosmicrayeffectscansubstantiallyalterthehydrogen isotope(D/H) ratioofindigenous‘water’inreturned extraterrestrialsamplesand meteoriteswithlong exposureages.

©2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The hydrogen isotope ratio is the key indicator for plan-etary water origin(s) because different solar system reservoirs (solar, chondritic, cometary) have characteristic D/H signatures (e.g., Alexander, 2017; McCubbin and Barnes, 2019). Volcanic glassbeads andolivine-hosted meltinclusions therein,the phos-phate mineralapatite, andnominally anhydrousminerals in var-iousrock types returned from the Moon by the Apollo missions record a wide range of

δ

Dvalues (where

δ

D

[]

= [(

D

/

H

)

sample

/

[(

D

/

H

)

SMOW

1

]

×

1000,with(D/H)SMOW

=

155

.

76

×

10−6;

Hage-mannetal.,1970), between

≤ −

500



and

≥ +

1000



(see Mc-Cubbin et al., 2015 for a review), which have been interpreted toreflecthydrogen orwatercontributions frommultiplesources, suchasthesolarnebula,carbonaceouschondrites,and/or comets,

*

Correspondingauthor.

E-mailaddress:efueri@crpg.cnrs-nancy.fr(E. Füri).

tothe lunarinterior(e.g.,Anandetal., 2014; Barnesetal., 2016; Desch and Robinson, 2019; Füri et al., 2014; Greenwood et al.,

2011; Hui et al., 2017; Robinson et al., 2016; Saal et al., 2013; Sharp,2017;Singeretal., 2017;Tartèse andAnand, 2013). How-ever, the D/H ratio of mantle-derived samples does not always reflect the hydrogen isotope composition of the lunar mantle source.Inadditiontomagmaticprocesses(e.g.,degassing; Saalet al.,2013;TartèseandAnand,2013),solarwind(SW)implantation and cosmic ray induced spallation reactions – triggered by solar (SCR)andgalacticcosmicrays(GCR)thatcanpenetratelunar mat-tertodepths ofafew centimeters orseveralmeters,respectively (Reedy andArnold, 1972) –can modify the D/Hsignature of in-digenous‘water’(i.e.,H,H2,and/or H2O)inlunarrocks,minerals,

andvolcanicglasses.

SincetheMoon isanairless bodyandhasnoglobalmagnetic field, SWparticles, includingprotonsandnoble gasions,are im-plantedintothetopfewtensofnanometersofallrocksorregolith grainsexposedto thelunarsurface environment(e.g.,Hashizume etal., 2000). Nonetheless,a contributionofSW-implanted

hydro-https://doi.org/10.1016/j.epsl.2020.116550

0012-821X/©2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(3)

2 E. Füri et al. / Earth and Planetary Science Letters 550 (2020) 116550

gen to themeasured waterabundances andD/H ratios can gen-erallybe ruledout because allrecent hydrogenisotope measure-mentsoflunarsampleshavebeencarriedoutinsitu bysecondary ion mass spectrometry (SIMS), in the interior of lunar volcanic glassbeads (Füri et al., 2014) or within mineralgrainsand melt inclusionsthatwereneverdirectlyexposedtoSWirradiation(e.g., Barnes et al., 2014, 2013; Boyce et al., 2010; Hui et al., 2017; Robinsonetal.,2016;Saaletal.,2013;Tartèseetal.,2013;Tartèse andAnand,2013).Incontrast,cosmicray produced(‘cosmogenic’ or‘spallogenic’) deuterium isexpected to contribute significantly totheD/Hratioofwater-poorlunarsamplesthatexperiencedlong exposure to cosmic rays at the surface of the Moon (Füri et al.,

2017).

Knowledgeof thecosmogenicDproductionrate( PD) andthe cosmicrayexposure(CRE)ageofthesampleofinterestiscritical forcorrecting measured D/Hratios for the cosmogenic contribu-tion,and,ultimately,fordeterminingthesource(s)oflunarwater. Tothisdate,a PD valueof0.92to1

×

10−12 mol(g rock)−1Ma−1, derivedbyMerlivatetal.(1976) andReedy (1981),hasbeenused inmoststudiesoflunarsamples(e.g.,volcanicglasses,melt inclu-sions,apatites,plagioclase),irrespectiveoftheirchemical composi-tion.However,the PD valuedependsontheabundanceofvarious targetelements(O,Mg,Si,Fe,Al),thesizeandshapeoftheobject, and its exposure history (Reedy, 1981). Furthermore, Greenwood etal.(2018) arguedthatmare basalt70215analyzed byMerlivat et al.(1976) contains indigenousOH (in addition to water from terrestrial contamination and cosmogenic D), rendering their PD estimate unreliable. Füri etal.(2017) recently obtaineda signifi-cantlyhigherPD valueof

(

2

.

17

±

0

.

11

)

×

10−12mol(g rock)−1Ma−1 fortheMoon’ssurfacefromSIMSanalysesofnominallyanhydrous olivine grains with a wide range of CRE ages, either indicating thatprevious studieshadseverelyunderestimatedthe production ofcosmogenicdeuteriumbyGCRs,or,alternatively,hintingasthe presenceofadditionaldeuteriumproducedbySCRsinthestudied olivines.

TheimportanceofSCReffectsinlunarsamplescanbeassessed through studies of particle tracks (e.g., Crozaz, 1980) or concen-trations ofradionuclides (14C, 10Be, 26Al, 53Mn, 81Kr) and stable noblegasnuclides(e.g.,Hohenbergetal.,1978;Leyaetal., 2001; Nishiizumi et al., 2009; Reedy, 1980; Reedy and Arnold, 1972; TrappitschandLeya, 2014). SCRnuclideproductionoccursalmost exclusively within the topmost 1–2 cm of exposed rock or soil surfaceson theMoon becauseofthe lower energyofSCRs com-paredtoGCRs(

10–100 MeVvs.

1–10 GeV)(ReedyandArnold,

1972).SincetheratesofneonisotopeproductionbySCRsare sub-stantially higher that those by GCRs within the uppermost few g/cm2 ofshielding(where‘shielding’depth[g/cm2]

=

depth[cm]

×

density[g/cm3]),cosmogenicneonconcentrationsareexpected to decrease significantly with (shielding) depth in lunar samples that wereexposed to bothsolar andgalacticcosmicrays (Rao et al.,1994,1993;TrappitschandLeya, 2014).Importantly,themain targetelementsmagnesiumandsilicon,fromwhich21Neand22Ne

are predominantly produced in lunar rocks, show a lower cross section ratio for 21Ne/22Ne at lower energies, i.e., the region in whichproductionfromSCRsisimportant,thanathigherenergies, whereproductionfromGCRsdominates.Giventhat thedominant fluence of the SCR particle spectrum is at much lower energies than for the GCR particle spectrum, the 21Ne/22Ne ratio of SCR neonissignificantlylowerthanthatofGCRneon(Fürietal.,2017; Raoetal.,1994,1993).Therefore,thethreeisotopesofneon repre-senta powerfultool torecognize,andpossiblyquantify, different noble gascomponents (SW, SCR, GCR) in samples returned from theMoon.

To assess the importance of SCRs and GCRs for the produc-tion of cosmogenic deuterium in lunar samples, we determined thedeuteriumcontentofolivineandpyroxenegrainsfrom

differ-ent depths (0 to

4.8 cm) within Apolloolivine basalt12018by SIMS. In parallel,we analyzed thenoble gas(He-Ne-Ar)contents andisotope ratiosofbulk rockfragmentsbyCO2 laser extraction

static mass spectrometry to quantify the abundances of cosmo-genic noblegas nuclides (3He, 21Ne, 38Ar) at each depth and to constrain the irradiation conditions and duration. This combined data set permitsto determine ifdepth-dependent shielding vari-ations resultinsignificant inter-sample differencesinthe rateof cosmogenicDproductionwithinApollo12018.

2. Samplesandanalyticaltechniques

Apollosample12018isamedium-grained,low-Tiolivinebasalt (supplementary TableS1; Papike etal.,1976) –alsodescribed as olivine dolerite(Cuttittaetal.,1971;Kushiroetal., 1971) or gab-bro(Megrue,1971)–,composedofapproximately70%largeolivine andpyroxenecrystalssetinavarioliticmatrix(Walteretal.,1971). Ten chips were allocated for this study by NASA’s Curation and Analysis Planning Team for Extraterrestrial Materials (CAPTEM); these chips were extractedfrom differentdocumented depths (0 to

4.8 cm;supplementaryTableS2)alongaslabcutthroughthe middleoftherockthatwasoriginally8

×

6

×

6 cminsize(Fig.1). The chipsweregently crushedinan agatemortar toobtain indi-vidual olivine and pyroxenegrains forhydrogen isotopeanalyses bySIMSaswellassmallrockfragmentsfornoblegasanalysesby staticnoblegasmassspectrometry.

Olivine andpyroxene grains, separated from eight out of the tendepthsamples,weremountedincrystalbondandpolished in-dividuallywithaluminapowderandethanoltominimize contami-nationbyterrestrialwater.Subsequently,thegrainsweremounted in indium together with two ‘dry’ standards: synthetic forsterite (4

.

5

±

1 ppm H2O; Wetzel et al., 2015) and synthetic Suprasil

3002 quartz glass(

1.66ppm H2O; Haurietal., 2017). The

ma-jor element composition of the olivine and pyroxene grainswas determined by electron microprobe analysis atthe Université de Lorraine(Service Communde MicroscopieElectroniqueetde Mi-croanalyses X,Nancy, France) witha Cameca SX100operating at 12 nA and15 kV. Countingtimesonpeaksandbackgroundwere 10 s for all elements. Results are reported insupplementary Ta-ble S3andshowthattheolivinegrainsdisplayarangeinforsterite contents (Fo

=

100

×

Mg /[Mg

+

Fe])betweenFo66and Fo77. The selected pyroxene grains can be classified as (high-Ca) pi-geonites(Kushiroetal.,1971).

Insitu measurementsofH andDconcentrationsin theApollo 12018olivinesandpyroxenes–aswellasinApollo12004,12018, and15016olivinespreviouslystudiedbyFürietal.(2017) –were performed at the CRPG (Nancy, France) using the CAMECA 1280 HR2 ionmicroprobe. Samples were coated withgold and left in theinstrumentairlockat

6

×

10−9 mbarforseveraldaysin

or-der toensurethorough removalofanyterrestrialadsorbedwater beforeintroductionintothesample chamber.Inaddition,aliquid nitrogen cold trapwas used to reduce the hydrogen background and maintain a pressure of

7

×

10−10 mbar during analyses.

StHs6/80-Gandesiticglass(250

±

7 ppmH2Oand

δ

D

= −

95

±

2



;

Jochumetal.,2006)andMON9 pyrope(56

±

6 ppmH2O;Bellet

al.,1995),onthesamplemountofFürietal.(2017),wereusedas additionalstandards. Spot analysesofH− andD− secondary ions were carried out in mono-collection mode on an electron multi-plier ata nominalmass resolution m

/

m

=

1600 using a 10kV Cs+primaryionbeamandanormal-incidenceelectrongun (emis-sion

=

0.21 mA) for charge compensation.The 18O− count rate wasmeasuredfor4sonaFaradaycupduringeachcycleto moni-torthestabilityofsecondaryionintensities.Standardsand miner-alswerepre-sputteredfor180soveranareaof30

×

30 μmprior tosignalacquisition.Duringthepre-sputteringprocess,the inten-sity of the primary beam was measured withthe primary

(4)

Fara-Fig. 1. Apollo12018fragmentsusedforthisstudyarederivedfroma)slab14;b)column17;c)slices49,51,55,and52(seesupplementaryTableS2fordetails).Sample 12018,14,17,52originatesfromthe‘top’exteriorsurfaceoftherock,wheretheangleofexposurewas∼45◦fromthezenith,asindicatedbycuttingdiagrams(Meyer,2011). (NASAimages#S70-19566,S70-19581,S70-19598).

daycup;it was foundto decreaseonlyslightly(i.e.,from11.2to 10.0 nAandfrom13.8to12.4 nA)overeach24-hourmeasurement period,whichincluded both standardsandsamples.Foranalysis, the

15 μmbeamwasrasteredoveranareaof20

×

20 μm,anda dynamicaltransferoperatingsystemwas usedto compensatethe primary rasteringandto refocusthe beaminthe secondarypart ofthe ionprobe. Toeliminate any hydrogencontamination from thecrateredges,a1800 μmfieldaperturelimitingtheanalysesto ionsfromthecentral

10 μmofthebeamandanelectronicgate of80%wereused.TheH−andD−ionintensitiesweredetermined for4and20 s, respectively,for 30cycles.Under theseanalytical conditions,typical count rates on StHs6/80-G were

99,000 cps forH− and16cpsforD−,whereascount ratesonthe‘dry’ stan-dardsaveraged1770

±

667 cpsforH−and0.30

±

0.14cpsforD− (supplementaryTable S4), in agreement with ourprevious study (Füri etal., 2017). Measured H− andD− count rates, aswell as estimateddeuteriumconcentrationsinApollo12018olivinesand pyroxenes,arereportedinsupplementaryTableS4.

Noblegas (He-Ne-Ar)abundances andisotoperatios were de-terminedby CO2 laserextraction staticmassspectrometryatthe

CRPGnoblegasanalyticalfacility(Fürietal.,2018;Humbertetal.,

2000). For each depth sample, two separate fragments, between 1.54 and 5.88 mg in mass (supplementary Table S5), were ana-lyzed. The fragments were placed into different pits of the laser chamber connectedto thepurification lineof theHELIX-MC Plus

(ThermofisherScientific)multi-collectornoblegasmass spectrom-eter.Aftersample introduction,thesamplechamberwasbakedat 110◦C overnight under ultra-highvacuum to remove any terres-trialadsorbed gases. Eachrock fragment was heated individually withacontinuous-modeinfraredCO2 laser(

λ

=

10

.

6 μm).Twoto

threeheatingsteps wereappliedby modulatingthepowerofthe laser and monitoring the heating procedure on a TV screen us-ing a CCD camera. Alow-temperature step (

600◦C)was aimed atremoving surface-sited(atmospheric,solar) gases, an ‘interme-diate’ heating step (

800◦C) was applied for samples from the near-surface(

0.6 cm)toremove anyremaining solargases,and fusion was achieved in the last heating step to release ‘volume-correlated’(cosmogenic,radiogenic)noblegascomponents(Curran etal.,2020).Re-heatingofthreesamplesfrom

1to1.5 cmdepth (supplementary Table S5)demonstrated that

97.7% of the total noblegascontentwas extractedupon melting.Theextracted no-ble gases were purified using five hot (500◦C) and cold (room temperature) Ti sponge getters (Zimmermann et al., 2015).

Ar-gon was separated fromhelium and neonby adsorption onto a charcoal fingerat 77K,andhelium andneonwere subsequently trapped onto a He-cooled cryogenic trap at

15 K. Helium was firstreleasedfromthistrapat34Kandanalyzedinpeak-jumping mode (4He on the H2 Faraday detector, 3He on the central (Ax)

compactdiscretedynode(CDD)detector).Neonwasreleasedfrom the cryogenic trap by increasing the temperature to 110 K, and the amount of gas introduced into the mass spectrometer was adjustedthrough volumedilutioninthevolume-calibrated purifi-cationlinetomatchthe20Nesignalofairstandardmeasurements

with20Ne/22Ne

=

9.80 (Fig.2). The three isotopes ofneonwere analyzed inmulti-collection mode(22Ne onH1CDD, 21Ne onAx CDD,20NeonL2CDD).Neonisotopeanalysesconsistedof5blocks

of30cycleseach, andpeakcentering wasperformedatthestart ofeachmeasurementblock.Acharcoalfingerat77KandaZr-Al getter at room temperature were used to minimize the contri-bution of doubly charged 40Ar and CO2 to the 20Ne and 22Ne

signals, respectively. Given the high mass resolution of the de-tector in the L2 position(

1800), 40Ar++ was partially resolved

fromthepeakofinterest(Hondaetal.,2015;WielandtandStorey,

2019; Zhang et al., 2016); therefore, no correction was applied to the20Ne+ signal.The CO+

2 signal was measuredat the

begin-ning ofeach analysis, andthe 22Ne+ signal was corrected using a CO++2 /CO+2 ionization ratioof0.4%;notably,the contributionof CO++2 tothe22Ne+signalamountedtoonly

1cps,andis

there-forenegligible.The21Ne+signalwasmeasuredatthepeakcenter; nohydride(20NeH+)correctionwasperformedbecausethegetter allowed maintaining a low hydrogen background. After releasing argonfromthecharcoalfinger,theargonisotopeswereanalyzedin peak-jumping mode(40Aron thecentralFaraday detector,38,36Ar onAxCDD).

StandardHESJ(HeStandardofJapan)ofMatsudaetal.(2002) witha 3He/4He ratioof20.63

±

0.10R

A (where RA isthe

atmo-spheric3He/4Heratio)wasusedasaheliumstandard,whereasair aliquotswereused todeterminetheanalytical sensitivityand re-producibility for neon and argon (Zimmermann and Füri, 2015). The reproducibility (1

σ

s.d.) ofstandard measurements was 1.2% for4He,0.9–1.1%for20Ne,and1.3%for36Arabundances,and1.5%

for3He/4He,0.2%for20Ne/22Ne,0.6%for21Ne/22Ne,and0.4%for

38Ar/36Ar.Reporteduncertainties (2

σ

s.d.)forsample isotopic

ra-tios take into account the standard reproducibility (in addition to the analytical precision), even though samples and standards havesignificantlydifferentisotoperatiosforhelium,neon,and

(5)

ar-4 E. Füri et al. / Earth and Planetary Science Letters 550 (2020) 116550

Fig. 2. a)20Ne/22Neandb)21Ne/22Neratios(correctedforinstrumentalmassfractionation)asafunctionofthe20Nesignal(incountspersecond,cps)forairstandards

(n=37)andApollo12018fragmentsanalyzedbystep-wiseheating.Thevariable20Necountratesfortheairstandardmeasurementswereobtainedbyvaryingtheamount

ofgasintroducedintothemassspectrometerthroughvolumedilutioninthevolume-calibratedpurificationline.Thehorizontaldashedlinesindicatethe20Ne/22Neand 21Ne/22Neratiosoftheterrestrialatmosphere(20Ne/22Ne=9.80and21Ne/22Ne=0.0288–0.0290;Eberhardtetal.,1965;Györeetal.,2019;Saxton,2020;Wielandtand

Storey,2019).Uncertainties(2σs.d.)aresmallerthansymbolsizes.

gon(Fig. 2).Procedural blanks,withthelaseroff,averaged 2.1

×

10−16 mol 20Neand 2.1

×

10−17 mol 36Ar. Heliumblanks were below the detection limit. Blank-corrected He-Ne-Ar abundances andisotoperatiosforApollo12018rockfragmentsarereportedin supplementaryTableS5.

3. Results

3.1. HydrogenanddeuteriumcontentofApollo12018olivinesand pyroxenes

ThemeasuredH−countrates,normalizedtoeithertheprimary ionbeamintensity(H−/Ip) orthe 18O− signal (H−/18O−), ofthe

‘dry’ standards(i.e., synthetic forsteriteand Suprasil3002 quartz glass) correspondto H2O concentrationsof4.1to 4.6ppm when

compared tothe glass andgarnet standards. Given that theH2O

content ofthe quartz glass (

1.66ppm H2O;Hauri etal., 2017)

cannotbeclearlyresolvedfromthatoftheforsteritestandard(4.5

±

1ppmH2O;Wetzeletal.,2015),theH2Odetectionlimitis

in-ferred to beon the orderof 4.5ppm inthisstudy. The majority (n

=

33 out of43) of thelunar olivine andpyroxene grains ana-lyzedhereyieldH−countratesthatareslightlyhigherthanthose ofboth ‘dry’standards(supplementaryTable S4).TheirH2O

con-centrationsareestimatedtovarybetween

4.5and9.2ppm,i.e., measured watercontents are upto

5ppm above the detection limit. The elevated H− signals may indicate that Apollo olivines andpyroxenes can contain severalppm ofindigenous lunar wa-ter,althoughtwopreviousstudiessuggestedthatindigenouswater ispresentinvery lowabundancewithin lunarolivines(

2ppm) (Hui et al., 2013; Mosenfelder and Hirschmann, 2016). Alterna-tively,the samples might be variablycontaminated by terrestrial adsorbedwater.Distinguishingbetweenthesetwoscenariosisnot possible. This demonstrates the difficulty of accurately and pre-cisely quantifying trace amounts of indigenous water (hydrogen) inlunarsamplesusingSIMSbecauseterrestrialcontamination (in-troducedduring samplepreparationand/or analysis) mightresult in ppm-level variations in measured water contents. SW-derived orcosmogenichydrogenisnotexpectedtocontributetothe mea-suredH− signalsbecauseanalyses werecarriedout insitu within

mineral grainsthat were never directly exposed to the SW, and indistinguishableHcontentswere foundforsampleswithawide rangeofCREages(Section4.3;Fürietal.,2017).

The D− signals of 13 olivine and two pyroxene grains from the Apollo 12018 depth samples vary between 2.09

±

0.26and 2.93

±

0.31 cps, and the Apollo 12018 olivines prepared by Füri et al.(2017) yieldsimilar signals of 2.22

±

0.27 to 2.33

±

0.28cps uponreanalysisforthisstudy (supplementaryTableS4). Apollo 12004 and 15016 olivinesyield different D− ion intensi-ties of 1.09–1.10 cps and 4.09–4.26 cps, respectively, because of distinct CRE ages(Section 4.3; Fürietal., 2017).All ofthese val-uesaresignificantlyhigherthantheD− signalsofthequartzglass (0.25

±

0.09 cps) andforsterite(0.33

±

0.11cps) standards, in-dicating that theD− measurements arenot substantially affected by anyterrestrialcontamination. Based on theknown D content (3

.

9

×

10−9 mol/g; Jochum et al., 2006) and the measured D− signal (16

.

0

±

1

.

2 cps),normalized to the primary ionbeam in-tensity, of standard StHs6/80-G, the D− signals of Apollo 12018 olivinesandpyroxenes correspondto Dconcentrationsof0.50 to 0.61

×

10−9 mol/g.Similar valuesof 0.48to0.62

×

10−9 mol/g

areobtainedwhentheDabundancesarecalculatedusingthe18O

count ratefornormalization(supplementaryTableS4).Within er-ror,thesevaluesareconsistentwiththeDcontentofApollo12018 olivinesdeterminedpreviously(0.49to0.54

×

10−9 mol/g;Füriet

al.,2017).Importantly,thenewresultsshowthattheD concentra-tion inolivine andpyroxene isindistinguishable, andthereis no Dconcentrationgradientbetweenthesurfaceand

4.5 cmdepth (Fig.3).

3.2. He-Ne-ArcharacteristicsofApollo12018rockfragments

Atthefirstheatingstep,roughlyhalfofthetotal 3Heand4He content isextracted, together withonly asmallfraction (

1.5to 7%,inmostcases)ofthetotalneonandargonabundance (supple-mentaryTableS5).ThisindicatesthatnoblegasesinApollo12018 fragmentsarepredominantly‘volume-correlated’,i.e.,produced in situ by radioactive decay (4He and 40Ar) or spallation reactions,

and are only efficiently released upon melting at high temper-atures. Indigenous (light) noble gases have never been found in lunarsamples(Fürietal.,2018;WielerandHeber,2003),andare, therefore,ruledoutasapossiblecomponent. Totalconcentrations of radiogenic 4He and 40Ar vary by

25 to 30% in the twenty rockfragmentsanalyzedhere,whereas 3He,21Ne,and38Ar

(6)

Fig. 3. DeuteriumconcentrationinApollo12018olivinesandpyroxenes,aswellas

3He,21Ne,and38Arconcentrationsinrockfragments(duplicatesateachdepth),

asafunctionofdepthbelowthesurface.Averagevalues(solidlines)andtheir1σ

standarddeviations(shadedareas)areindicatedforeachnuclide.Uncertainties(2σ

s.d.)ofnoblegasabundancesaresmallerthansymbolsizes.

notionthat small-scalechemical ormineralogical heterogeneities (e.g., olivine phenocrysts, up to 1–2 mm in size) can affect the concentrationofparent (ortarget)nuclides,and, correspondingly, theabundancesofradiogenicandcosmogenicisotopesinmg-sized sub-samples (Füri etal., 2017). Nonetheless, Fig.3 clearly shows that duplicates froma givendepth contain similar gas amounts, andthereisnonoblegasconcentrationgradientbetweentherock surfaceand4.8 cmdepth.

Sinceonlyasmallamountofneon(andargon)isreleasedfrom Apollo 12018rock fragments at low temperature, neon (and ar-gon)isotopecountratesaresignificantlyloweratthefirstheating stepcomparedto thesecond step(Fig. 2).However, Fig.2 shows thatairstandardsyieldconstantneonisotoperatios,i.e.,20Ne/22Ne and21Ne/22Ne,overtheentirerangeofcount ratesmeasuredfor

thesamples.Thisdemonstratesthatthereisnoanalyticalbiasfor thedifferentheatingsteps,anddifferencesinneon(and36Ar/38Ar) isotoperatioscanbeattributedtovariablecontributionsfrom dif-ferentcomponents(SW,SCR,GCR) intheanalyzednoblegas frac-tions.

Previous analyses by single-step heating revealed that frag-mentsfrom“theupperpittedsurface”ofApollo12018contained significant quantities of SW-derived noble gases, asindicated by

20Ne/22Neand36Ar/38Arratiosofup to11.4and5.4,respectively

(Megrue,1971), whereas three other chipsfromthe near-surface weredominatedbycosmogenicneonandargon,withmuchlower

20Ne/22Ne and 36Ar/38Ar ratios of 1.20–1.84 and 0.772–0.98,

re-spectively(Bogardetal.,1971;Hintenberger etal.,1971)(Fig. 4). Theresults fromthisstudy show thatseveralApollo 12018 frag-mentsfromvariousdepthscontainasmallfractionofSW-derived noble gases (with 20Ne/22Ne

=

2.135 to 9.708 and 36Ar/38Ar

=

1.026 to 3.016), predominantly released during the first heat-ing step (Fig. 4; supplementary Table S5). Even fragments ex-tracted from 1.5 to

3 cm depth yield elevated 20Ne/22Ne and 36Ar/38Ar ratios compared to the cosmogenic endmember; this

clearly demonstrates that some sub-samples belowthe rock sur-facewerecontaminatedbySW-loadeddustduringcutting,as pre-viously suggested for other Apollo samples by Füri et al. (2015,

2017).

In a three-isotope plot of neon, the data from Bogard et al. (1971), Hintenberger et al. (1971), and Megrue (1971) define a mixing line between implantation-fractionated SW-derived neon

(see Wieleret al.(2007) fordetails onthiscomponent) and cos-mogenic neon produced by nuclear interactions (Fig. 4a). Forall depth samples fromthisstudy, the isotopiccomposition of neon extractedathightemperatures (heatingsteps 2and3) fallsonto the same mixing line, irrespective of the analyzed neon amount (Fig.2).Furthermore,themeasuredneonisotoperatiosofthis cos-mogenic endmember (20Ne/22Ne

0.86and 21Ne/22Ne

0.85)

arecomparabletothetheoreticalsignatureofGCR-producedneon (20Ne/22Ne

0.75and 21Ne/22Ne

0.89), which can be calcu-latedusingthe2

π

exposuremodelfromLeyaetal.(2001) forlow shielding(0–15g/cm2),togetherwiththemajorelement

composi-tionofolivinebasalt12018giveninsupplementaryTableS1. How-ever,formostsamples,neonextractedatthefirstheatingstephas alower 21Ne/22Ne ratioof

0.72(ata 20Ne/22Neratioof

0.86;

Figs.2and4a),comparable tothesignatureofneonproducedby SCRs,calculatedforarigidity R0

=

100 MVandanincident

parti-cleflux J0

=

100 protons/s/cm2 (Füri etal., 2017;Trappitschand

Leya,2014). 4. Discussion

4.1. SCRnuclidesinApollo12018?

The low 21Ne/22Ne ratio of neon extracted at the first

heat-ing step appears to hint at the presence of SCR noble gases in Apolloolivine basalt 12018. Indeed,the fragmentsanalyzed here cover the entiredepth range in which SCR nuclides can be pro-duced. Models indicate that the abundance of SCR 21Ne should dropoffveryrapidlywithinthetopmostcm,whereasthe concen-trationofGCR21Neisexpectedtoincreaseslightlywithincreasing

shielding (i.e., withincreasing depth belowthe surface) because, for each incident primary particle, a cascadeof secondary parti-clesisproducedwhichcanthenundergonuclearinteractions(e.g., Reedy andArnold,1972;Fig.5).Giventhat theneonisotope pro-duction ratesbySCRs are significantlyhigherthat thoseby GCRs at theuppermost rock surface (i.e., by abouta factor offour for

21Ne; Leya etal., 2001; Trappitsch andLeya, 2014; Fig.5), ‘total’

(SCR

+

GCR)cosmogenicneonconcentrationsareexpectedto de-crease significantly with(shielding) depth in lunar samples that were exposedto bothsolarandgalacticcosmicrays;thesame is trueforcosmogenic3Heand38Ar.Indeed,Raoetal. (1993,1994) observed asystematicdecrease of3He, 21,22Ne,and38Ar

concen-trationswithincreasingdepthinsub-samplesofApollo61016and 68815,particularlywithin thefirstcmbelowthesurface, indicat-ing a progression from a mixed noble gas component produced fromSCRs and GCRs toa pure GCR component. It is noteworthy thatApollosamples61016and68815bothhaveexposureagesof

2Ma only(Rao etal., 1994, 1993), implyingthat anyshielding changesduringtheirresidenceonthelunarsurfaceareunlikelyto beimportant.

Fig. 3 shows that D, 3He, 21Ne, and 38Ar concentrations in Apollo 12018 are constant over the studied depth interval, im-plying that the theoretical depth-dependent cosmogenic nuclide production rates are not appropriate for the sub-samples stud-iedhere.SCRproductionratesdependontherigidity(momentum per unit charge;R0)andflux ( J0) ofSCRparticles,aswell ason

thesample size, shape,andorientation,andits erosionrate(e.g., Rao et al., 1994). While there is some debate about the correct choiceofR0 and J0 formodelingcosmicrayinteractionswith

lu-nar samples (e.g., Rao et al., 1994; Reedy, 1980), the irradiation history of Apollo 12018 at the surface of the Moon is the key unknown.Erosionbycosmicraysputteringandbyimpactsof cos-micdustandmicrometeoritescouldhavemodifiedtheoutermost rocksurface,whereastumblingandintermittentburialcouldhave resulted in changes in sample orientation and variable shielding conditions (Reedy, 1980; Reedy and Arnold, 1972). Furthermore,

(7)

6 E. Füri et al. / Earth and Planetary Science Letters 550 (2020) 116550

Fig. 4. a)Three-isotopeplotofneonandb)20Ne/22Neversus36Ar/38ArforApollo12018fragments.Step-heatingdatafromthisstudyareshowntogetherwithprevious

resultsobtainedbysingle-stepheating(Bogardetal.,1971;Hintenbergeretal.,1971;Megrue,1971).Theneonandargonisotopecompositionsofmodernsolarwind(SW; Heberetal.,2009)andtheterrestrialatmosphere(Air;Eberhardtetal.,1965;Györeetal.,2019;Saxton,2020;WielandtandStorey,2019),aswellasthecalculatedisotope ratiosofcosmogenicneonproducedbysolarcosmicrays(SCR;TrappitschandLeya,2014)andgalacticcosmicrays(GCR;Leyaetal.,2001)forshieldingbetween0and15 g/cm2,areshownforcomparison.Thesolidlineina)representsamixinglinebetweentheGCRendmemberandimplantation-fractionatedSW-derivedneon.Uncertainties

(2σ s.d.)ofisotoperatiosfromthisstudyaresmallerthansymbolsizes(uncertaintiesforpreviousresultswerenotreported).

Fig. 5. Theoreticaldepth-dependentproductionratesofcosmogenic21Nebysolar

(SCR;TrappitschandLeya,2014)andgalacticcosmicrays(GCR;Leyaetal.,2001) asafunctionofdepthbelowthesurfaceofApolloolivinebasalt12018.

surfacedocumentationandcuttingdiagramsindicatethatrock col-umn 12018,14,17, from which the fragments for thisstudy were extracted, was orientedatanangle of

45◦ relativeto thelunar zenith(Fig. 1; Meyer, 2011). Therefore,even though our samples arethoughttooriginatefromthe‘top’exteriorsurfaceoftherock, itispossiblethattheyhavenotbeenmeasurablyaffectedbySCRs, asaresultof thecomplexandprolonged (seeSection 4.2) expo-surehistoryofApollo12018.

Overall,basedontheflatD,3He,21Ne,and38Arconcentration

profiles(Fig.3)andtheneonisotopecompositionofthe ‘volume-correlated’cosmogeniccomponent(Fig.4a),thepresenceof signif-icant amountsofSCR nuclidesin thestudied rockfragmentscan beruledout.Consequently,cosmogenicdeuteriumandnoblegases inApollo12018musthavepredominantlybeenproducedbyGCRs. Theoriginandnatureofthelow-21Ne/22Neneonendmember re-mains enigmatic; given that this component is detected at low temperaturesandrepresentsonlyasmallfractionofthetotalgas amount,itmightrepresentsomeunidentifiedformofsurface

con-tamination,isotopicallydistinctfromimplantedSWandadsorbed terrestrialatmosphericgases(Fig.4).

4.2. GCRnoblegasesandcosmicrayexposure(CRE)ages

Assuming that olivine basalt12018 contains a binary mixture ofSW-derivedandcosmogenic(GCR-derived)20,21,22Neand36,38Ar,

theamountofcosmogenic21Neand38Arcanbederived numeri-cally foreach rockfragment, basedon theisotopecomposition of the two endmembers (see Füri et al., 2014, 2018,for details on the component deconvolution). We use here 21Ne/22Ne ratios of 0.035 (measuredby Megrue,1971) and0.89(calculated fromthe modelofLeyaetal.,2001) forSW-derived andcosmogenicneon, respectively, and 36Ar/38Ar ratios of 5.4 (measured by Megrue,

1971) and0.65(i.e., thelowest ratiomeasured inthis study)for SW-derived and cosmogenic argon (Fig. 4). Based on this two-componentmodel,weestimatethat

99.4%ofthemeasured21Ne

and 38Ar in mostApollo 12018 depth samples was produced in situ by GCR-induced spallation reactions during exposure at the lunarsurface.Onlythethreefragmentswith36Ar/38Arratios

1.5 atthefirstheating stepcontain

2–4%SW-derivedargon. Impor-tantly, theseresultsare insensitive to the preciseratios assumed forthetwoendmembers.Themeasured3Hecanbeinferredtobe entirely of cosmogenic origin;however, since cosmogenic 3He is

readilylostbydiffusion(e.g.,Rao etal., 1994),3Heexposureages arenotdiscussedhere.

ACREagecanbederivedbycomparingtheaccumulated abun-danceofcosmogenicnoblegasnuclides(21Necosm,38Arcosm)with

empiricalortheoreticalnoblegasproductionrates(e.g.,Hohenberg et al., 1978; Leya et al., 2001; Reedy, 1981). However, it should againbeemphasizedthatnuclideproductionratesarefunctionof theconcentrationofvarioustargetelements,aswellasofthe sam-pleorientationandshieldingduringtheentireexposurehistoryat the lunar (near-)surface.Intra- andinter-sample variations in ef-fective nuclideproductioncan,therefore,besubstantial(Drozdet al., 1974; Füri et al., 2017). Nonetheless, since the 2

π

exposure model from Leya et al. (2001) closely reproduces the neon iso-toperatiosofApollo12018fragments, andbecausetheseauthors argued that theirmodeled noblegas dataareconsistent with ra-dionuclide results,we use their physical modelto calculate21Ne

(8)

Fig. 6. Cosmicrayexposureagesderivedfrom21Ne

cosm(T21)and38Arcosm(T38)

concentrations,assuminganuncertaintyof10%fortherespectiveproductionrates. ResultsforthetwentyApollo12018rockfragments(blackcircles)andtheiraverage value(redcircle)arecomparedtothe81Kr-KrexposureagefromMartiandLugmair

(1971) (greydiamond).(Forinterpretationofthecolorsinthefigure(s),thereader isreferredtothewebversionofthisarticle.)

variesbetween4.8and6.1

×

10−14mol(grock)−1Ma−1 for

shield-ing between0and15 g/cm2 in olivine basalt12018(Fig. 5), we

obtain an average 21Ne CRE age (T21) of 184

±

26 Ma for the

twentyrockfragments (Fig. 6). As discussed byFüri etal. (2017,

2018), theproductionrateofcosmogenic 38Arisdebated,inpart

because the ‘total’ abundance of the major target element Ca is highly sensitive to mineralogical heterogeneities (e.g., the distri-bution of high-Ca pigeonites and plagioclase). We use here the empirically-derivedvalueof4.6

×

10−14mol(grock)−1Ma−1 from

Bogardet al.(1971) andHintenberger etal.(1971);thus, the re-sulting38ArCREages(T38)agree,inmostcases,within

uncertain-tieswiththosederivedfrom21Ne(T

21),andyieldanaveragevalue

of193

±

25Ma (Fig.6).Hintenbergeretal.(1971) reported com-parableexposureagesbasedon3He(180Ma),21Ne(210Ma),and

38Ar (200Ma) concentrations,andStettler et al.(1973) obtained

asimilar38ArCREageof170–180 MaforApollo12018.

Further-more,MartiandLugmair (1971) determined aCRE ageof 195

±

16 Mabyusingthe81Kr-Krtechnique;thismethodisassumedto be largelyindependent of chemistryand shielding. We note that Fürietal.(2017) argued fora significantlylonger exposure dura-tion of242

±

42Ma becausetheir Apollo 12018fragment con-tainedalarger amountofcosmogenic21Ne(21Ne

cosm

=

13.86

×

10−12 mol/g)comparedto the21Ne

cosm concentrationsmeasured

here(21Necosm

=

10.0

±

1.3

×

10−12mol/g;Fig.3),possiblyasa

resultofahigherproportionofforsteriticolivine(richinthetarget elementMg);however,theamountofcosmogenic38Arwas

com-parablebetweenthetwostudies(38Arcosm

=

10.29

×

10−12mol/g

vs. 9.2

±

1.5

×

10−12 mol/g;Fig. 3).Theseobservations demon-stratethat,eventhough noblegascontentsandisotoperatioscan bedeterminedatveryhighprecisionformg-sizedsamples, small-scale chemical or mineralogical heterogeneities can result in a rangeofCREagesobtainedfromthenuclideaccumulationmethod, particularlyformedium- or coarse-grainedlunarsamplessuch as olivinebasalt12018(Fig.6).

4.3.Cosmogenicdeuteriuminlunarolivinesandpyroxenes

Fig. 7 shows the deuterium content of Apollo 12018olivines and pyroxenes – together with the deuterium concentration in Apollo12004and15016olivines–asafunctionoftheir21NeCRE

Fig. 7. Deuterium contentofolivinesandpyroxenesasafunctionofthecosmic rayexposureagederivedfromthe21Ne

cosmconcentrationinmarebasaltfragments

(T21).ResultsfromthisstudyforApollo12004,12018,andApollo15016areshown

togetherwiththedatafromFürietal.(2017).ThenewresultsagreewiththeD productionrateof(2.17±0.11)×10−12mol(grock)−1Ma−1(solidline)butare

inconsistentwiththe PD valueof∼1×10−12mol(grock)−1Ma−1 fromMerlivat

etal.(1976) andReedy(1981) (dashedline).

ages (T21). The resultsfrom thisstudy are consistent withthose

fromFürietal.(2017),andcanbeexplainedbyinsitu production

ofcosmogenicDbyGCR-inducedspallationreactionsduring expo-sureatthelunarsurfaceatatime-averagedrateof

(

2

.

17

±

0

.

11

)

×

10−12mol(g rock)−1Ma−1.Itisworthnotingthataslightlylonger exposure duration of

215Ma for Apollo12018would resultin an even better agreement with the other coupled D-21Ne data;

thisvalueisentirelycompatiblewiththeexposureagesfoundhere whenthescatterinthedataandtheuncertaintiesareconsidered (Fig.6).Theinterceptofthebest-fitlinethroughthedataindicates that olivineandpyroxenegrainsinApollomarebasaltswithCRE ages

=

0Ma contain

0

.

1

×

10−9 mol D (g rock)−1.This is

con-sistent withthe observationthat themineralgrainsstudied here contain a few ppm indigenous and/or terrestrial adsorbed water withaterrestrial-likeD/Hratio(seeSection3.1).

Although Reedy (1981) argued for a significantly lower PD value of

1

×

10−12 mol(g rock)−1Ma−1 for lunar mare basalts exposed to GCRs, his theoretical calculationsclearly demonstrate the importance of chemistry andshielding forthe production of cosmogenicnuclides.AssumingthatDisproducedfromthetarget elements O, Mg, Al, Si,and Fe ata ratioof

2:1:1:1:0.5,olivine and pyroxene (pigeonite) in Apollo 12018 (supplementary Table S3)areexpectedtocontainasimilaramountofcosmogenicDafter

200Maofexposure,butthesamewouldnotbetruefor chemi-callydistinctminerals.Furthermore,SCReffectscouldsignificantly increasetheeffectivecosmogenicDproductionrateatthe upper-mostrocksurface, unlessa highsurface erosionratemodifiesthe nuclideproductionprofile,asexpectedforsamplesthatexperience long(

10Ma)exposureatthesurfaceoftheMoon(Reedy,1981). Consequently,the chemicalcomposition ofthesample ofinterest andtheirradiation conditionsmustbe knownandtakeninto ac-count when correcting measured D/Hratios ofwaterin lunar or otherextraterrestrialmaterialsforthecosmogenicDcontribution. TheproductionrateofcosmogenicDinother mineralshasyetto be determined. Thus, care should be taken when applying pub-lished PD valuesforderiving theisotope signature ofindigenous waterinapatiteorplagioclase,particularlyforwater-poorsamples thatexperiencedprolongedexposuretocosmicraysatthesurface oftheMoon.

(9)

8 E. Füri et al. / Earth and Planetary Science Letters 550 (2020) 116550

5. Conclusions

Ten chips from different documented depths (0 to

4.8 cm) within Apollo olivine basalt 12018 were targeted for coupled deuterium–noblegasanalyses.Giventhatthesesamplescoverthe entire depth range (i.e., the topmost 1–2 cm) in which SCR nu-clidescan be producedduring exposureto cosmic rays, a depth-dependent concentration profile was expected to be observed for cosmogenic D, 3He, 21Ne, and 38Ar. However, abundances of

these nuclides are constant with depth, and neon isotope ratios (20Ne/22Neand21Ne/22Ne)aredistinctfromtheisotopesignature of neon produced by SCRs. Consequently, cosmogenic deuterium and noble gas nuclides in the Apollo 12018 rock fragments and mineralsmusthavepredominantlybeenproducedbyGCRsduring prolonged(184

±

26Mato193

±

25Ma),andpossiblycomplex, exposureatthelunar(near-)surface.AlthoughtheeffectsofSCRs ontheproductionrateofDcannot beevaluated,thenewdataset confirmsthe PD valueof

(

2

.

17

±

0

.

11

)

×

10−12mol(g rock)−1Ma−1 from Füri et al. (2017). This value can be used to correct the D/Hratioof‘water’(i.e.,hydrogen)inolivineandpyroxenegrains that were irradiated by GCRs on theMoon, provided their expo-sureages are well established; however, applying the same pro-ductionrateto water-poor mineralswitha differentcomposition (e.g.,thephosphatemineralapatite),andwhoseexposure history is unknown, willlikely lead to misinterpretation of the resulting hydrogenisotoperatios.

CRediTauthorshipcontributionstatement

EvelynFüri: Conceptualization, Methodology, Formal analysis, Investigation, Resources, Data curation, Writing, Project adminis-tration,Fundingacquisition. LaurentZimmermann: Methodology, Investigation, Writing. Etienne Deloule: Methodology, Investiga-tion,Writing. RetoTrappitsch: Conceptualization,Software,Formal analysis,Writing.

Declarationofcompetinginterest

Theauthorsdeclarethattheyhavenoknowncompeting finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

Acknowledgements

We thank Apollo Sample Curator Ryan Zeigler and NASA

CAPTEMforallocationofApollo12018sub-samplesforthisstudy, aswell asCharis Krysherfor tedioussample processing atNASA

Johnson Space Center. We also thank Romain Tartèse and an

anonymousreviewerfortheircomments,andFredericMoynierfor efficient editorial handling. E.F., L.Z., andE.D. were supported by theEuropean ResearchCouncil(ERC)underthe EuropeanUnion’s Horizon 2020research andinnovationprogram (grantagreement no.715028).WorkbyR.T.wasperformedundertheauspicesofthe U.S. Department of Energy by Lawrence Livermore National Lab-oratory under Contract DE-AC52-07NA27344. LLNL-JRNL-813331. CRPG-CNRScontribution2739.

Appendix A. Supplementarymaterial

Supplementarymaterialrelatedtothisarticlecanbefound on-lineathttps://doi.org/10.1016/j.epsl.2020.116550.

References

Alexander,C.M.O’D.,2017.TheoriginofinnerSolarSystemwater.Philos.Trans.R. Soc.Lond.Ser.A 375,20150384.https://doi.org/10.1098/rsta.2015.0384.

Anand,M.,Tartèse,R.,Barnes,J.J.,2014.Understandingtheoriginandevolutionof waterintheMoonthroughlunarsamplestudies.Philos.Trans.R.Soc.A 372, 20130254.https://doi.org/10.1098/rsta.2013.0254.

Barnes,J.J.,Franchi, I.A.,Anand,M.,Tartèse,R.,Starkey, N.A.,Koike,M., Sano,Y., Russell,S.S.,2013.AccurateandprecisemeasurementsoftheD/Hratioand hy-droxylcontentinlunarapatitesusingNanoSIMS.Chem.Geol. 337–338,48–55.

https://doi.org/10.1016/j.chemgeo.2012.11.015.

Barnes,J.J.,Kring,D.A.,Tartèse,R.,Franchi, I.A.,Anand,M.,Russell,S.S.,2016.An asteroidaloriginforwaterintheMoon.Nat.Commun. 7,11684.https://doi.org/ 10.1038/ncomms11684.

Barnes,J.J.,Tartèse,R.,Anand,M.,McCubbin,F.M.,Franchi,I.A.,Starkey,N.A.,Russell, S.S.,2014.TheoriginofwaterintheprimitiveMoonasrevealedbythelunar highlandssamples.EarthPlanet.Sci.Lett. 390,244–252.https://doi.org/10.1016/ j.epsl.2014.01.015.

Bell,D.R., Ihinger,P.D.,Rossman,G.R.,1995. QuantitativeanalysisoftraceOHin garnet andpyroxenes.Am. Mineral. 80,465–474.https://doi.org/10.2138/am -1995-5-607.

Bogard,D.D.,Funkhouser,J.G.,Schaeffer,O.A.,Zähringer,J.,1971.Noblegas abun-dances inlunar material– cosmic-rayspallation productsand radiationages from the sea of tranquilityand the ocean ofstorms. J. Geophys. Res. 76, 2757–2779.https://doi.org/10.1029/JB076i011p02757.

Boyce,J.W.,Liu,Y.,Rossman,G.R.,Guan,Y.,Eiler,J.M.,Stolper,E.M.,Taylor,L.A.,2010. Lunarapatitewithterrestrialvolatileabundances.Nature 466,466–469.https:// doi.org/10.1038/nature09274.

Crozaz,G.,1980.Solarflareandgalacticcosmic raytracks inlunarsamplesand meteorites:whattheytellusabouttheancientsun.In:Pepin,R.O.,Eddy,J.A., Merrill,R.B.(Eds.),TheAncientSun:FossilRecordintheEarth,Moonand Me-teorites.Pergamon,NewYork,pp. 331–346.

Curran,N.M.,Nottingham,M.,Alexander,L.,Crawford,I.A.,Füri,E.,Joy,K.H.,2020.A databaseofnoblegasesinlunarsamplesinpreparationformassspectrometry ontheMoon.Planet.SpaceSci. 182,104823.https://doi.org/10.1016/j.pss.2019. 104823.

Cuttitta,F.,Rose,H.J.,Annell,C.S.,Carron,M.K.,Christian,R.P.,Dwornik,E.J., Green-land,L.P.,Helz,A.W.,Ligon,D.T.J.,1971.ElementalcompositionofsomeApollo 12lunarrocksandsoils.In:ProceedingsoftheSecondLunarScience Confer-ence,Vol. 2,pp. 1217–1229.

Desch,S.J.,Robinson,K.L.,2019.A unifiedmodelforhydrogen inthe Earthand Moon:nooneexpectstheTheiacontribution.Geochemistry 79,125546.https:// doi.org/10.1016/j.chemer.2019.125546.

Drozd,R.J.,Hohenberg,C.M.,Morgan,C.J.,Ralston,C.E.,1974.Cosmic-rayexposure historyattheApollo16andotherlunarsites:lunarsurfacedynamics.Geochim. Cosmochim.Acta 38,1625–1642.https://doi.org/10.1016/0016-7037(74)90178 -1.

Eberhardt,P.,Eugster,O.,Marti,K.,1965.Notizen:aredeterminationoftheisotopic compositionofatmosphericneon. Z.Naturforsch.A 20,623–624.https://doi. org/10.1515/zna-1965-0420.

Füri,E.,Barry,P.H.,Taylor,L.A.,Marty,B.,2015.IndigenousnitrogenintheMoon: constraintsfrom couplednitrogen–noble gasanalyses ofmarebasalts.Earth Planet.Sci.Lett. 431,195–205.https://doi.org/10.1016/j.epsl.2015.09.022. Füri,E.,Deloule,E.,Gurenko,A.,Marty,B.,2014.Newevidenceforchondriticlunar

waterfromcombinedD/HandnoblegasanalysesofsingleApollo17volcanic glasses.Icarus 229,109–120.https://doi.org/10.1016/j.icarus.2013.10.029. Füri,E.,Deloule,E.,Trappitsch,R.,2017.Theproductionrateofcosmogenic

deu-terium at the Moon’s surface. Earth Planet. Sci. Lett. 474, 76–82. https:// doi.org/10.1016/j.epsl.2017.05.042.

Füri,E.,Zimmermann,L.,Saal,A.E.,2018.Apollo15greenglassHe-Ne-Arsignatures –insearchforindigenouslunarnoblegases.Geochem.Perspect.Lett. 25,1–5.

https://doi.org/10.7185/geochemlet.1819.

Greenwood,J.P.,Itoh,S.,Sakamoto,N.,Warren,P.,Taylor,L.,Yurimoto,H.,2011. Hy-drogenisotoperatiosinlunarrocksindicatedeliveryofcometarywatertothe Moon.Nat.Geosci. 4,79–82.https://doi.org/10.1038/ngeo1050.

Greenwood,J.P.,Karato,S.,VanderKaaden,K.E., Pahlevan,K.,Usui,T.,2018. Wa-terandvolatileinventoriesofMercury,Venus,theMoon,andMars.SpaceSci. Rev. 214,92.https://doi.org/10.1007/s11214-018-0526-1.

Györe,D.,Tait,A.,Hamilton,D.,Suart,F.M.,2019.TheformationofNeH+instatic vacuummassspectrometersandre-determinationof21Ne/20Neofair.Geochim.

Cosmochim.Acta 263,1–12.https://doi.org/10.1016/j.gca.2019.07.059. Hagemann,R.,Nief,G.,Roth,E.,1970.Absoluteisotopescalefordeuteriumanalysis

ofnaturalwaters.AbsoluteD/HratioforSMOW.Tellus 22,712–715.https:// doi.org/10.3402/tellusa.v22i6.10278.

Hashizume,K.,Chaussidon,M.,Marty,B.,Robert,F.,2000.Solarwindrecordonthe Moon:decipheringpresolarfromplanetarynitrogen.Science 290,1142–1145.

https://doi.org/10.1126/science.290.5494.1142.

Hauri,E.H.,Alexander,C.M.O’D.,Wang,J.,Mendybaev,R.A.,Jacobsen,S.D.,2017. Hy-drogeninevaporationexperimentsandlinkstoCAIsandchondrules.In:48th LunarPlanet.Sci.Conf.Abstract#1636.

Heber,V.S.,Wieler,R.,Baur,H.,Olinger,C.,Friedmann,T.A.,Burnett,D.S.,2009.Noble gascompositionofthesolarwindascollectedbytheGenesismission.Geochim. Cosmochim.Acta 73,7414–7432.https://doi.org/10.1016/j.gca.2009.09.013.

(10)

Hintenberger,H.,Weber,H.W.,Takaoka,N.,1971.Concentrationsandisotopic abun-dancesoftheraregasesinlunarmatter.In:ProceedingsoftheSecondLunar ScienceConference,Vol. 2,pp. 1607–1625.

Hohenberg,C.M.,Marti,K.,Podosek,F.A.,Reedy,R.C.,Shirck,J.R.,1978.Comparison betweenobservedandpredictedcosmogenicnoblegasesinlunarsamples.In: Proceedingsofthe9thLunarandPlanetaryScienceConference,pp. 2311–2344.

Honda,M.,Zhang,X.,Phillips,D.,Hamilton,D.,Deerberg,M.,Schwieters,J.B.,2015. Redeterminationofthe21Nerelativeabundanceoftheatmosphere,usingahigh

resolution,multi-collectornoblegasmassspectrometer(HELIX-MCPlus).Int.J. MassSpectrom.,1–7.https://doi.org/10.1016/j.ijms.2015.05.012.

Hui,H.,Guan,Y.,Chen,Y.,Peslier,A.H.,Zhang,Y.,Liu,Y.,Flemming,R.L.,Rossman, G.R.,Eiler,J.M.,Neal,C.R.,Osinski,G.R.,2017.Aheterogeneouslunarinteriorfor hydrogenisotopesasrevealedbythelunarhighlandssamples.EarthPlanet.Sci. Lett. 473,14–23.https://doi.org/10.1016/j.epsl.2017.05.029.

Hui,H.,Peslier,A.H., Zhang,Y.,Neal,C.R.,2013.Waterinlunaranorthositesand evidenceforawetearlyMoon.Nat.Geosci. 6,177–180.https://doi.org/10.1038/ ngeo1735.

Humbert,F.,Libourel,G.,France-Lanord,C.,Zimmermann,L.,Marty,B.,2000.CO2

-laserextraction-static massspectrometryanalysisofultra-lowconcentrations ofnitrogeninsilicates.Geostand.Newsl. 24,255–260.https://doi.org/10.1111/j. 1751-908X.2000.tb00777.x.

Jochum,K.P.,Stoll,B.,Herwig,K.,Willbold,M.,Hofmann,A.W.,Amini,M.,Aarburg, S.,Abouchami,W.,Hellebrand,E.,Mocek,B.,Raczek,I., Stracke,A.,Alard,O., Bouman,C., Becker,S., Dücking,M., Brätz,H.,Klemd,R.,deBruin, D.,Canil, D.,Cornell,D.,deHoog,C.-J.,Dalpé,C.,Danyushevsky,L.,Eisenhauer,A.,Gao, Y.,Snow,J.E.,Groschopf,N.,Günther,D.,Latkoczy,C.,Guillong,M.,Hauri,E.H., Höfer,H.E.,Lahaye,Y.,Horz,K.,Jacob,D.E.,Kasemann,S.A.,Kent,A.J.R.,Ludwig, T.,Zack,T.,Mason,P.R.D.,Meixner,A.,Rosner,M.,Misawa,K.,Nash,B.P., Pfän-der,J.,Premo,W.R.,Sun,W.D.,Tiepolo,M.,Vannucci,R.,Vennemann,T.,Wayne, D.,Woodhead,J.D.,2006.MPI-DINGreferenceglassesforinsitumicroanalysis: newreferencevaluesforelementconcentrationsandisotoperatios.Geochem. Geophys.Geosyst. 7.https://doi.org/10.1029/2005GC001060.

Kushiro,I.,Nakamura,Y.,Kitayama,K.,Akimoto,S.-I.,1971.PetrologyofsomeApollo 12crystallinerocks.In:ProceedingsoftheSecondLunarScienceConference, Vol. 1,pp. 481–495.

Leya,I., Neumann,S., Wieler,R.,Michel, R.,2001.The productionofcosmogenic nuclidesbygalacticcosmic-rayparticlesfor2πexposuregeometries.Meteorit. Planet.Sci. 36,1547–1561.https://doi.org/10.1111/j.1945-5100.2001.tb01845.x.

Marti,K.,Lugmair,G.W.,1971.Kr81-KrandK-Ar40ages,cosmic-rayspallation

prod-ucts,andneutroneffectsinlunarsamplesfromOceanusProcellarum.In: Pro-ceedingsoftheSecondLunarScienceConference,Vol. 2,pp. 1591–1605.

Matsuda, J., Matsumoto, T., Sumino, H., Nagao, K.,Yamamoto, J., Miura, Y., Ka-neoka,I.,Takahata,N.,Sano,Y.,2002.The3He/4Heratioofthenewinternal

HeStandardofJapan(HESJ).Geochem.J. 36,191–195.https://doi.org/10.2343/ geochemj.36.191.

McCubbin,F.M.,Barnes,J.J.,2019.OriginandabundancesofH2Ointheterrestrial

planets,Moon,andasteroids.EarthPlanet.Sci.Lett. 526,115771.https://doi.org/ 10.1016/j.epsl.2019.115771.

McCubbin,F.M.,VanderKaaden,K.E., Tartèse,R., Klima,R.L., Liu,Y.,Mortimer,J., Barnes,J.J.,Shearer,C.K.,Treiman,A.H.,Lawrence,D.J.,Elardo,S.M.,Hurley,D.M., Boyce,J.W.,Anand,M.,2015.Magmaticvolatiles(H,C,N,F,S,Cl)inthelunar mantle,crust,andregolith:abundances,distributions,processes,andreservoirs. Am.Mineral. 100,1668–1707.https://doi.org/10.2138/am-2015-4934CCBYNCND. Megrue, G.H., 1971. Distribution and origin of helium, neon, and argon iso-topesinApollo12samplesmeasuredbyinsituanalysiswith alaser-probe mass spectrometer. J. Geophys. Res. 76, 4956–4968. https://doi.org/10.1029/ JB076i020p04956.

Merlivat,L.,Lelu,M.,Nief,G.,Roth,E.,1976.Spallationdeuteriuminrock70215.In: Proceedingsofthe7thLunarandPlanetaryScienceConference,pp. 649–658. Meyer,C.,2011.LunarSampleCompendium.

Mosenfelder,J.L.,Hirschmann,M.M.,2016.SIMSmeasurementsofhydrogenand flu-orineinlunarnominallyanhydrousminerals.In:47thLunarPlanet.Sci.Conf. Abstract#1716.

Nishiizumi,K.,Arnold,J.R.,Kohl,C.P.,Caffee,M.W.,Masarik,J., Reedy,R.C.,2009. Solarcosmic rayrecordsinlunarrock64455.Geochim.Cosmochim.Acta 73, 2163–2176.https://doi.org/10.1016/j.gca.2008.12.021.

Papike,J.J.,Hodges,F.N.,Bence,A.E.,Cameron,M.,Rhodes,M.J.,1976.Marebasalts: crystalchemistry,mineralogy,andpetrology.Rev.Geophys. 14,475–540.https:// doi.org/10.1029/RG014i004p00475.

Rao, M.N., Garrison, D.H., Bogard, D.D., Reedy, R.C., 1993. Solar-flare-implanted

4He/3Heandsolar-proton-producedNeandArconcentrationprofilespreserved

inlunarrock61016.J.Geophys.Res. 98,7827–7835.https://doi.org/10.1029/ 93JA00002.

Rao,M.N.,Garrison,D.H.,Bogard,D.D.,Reedy,R.C.,1994.Determinationoftheflux andenergydistributionofenergeticsolarprotonsinthepast2Myrusinglunar rock68815.Geochim.Cosmochim.Acta 58,4231–4245.https://doi.org/10.1016/ 0016-7037(94)90275-5.

Reedy,R.C.,1980.Lunarradionucliderecordsofaveragesolar-cosmic-rayfluxesover thelasttenmillionyears.In:Pepin,R.O.,Eddy,J.A.,Merrill,R.B.(Eds.),The An-cientSun:FossilRecord inthe Earth,Moonand Meteorites.Pergamon, New York,pp. 365–386.

Reedy,R.C.,1981.Cosmic-rayproducedstablenuclides:variousproductionratesand theirimplications.In:Proceedingsofthe12thLunarandPlanetaryScience Con-ference,Vol. 2,pp. 1809–1823.

Reedy,R.C., Arnold,J.R.,1972.Interactionofsolarand galacticparticleswith the Moon.J.Geophys.Res. 77,537–555.https://doi.org/10.1029/JA077i004p00537. Robinson,K.L.,Barnes,J.J.,Nagashima,K.,Thomen,A.,Franchi,I.A.,Huss,G.R.,Anand,

M.,Taylor,G.J.,2016.Waterinevolvedlunarrocks:evidenceformultiple reser-voirs.Geochim. Cosmochim. Acta 188, 244–260.https://doi.org/10.1016/j.gca. 2016.05.030.

Saal,A.E.,Hauri,E.H.,VanOrman,J.A.,Rutherford,M.J.,2013. Hydrogenisotopes inlunarvolcanicglassesandmeltinclusionsrevealacarbonaceouschondrite heritage.Science 340,1317–1320.https://doi.org/10.1126/science.1235142. Saxton, J.M.,2020. The 21Ne/20Ne ratioofatmosphericneon. J. Anal. At.

Spec-trom. 35,943–952.https://doi.org/10.1039/D0JA00031K.

Sharp,Z.D.,2017.NebularingassingasasourceofvolatilestotheTerrestrialplanets. Chem.Geol. 448,137–150.https://doi.org/10.1016/j.chemgeo.2016.11.018. Singer, J.A., Greenwood,J.P., Itoh,S., Sakamoto, N., Yurimoto,H.,2017. Evidence

forthesolarwindinlunarmagmas:astudyofslowlycooledsamplesofthe Apollo12olivinebasaltsuite.Geochem.J. 51,95–104.https://doi.org/10.2343/ geochemj.2.0462.

Stettler,A.,Eberhardt,P.,Geiss,J.,Grögler,N.,Maurer,P.,1973.Ar39-Ar40agesand

Ar37-Ar38exposureagesoflunarrocks.In:Proceedingsofthe4thLunarScience

Conference,Suppl.4.Geochim.Cosmochim.Acta 2,1865–1888.

Tartèse,R.,Anand,M., 2013.Latedelivery ofchondritichydrogen intothe lunar mantle:insightsfrommarebasalts.EarthPlanet.Sci.Lett. 361,480–486.https:// doi.org/10.1016/j.epsl.2012.11.015.

Tartèse,R.,Anand,M.,Barnes,J.J.,Starkey,N.A., Franchi,I.A.,Sano, Y.,2013. The abundance,distribution,andisotopiccompositionofhydrogenintheMoonas revealedbybasaltic lunarsamples:implicationsfor thevolatileinventoryof theMoon.Geochim.Cosmochim.Acta 122,58–74.https://doi.org/10.1016/j.gca. 2013.08.014.

Trappitsch,R.,Leya,I.,2014.Depth-dependentsolarcosmicrayinducedcosmogenic productionrates.In:45thLunarPlanet.Sci.Conf.Abstract#1894.

Walter,L.S.,French,B.M.,Heinrich,K.F.J.,LowmanJr.,P.D.,Doan,A.S.,Adler,I.,1971. MineralogicalstudiesofApollo12samples.In:ProceedingsoftheSecondLunar ScienceConference,Vol. 1,pp. 343–358.

Wetzel,D.T.,Hauri,E.H.,Saal,A.E.,Rutherford,M.J.,2015.Carboncontentand de-gassinghistoryofthelunarvolcanicglasses.Nat.Geosci. 8,755–758.https:// doi.org/10.1038/ngeo2511.

Wielandt,D.,Storey,M.,2019.A newhighprecisiondeterminationofthe atmo-spheric21Neabundance.J.Anal.At.Spectrom. 34,535–549.https://doi.org/10.

1039/C8JA00336J.

Wieler,R., Grimberg,A.,Heber,V.S.,2007. Consequencesofthenon-existenceof the“SEP”componentfornoblegasgeo-andcosmochemistry.Chem.Geol. 244, 382–390.https://doi.org/10.1016/j.chemgeo.2007.06.026.

Wieler,R.,Heber,V.S.,2003.NoblegasisotopesontheMoon.SpaceSci.Rev. 106, 197–210.https://doi.org/10.1023/A:1024641805441.

Zhang,X.,Honda,M.,Hamilton,D.,2016.Performanceofthehighresolution, multi-collectorHelixMCplusNoblegasmasspectrometerattheAustralianNational University.J.Am.Soc.MassSpectrom. 27,1937–1943.https://doi.org/10.1007/ s13361-016-1480-3.

Zimmermann,L.,Füri,E.,2015.Purificationdesgazraressousultravide- enceinte depurification.Techniquesdel’ingénieurJ6634.

Zimmermann,L.,Füri,E.,Burnard,P.,2015.Purificationdesgazraressousultravide - méthodesdepurification.Techniquesdel’ingénieurJ6635.

Figure

Fig. 1. Apollo 12018 fragments used for this study are derived from a) slab 14; b) column 17; c) slices 49, 51, 55, and 52 (see supplementary Table S2 for details)
Fig. 2. a) 20 Ne/ 22 Ne and b) 21 Ne/ 22 Ne ratios (corrected for instrumental mass fractionation) as a function of the 20 Ne signal (in counts per second, cps) for air standards (n = 37) and Apollo 12018 fragments analyzed by step-wise heating
Fig. 3. Deuterium concentration in Apollo 12018 olivines and pyroxenes, as well as 3 He, 21 Ne, and 38 Ar concentrations in rock fragments (duplicates at each depth), as a function of depth below the surface
Fig. 5. Theoretical depth-dependent production rates of cosmogenic 21 Ne by solar (SCR; Trappitsch and Leya, 2014) and galactic cosmic rays (GCR; Leya et al., 2001) as a function of depth below the surface of Apollo olivine basalt 12018.
+2

Références

Documents relatifs

Nous avons utilisé le logiciel SYMBOLS-2000 pour la simulation du circuit électrique équivalent de ce capteur SYMBOLS-2000 est un logiciel de simulation pour la modélisation Bond

Le processus de résolution du problème inverse est une approche basée sur le couplage des deux méthodes ATL et TLBO. L’ATL est utilisé pour résoudre le problème direct conduisant

Spatial variability of compound-specific δD at the field scale: A case study from miliacin in broomcorn millet (Panicum miliaceum).. Nicolas Bossard, Jérémy Jacob, Claude

Les influences des milieux adjacents au sys- tème lagunaire Ebrié (continent et océan) ont une importance très inégale dans le temps et dans l'es- pace. Il en

Quincampoix, Deterministic dierential games under probability knowledge of initial condition, International Game Theory Review 10 (2008), 116.

In this section we mode the ejection of the VLBI component C13 assuming a single spinning BH, the VLBI ejection is perturbed by the precession of the accretion disk, and the

Our results are compared with migrated single‐hole GPR reflection sections [Dorn et al., 2011] acquired under natural flow and tracer ‐free conditions to determine which of the

Il s’agit de la première enquête en ligne réalisée dans une université suisse avec des étudiants internationaux sur leurs raisons d’étudier en Suisse, leurs stratégies