• Aucun résultat trouvé

The Hacque method and the complete GI-method for computing the Galois group

N/A
N/A
Protected

Academic year: 2023

Partager "The Hacque method and the complete GI-method for computing the Galois group"

Copied!
20
0
0

Texte intégral

(1)

HAL Id: hal-02548331

https://hal.science/hal-02548331

Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

computing the Galois group

Ines Abdeljaouad, Annick Valibouze

To cite this version:

Ines Abdeljaouad, Annick Valibouze. The Hacque method and the complete GI-method for computing

the Galois group. [Research Report] lip6.2000.025, LIP6. 2000. �hal-02548331�

(2)

InesAbdeljaouadandAnnikValibouze y

CalFor-LIP6,UniversitParisVI,

4PlaeJussieu,F-75252PARISCEDEX05

E-mail: abdeljaomediis.polytehnique.fr;avbmediis.polytehnique.fr

1.INTRODUCTION

TwophilosophiesareproposedforomputingtheGaloisgroupofaunivari-

ate polynomial: thealgebraioneand the numerialone. Thenumerial

methods provide eÆient algorithmsevenwith ahigh degreeof preision

(see [19℄, [7℄, [13℄); the algebrai methods guarantee an exat result in

reasonable time (see [21℄, [6℄) and the work undertaken in [3℄ and [4℄ is

deterministi.

Weproposetwoalgebraimethods for omputingthe Galois groupofan

irreduiblepolynomialf whihwealltheHaquemethod(in[12℄)andthe

ompleteGI-method. WestartbyintroduingtheHaquemethod: wegive

in setion 2asystemof harateristiequationsof the Galoisgroup asa

subgroupofthelinearalgebraigroup. TheompleteGI-method isintro-

duedinsetion3. ItomputestheGaloisgroupthankstoanalgorithmof

omputationofthedeompositiongroupoftheidealofrelations(see[20℄).

Throughout thisartilek indiates aeld of harateristizeroand f an

univariatepolynomialirreduibleoverk. TheHaquemethodforomput-

ingtheGaloisgroupoff annotbeusedwithoutpreliminaryomputation:

infat,aminimalpolynomialofaprimitiveelementoftheGaloisextension

must be omputed. Thus, setion 4is devoted to transform the Haque

method into an implementable form. For this, we ombine the Haque

methodwiththerststepsoftheompleteGI-methodandwenallyom-

parethistwomethods.

*

NotesInformellesdeCalulFormelnumero2000-08,presentationoraleaAAECC'13

enNovembre1999

y

SupportedbytheprojetGaloisoftheUMSMEDICIS,Palaiseau,Frane.

(3)

2. GALOIS GROUP ASA SUBGROUP OFGL

N (K)

Let K be a nite extension eld over k of degree n > 1. Let us x

e = (e

0

;e

1

;:::;e

m

), a basis of the k-vetor spae K, suh that e

0

= 1

andm=n 1.

2.1. Notationsand Denitions

Theringofk-endomorphismsoverK isdenoted byL

k

(K)and thegroup

ofthe invertibleelementsofL

k

(K)byGL

k

(K). TheGalois group ofthe

extensionkjK is,bydenition,thegroupofk-automorphismsoverK. It

isdenotedbyGal

k (K).

Weset M

n

(k)tobetheringofnn matrieswithoeÆientsin k. We

denote by M[:;e℄ the isomorphism of algebra whih assoiates with any

k-endomorphismofL

k

(K)itsmatrixin thebasise:

M[:;e℄ : L

k

(K) ! M

n (k)

f 7! M[f;e℄ .

We denoted by GL

n

(k) the group of the invertible matries of M

n (k).

Then

GL

n

(k)'GL

k

(K) : (1)

For all 2 K, we denote by b

the multipliative endomorphism of

over K dened by b

(x) = x, for all x in K. Remark that the eld

b

K=f b

2L

k

(K)j2Kgisisomorphito K.

LetK=fM[

b

;e℄2M

n

(k)j2Kg. TheeldK is naturallyisomorphi

totheeld b

K. Thus,weobtainthefollowingisomorphisms:

K' b

K'K : (2)

Thegroup of theinvertibleelements of K (resp. of b

K)is labeled byK

(resp.

b

K

). The group b

K

is isomorphi to K

and, it is a subset of

GL

k (K):

b

K

=f b

2GL (K)j2K

g : (3)

(4)

We set K

= fM[

b

;e℄ 2 M

n

(k)j 2K

g. Then K

GL

n

(k) and we

havethefollowingisomorphisms:

K

' b

K

'K

: (4)

LetGandH betwogroupssuhthatH G. ThenormalizerofH inG,

denotedbyNor[G;H℄, isequalto:

Nor[G;H℄=fa2GjaHa 1

=Hg :

Definition 2.1. Letg2GL

k

(K). Theappliation g isalled K-semi-

linear ifforallx 2K and2K,there exists ans2Gal

k

(K)suh that

g(x)=g(x)s().

2.2. Propertiesof the Galoisgroup Gal

k

(K)as a subgroup of

GL

n (k)

Proposition 2.1. The Galois group Gal

k

(K) is the set of the K-semi-

linearappliations g of GL

k

(K)suhthatg(1)=1.

Gal

k

(K)=fg2GL

k

(K) j gis K semi linear andg(1)=1g : (5)

Proof. Wenote that forall g2Gal

k

(K),g isK-semi-linearand g(1)=

1. Conversely, let g be a K-semi-linear appliation suh that g(1) = 1,

we have to show that 8x 2 k, s(x) = x. For any x 2 k, there exists

s2Gal

k

(K)suhthatg(x)=s(x):g(1)=s(x)=x. So,g2Gal

k (K).

The following proposition is a onsequene of lemma 2.1 of [11℄, and we

givehereadiret proof:

Proposition 2.2. The normalizer of b

K

in GL

k

(K) is equal to a set

ontaining allthe K-semi-linearappliations ofGL

k (K).

Nor[GL

k (K);

b

K

℄=fg2GL

k

(K) j gisK semi linearg : (6)

Proof. Let g 2 Nor[GL

k (K);

b

K

℄ be a k-endomorphism, then for all

2 K

, gÆ b

Æg 1

2 b

K

. For all2 K

, there exist 2K

verifying

gÆ b

=bÆg ; letsbeanappliation from K

toK

suhthat s() =

; s is abijetion ofK

beause it isa surjetionof K

. Toprovethat g

isK-semi-linear,weanonlyprovethatg veriesg(x)=g(x)s()where

s2Gal (K).

(5)

(i) For 2 K

, we have g Æ b

= d

s()Æg ; then for any x 2 K,

gÆ b

(x)= d

s()Æg(x)andthusgÆ b

(x)=g(x)=g(x)s().

(ii) Letus verifythat the bijetions is ak-morphism ofK. Weset ,

2Kandx2Kthen,aordingto(i),g(x( + ))=g(x)s( + ). Inaddi-

tion,g(x(+))=g(x)+g(x)=g(x)s()+g(x)s()=g(x)(s()+s()).

Thus,likeg6=0,s(+)=s()+s().

In the same way, g(x()) = g(x)s() and g(x()) = g(x)s() =

g(x)s()s(). Sine g 6= 0, we obtain s() = s()s(). Lastly, g(1) =

g(1)s(1)andthus s(1)=1.

So,s2Gal

k

(K)andtheappliationg isK-semi-linear.

Conversely, let g be a K-semi-linear appliation. Let prove that for all

2K

,gÆ b

Æg 1

2 b

K

.

Bydenition, for 2K and x 2 K,there exists s 2 Gal

k

(K) suh that

g(x)=g(x)s(). Partiularly,foreah2K

andx2K,gÆ b

Æg 1

(x)=

gÆ b

(g 1

(x))=g(g 1

(x))=g(g 1

(x))s()=xs(). SogÆ b

Æg 1

= d

s() .

Sine2K

ands2Gal

k

(K), theelements()is invertible(i.e. s()2

K

)andwededuethat theappliationgÆ b

Æg 1

2

K

.

Theorem2.1. Aording tothe propositions 2.1and2.2, wehave:

Gal

k

(K)=fg2Nor[GL

k (K);

b

K

℄jg(1)=1g : (7)

Thankstothe isomorphism (1),the Galoisgroupasasubgroup ofGL

n (k)

isexpressedinthe following form:

Gal

k

(K)=fA2Nor[GL

n (k) ;K

℄jA(e

0 )=e

0

g: (8)

2.3. Charaterization ofGal

k

(K)with a systemof equations

WeseekasystemofequationswhihharaterizestheGaloisgroupGL

n (k).

For that,in allthispart,wexAamatrixofGL

n (k) .

Lemma2.1. If the matrixAof GL

n

(k) veriesA(e

0 )=e

0

thenwewrite

itinthe form:

A= 0

B

B

B

1

1;0

:::

m;0

0

1;1

:::

m;1

.

.

. .

.

. .

.

. .

.

.

0 ::: 1

C

C

C

A

(9)

(6)

where

i;j

2k for (i;j)2[1;m℄[0;m℄ anddet(

i;j )

i;j2[1;m℄

6=0 .

Proof. Obvious.

2.3.1. Charaterization of the eldK

Forj 2[0;m℄, letset M

j

=M[eb

j

;e℄the matrixof eb

j

in thebasise(eb

j is

the multipliative endomorphism of e

j

). Let 2 K and 0

;:::; m

2 k

suh that= P

m

j=0

j

e

j .

Thewriting

M[

b

;e℄= X

m

j=0

j

M

j

(10)

givesaharaterizationoftheelementsoftheeldK . Furthermore,be-

longsto theeldK

ifandonlyif j

(j2[0;m℄)arenotallzero.

Thus,(M

0

;M

1

;:::;M

m

)isabasisofK

.

2.3.2. Charaterization of Nor[GL

n (k) ;K

The matrix A belongs to Nor[GL

n (k);K

℄ if it veries AK

A 1

= K

.

Thisisequivalentto:

8i2[1;m℄ ;9(

i;0

;:::;

i;m )2k

n

f(0;:::;0)g AM

i

= X

m

j=0

i;j M

j A:

(11)

Corollary2.1. LetA2GL

n

(k)and(12)thelinearsystemof equations

dedued from(11):

AM

i

= X

m

j=0 x

i;j M

j

A; i2[1;m℄ ; (12)

where x

i;j

are unknown. The matrix A belongs to Nor[GL

n (k) ;K

℄ if

and only if the system of equations (12) admits atleast one solution =

(

i;j )

i2[1;m℄;j2[0;m℄

ink mn

.

2.3.3. Charaterization of the Galoisgroup

Theorem2.2. ThematrixAofGL

n

(k)belongstotheGaloisgroupGal

k (K)

(7)

(a) itiswritteninthe form(9),

(b) thesystem(12)admits atleastonesolution.

Proof. Aordingtothetheorem2.1,thelemma2.1andthesetion2.3.

Definition 2.2. Let B = (b

i;j )

i;j2[1;n℄

be a matrix of M

n

(k) where

b

i;j

are unknown. Let us put X = (x

i;j )

i2[1;m℄;j2[0;m℄

where x

i;j

are also

unknownentries. Thefollowingsystemofequations:

B(e

0 )=e

0

and BM

i

= X

m

j=0 x

i;j M

j

B ; i2[1;m℄ (13)

isalled thesystemofequationsof the Galois group Gal

k

(K)in the basis

e.

Corollary2.2. AmatrixA belongstothe Galois group Gal

k

(K)ifand

onlyif the system(13)of equationof Galois group inthe basise admitsa

solutionB =A andX = for aertain2k mn

.

2.4. Simpliation ofthe systemof equations ofGal

k (K)-

Haque system

Letu2K beaprimitiveelementof theextensionk jK (i.e. k(u)=K)

andletu n

(a

m u

m

+:::+a

1 u+a

0

)beitsminimalpolynomialoverk.

For j2[0;m℄, weanput e

j

=u j

. WedenotebyM

0

thematrixidentity.

Inthebasis(1;u;:::;u m

),thematrixM

1

oftheendomorphismubiswritten

by:

M

1

= 0

B

B

B

B

B

0 0 ::: 0 a

0

1 0 ::: 0 a

1

0 1 ::: 0 a

2

.

.

. .

.

. .

.

. .

.

. .

.

.

0 0 ::: 1 a

m 1

C

C

C

C

C

A

Andforj2[0;m℄,weset M

j

=M

1 j

.

Lemma2.2. The system (13) of equations of Galois group in the basis

(1;u;:::;u m

)isequivalentto:

B(e

0 )=e

0

and BM

1

= X

m

x

j M

j

B ; (14)

(8)

wherex

j

2k for allj2[0;m℄ .

Proof. Itisobviousthatthesystem(13)involvesthesystem(14). Reip-

roally,leti2[2;m℄andsuppose that(14)isveried. Then

BM

i B

1

=(BM

1 B

1

) i

=( X

m

j=0 x

j M

j )

i

= X

m

j=0 y

j M

j

;

where y

j

belongs tok[x

0

;:::;x

m

℄ beause(M

0

;M

1

;:::;M

m

) isabasisof

K

.

Lemma2.3. If a matrix A 2 GL

n

(k) and = (

0

;:::;

m

) veries the

system(14), (i.e. B =A and(x

0

;:::;x

m

) = are solutions), then A is

writtenin theform(9) and

j

=

1;j

for j2[0;m℄.

Proof. Tobe onvined, it is enoughto express AM

1

and M j

1

A for j 2

[0;m℄, inthebasis(1;u;:::;u m

).

Theorem2.3 (Haque). AmatrixAbelongstotheGaloisgroupGal

k (K)

ifandonly ifthe matrixA isinvertibleand

A= 0

B

B

B

1

1;0

:::

m;0

0

1;1

:::

m;1

.

.

. .

.

. .

.

. .

.

.

0

1;m :::

m;m 1

C

C

C

A

suhthat AM

1

= X

m

j=0

1;j M

j A

where

i;j

2k for (i;j)2[1;m℄[0;m℄.

Definition2.3. Thesystemofthetheorem2.3isalledHaquesystem.

2.5. Exampleof Haquesystem

LetF =T 6

+108andA2GL

6

(Q)suhthatA(e

0 )=e

0

,where(e

0

;:::;e

n )

is theanonial basis of GL

6

(Q). The Haque systemfor the Galois ex-

tensionoverQofthepolynomialF(T)=T 6

+108isequalto:

AM = M A+ M A+ M A+ M A+ M A+ M A ;

(9)

where:

M1= 2

6

6

6

6

6

6

4

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 108 3

7

7

7

7

7

7

5

and Mi=M i

1

for i2[0;5℄ :

ThustheHaquesystemis equivalenttothefollowingsystemof 30equa-

tionsand30unknowns:

3;0

1;0

2;0

=0,

4;0

1;0

3;0

=0,

5;0

1;0

4;0

=0

108

5;0

1;0

5;0

=0,

2;1 2

1;0

1;1

=0,

2;0

2

1;0

=0

3;1

1;0

2;1

1;1

2;0

=0,

4;1

1;0

3;1

1;1

3;0

=0

5;1

1;0

4;1

1;1

4;0

=0, 108

5;1

1;0

5;1

1;1

5;0

=0

2;2 2

1;0

2;1

2

1;1

=0,

2;3

1;0

2;2

1;1

2;1

2;1

2;0

=0

2;4

1;0

2;3

1;1

3;1

2;1

3;0

=0,

2;5

1;0

2;4

1;1

4;1

2;1

4;0

=0

1082;5 1;02;5 1;15;1 2;15;0=0,

3;2 21;03;1 21;12;1=0

3;3 1;03;2 1;12;2 2

2;1

3;12;0=0,

3;4 1;03;3 1;12;3 2;13;1 3;13;0=0

3;5 1;03;4 1;12;4 2;14;1 3;14;0=0,

4;2 21;04;1 21;13;1 2

2;1

=0

1083;5 1;03;5 1;12;5 2;15;1 3;15;0=0,

4;3 1;04;2 1;13;2 2;12;2 2;13;1 4;12;0=0

4;4

1;0

4;3

1;1

3;3

2;1

2;3

2

3;1

4;1

3;0

=0,

4;5

1;0

4;4

1;1

3;4

2;1

2;4

3;1

4;1

4;1

4;0

=0

108

4;5

1;0

4;5

1;1

3;5

2;1

2;5

3;1

5;1

4;1

5;0

=0:

5;2 1;05;1 1;1(4;1 1085;1) 2;1(3;1 1084;1+116645;1) 3;1(2;1

1083;1+116644;1 12597125;1) 4;1(1;1 1082;1+116643;1 12597124;1+

136048896

5;1 )

5;1 (

1;0 108

1;1

+11664

2;1

1259712

3;1

+136048896

4;1

14693280768

5;1 )=0

5;3

1;0

5;2

1;1 (

4;2 108

5;2 )

2;1 (

3;2 108

4;2

+11664

5;2 )

3;1 (

2;2

108

3;2

+11664

4;2

1259712

5;2 )

4;1 (

2;1 108

2;2

+11664

3;2

1259712

4;2 +

136048896

5;2 )

5;1 (

2;0 108

2;1

+11664

2;2

1259712

3;2

+136048896

4;2

14693280768

5;2 )=0

5;4 1;05;3 1;1(4;3 1085;3) 2;1(3;3 1084;3+116645;3) 3;1(2;3

1083;3+116644;3 12597125;3) 4;1(3;1 1082;3+116643;3 12597124;3+

(10)

1360488965;3) 5;1(3;0 1083;1+116642;3 12597123;3+1360488964;3

14693280768

5;3 )=0

5;5

1;0

5;4

1;1 (

4;4 108

5;4 )

2;1 (

3;4 108

4;4

+11664

5;4 )

3;1 (

2;4

108

3;4

+11664

4;4

1259712

5;4 )

4;1 (

4;1 108

2;4

+11664

3;4

1259712

4;4 +

136048896

5;4 )

5;1 (

4;0 108

4;1

+11664

2;4

1259712

3;4

+136048896

4;4

146932807685;4)=0

108

5;5

1;0

5;5

1;1 (

4;5 108

5;5

)

2;1 (

3;5 108

4;5

+11664

5;5 )

3;1(2;5 1083;5+116644;5 12597125;5) 4;1(5;1 1082;5+116643;5

1259712

4;5

+136048896

5;5

)

5;1 (

5;0 108

5;1

+11664

2;5

1259712

3;5 +

1360488964;5 146932807685;5)=0

TheGaloisgroupofF(T)=T 6

+108isthesetofmatriesAverifyingthe

Haque system. After theidentiation of this systemwithsubgroups of

GL

6

(Q),wededuethattheregularrepresentationoftheGaloisgroupof

F overQis isomorphitoS

3 .

We will see, in setion 4, that the identiation proess of Galois group

usingHaquesystemisaeleratedwhenweusetheresultoftherststeps

ofGI-method.

3.THECOMPLETE GI-METHOD

Letf be apolynomialoverk ofdegreen and

f

bean-tuple of nroots

off in analgebrailosure

^

k of k. We proposean algorithmwhih om-

putesthedeompositiongroupofagivenidealandweprovethat, applied

totheidealof

f

-relationsI

f

, thealgorithmomputestheGaloisgroup

Gal

k

(K)=G

f .

3.1. Notationsand denitions

We denoted by S

n

the symmetri group of degreen and I

n

the identity

group of S

n

. For 2 S

n

and = (

1

;:::;

n

) a n-tuple in

^

k, we put

:=(

(1)

;:::;

(n)

). Wedenotebyk[x

1

;:::;x

n

℄theringofpolynomial

in thevariablex

1

;:::;x

n

overtheeld kand k[T℄thering ofpolynomial

inthevariableT overtheeldk.

Theationofthepermutationgroupofdegreenonk[x

1

;:::;x

n

℄isdened

by:

(11)

S

n k[x

1

;:::;x

n

℄ ! k[x

1

;:::;x

n

(;P) 7! :P(x

1

;:::;x

n

)=P(x

(1)

;:::;x

(n) ) :

For 2 S

n

, a n-tuple in

^

k and P 2 k[x

1

;:::;x

n

℄, wehave: :P() =

P(Æ). LetJ beasubsetofk[x

1

;:::;x

n

℄and2S

n

then(J)=f:P j

P 2Jg.

Definition3.1. LetLbeasubgroupofS

n

andH asubgroupofL. The

polynomial2k[x

1

;:::;x

n

℄ isanL-primitive H-invariant if

H =f2Lj:=g :

Definition3.2. Theidealofthe

f

-relations,denotedbyI

f

,isdened

by:

I

f

=fP 2k[x

1

;:::;x

n

℄ j P(

f

)=0g :

Definition3.3. TheGalois groupof

f

is denedby:

G

f

=f2S

n

j8P 2I

f

; :P(

f

)=0g :

3.2. Galois Ideal and deompositiongroup

Let=(

1

;:::;

n

)bean-tuplein

^

k. A polynomialP 2k[x

1

;:::;x

n

℄is

an-relation ifP()=0.

Definition3.4. LetLbeasubgroupofS

n

. TheidealI L

ofL-invariant

-relationsdened by:

I L

=fR2k[x

1

;:::;x

n

℄ j (82L):R ()=0g ;

isalledan(L;)-Galoisideal.

TheidealI S

n

isalled theideal of symmetri relations and, aordingto

denition3.2,I I

n

=I

,theideal of -relations.

Example 3.1. Letf bea polynomial overk of degreen and

f be a

n-tupleofnerootsoff inanalgebrailosureofk. Ife ;:::;e represents

(12)

thenelementarysymmetrifuntions, thenthepolynomialse

1 e

1 (

f ),

...,e

n e

n (

f

),alledCauhymodulusoff,formaGrobnerbasisofI S

n

f .

Definition3.5. ThedeompositiongroupGr(I)ofanideal Ik[x

1

;:::;x

n

isdenedby:

Gr(I)=f2S

n

j(I)=Ig :

Remark3. 1. Gr(I)isagroupanditveriesthefollowingequality:

Gr(I)=f2S

n

j(I)Ig :

Remark 3. 2. Aording to thedenition 3.3, theGalois groupof

f is

thedeompositiongroupoftheidealI

f of

f

-relations:

G

f

=f2S

n j(I

f )=I

f

g=Gr(I

f ) :

Remark 3. 3. WehaveI G

f

f

=I

f

andifH is asubgroupof G

f then

I H

f

=I

f .

3.3. Computation of the Deompositiongroup ofan ideal

Theorem3.1. Let g

1

;:::;g

s

be generators of anideal I in k[x

1

;:::;x

n

℄.

The deomposition groupGr(I)of I isthe biggest subgroup Gof S

n veri-

fying:

8i2[1;s℄ and 8j2[1;r℄

j :g

i

2I ; (15)

where

1

;:::;

r

aregeneratorsofG.

Proof. Letg

1

;:::;g

s

beageneratingsystemoftheidealI ink[x

1

;:::;x

n

℄.

Let 2Gr(I) then (I)=I, in partiular foreah generatorg

i

of I we

have(g

i

)2I. Thus,Gr(I)veriestheondition(15).

(13)

2S

n

suhthat:

8i2[1;s℄:g

i

2I : (16)

Let g 2 I then, g

1

;:::;g

s

are generators of I so, there exist t

1

;:::;t

s in

k[x

1

;:::;x

n

℄suhthatg=t

1 g

1

+:::+t

s g

s

. Thus:gisalsoalinearombi-

nationof:g

1

;::::g

s

overk[x

1

;:::;x

n

℄. Thus,usingidentity(16),wehave

:g2I forallg2I. Then 2Gr(I).

Weproposean algorithmalled IDG whih omputesthe deomposition

groupof anidealI dened byaGrobnerbasisofI. Italsoneedsalistof

groupswhih ontainstheDeomposition groupof I. Thislistis alled a

CandidateListanditanontainsthesymmetrigroupS

n .

Thefuntion return(G)givesus thedeomposition groupGoftheideal

I and the funtion Add(G,g) adds thepermutation g to the set G. Let

g

1

;:::;g

s

beaGrobnerbasisoftheidealI andLasetofallthegenerators

ofthegroupsintheCandidate List.

Algorithm 1(IDG(<g

1

;:::;g

s

>,L)).

1. begin

2. forf 2I do

3. G:=fg

4. forg2L do

5. ifg:f2I then Add(G,g); end if

6. endfor

7. L:=G

8. endfor

9. return(G)

10. end.

ThegroupGisthedeompositiongroupGr(I) oftheidealI.

Proof. In eah step of the algorithm, the group L dereases. In fat,

this grouponvergestowardsthe deomposition groupof theideal I and

aording to theorem 3.1, the algorithm IDG swithes o in a nished

numberofsteps.

Thestep5. ofthealgorithmispossiblewhenwetakeaGrobnerbasisofI.

Infat,g:f2I ifandonlyiftheremainderof theredutionof g:f under

theidealI isequaltozero.

(14)

ofthealgorithman bedonebyremovingallthefatorsoftheelementsg

inL.

3.4. Determinationof thegenerators ofI

f

for the

omputationofG

f

The algorithm IDG applied to the ideal of

f

-relations gives the Ga-

lois groupof G

f

. So, in order to ompute the G

f

using the omplete

GI-method, we initially haveto omputea Grobnerbasis of the ideal of

f

-relations.

Arstmethod,duetoN.Yokoyama(see[16℄),onsistsongivenafatorof

thepolynomialf insomesuessiveextensionofkuntiltheeldofdeom-

position off. Thedisadvantageofthismethod, appliedtoourproblem,is

thatitsostisveryhigh.

TheGI-methodisloselyrelatedtotheomputationofG

f

(seeAlgorithm

4.2in[20℄). It onsistsonomputingthegeneratorsof Galoisidealsusing

relativeresolvents. Itisthemethodexposedinthis paragraphin orderto

omputetheidealofrelations.

Definition3.6. Let2k[x

1

;:::;x

d

n℄andLasubgroupofS

n

ontain-

ingG

f

. TheL-relative resolvent of

f

by istheunivariatepolynomial

overkgivenby:

L

;

f

;L

= Y

2L:

(T (

f )) :

WhenL=S

n

,thisresolvent,denotedbyL

;f

,isalledtheabsoluteresol-

ventof f by .

Definition3.7. LetH andL betwosubgroupsofS

n

suhthatH L

and let be anL-primitiveH-invariant. The invariant isL-separable

for

f

ifandonlyif(

f

)isasquare-freerootof theresolventL

;f;L .

WhenL=S

n

,is alledseparablefor

f .

LetEk[x

1

;:::;x

n

℄. TheidealgeneratedbyEink[x

1

;:::;x

n

℄isdenoted

by<E >.

Theorem3.2 (Valibouze). Let H and L be two subgroups of S

n suh

thatH LandG

f

L. LetbeanL-primitiveH-invariantL-separable

for

f

andlet F be a minimal polynomial of (

f

)over k. Then I H

f

=

I L

f

+<F()>.

(15)

By assumption, the polynomial F is asquare-free fator, irreduible over

k,of theresolvent L

;

f

;L .

Proof. Seetheorem3.27in[20℄.

Now,rststepsoftheGI-methodprodues(likefortheHaquemethod)a

groupLontainingtheGaloisgroupG

f

,italsogivesI L

f

andCandidate

ListalistofsubgroupsofLandidatetobetheGaloisgroup. Weompute

a polynomial F square-free fator, irreduible over k, of the L-resolvent

L

H

;

f

;L

,whereH andverifytheonditionsoftheorem3.2andH an

be anelementof CandidateList. So, weredue theCandidate List using

theorem3.2. IfmoreoverH isasubgroupofG

f

then, byremark3.3,we

have: I

f

=I L

f

+<F(

H

)>,itisinpartiulartheaseofH =I

n . Ifthe

CandidateListontainsoneelementthenitistheGaloisgroup,otherwise,

weomputeaGrobnerbasisforthelexiographiorderofI

f

usingavery

fastalgorithm developed byJ.C. Faugre (seeFGBin [8℄ or[9℄ for more

detailsonGrobnerbasis)andweapplythealgorithmIDGtothisGrobner

basisandto Candidate Listin orderto omputetheGaloisgroupG

f of

f.

4. THECONSTRUCTIVE HACQUE METHOD

Letf beasquare-freeunivariatepolynomialoverk ofdegreedand letK

be itsdeomposition eld overk. The eld K is ofdegreen assupposed

inthepreedingsetion.

We see in setion 2.4 that the Haque system, annot be implementable

without theminimal polynomialof a primitive element of the Galois ex-

tensionofk.

TheGaloisresolventallowsustoomputeaminimalpolynomialofaprim-

itive element ofk jK, but aswe will see in thissetion, its omputation

ispratiallyimpossible. Furthermore,tobeeetive,theHaquemethod

should not haveimpratiable preonditions. Thus, we searh to take a

partiular fator of the Galois resolvent to determine a minimal polyno-

mialofaprimitiveelementoftheGaloisextension.

4.1. Minimal polynomialof a primitiveelementof kjK

In order to ompute a primitive element of the extension eld k j K or,

moreexatly,itsminimal polynomialonk,thehistorialmethod onsists

(16)

polynomialf (see[21℄). Infat,anysquare-freefator,irreduible overk,

of this resolventis the minimal polynomialof aprimitive element of the

extensionkjK. Thisresolventbeingof degreed!,it isquiteobviousthat

itsomputationisdoomedtofailureoverthedegreed=6.

Theidea,presentedhere,istoomputeonlyonefatorin koftheGalois

resolvent in order to redue theomplexityof the problem. For this, we

willuserelativeresolvents denedbelow.

Definition4.1. LetV 2k[x

1

;:::;x

d

℄. AresolventL

V;f

isalledGalois

resolvent if

ithasonlysquare-freeroots,

V isanS

d

-primitiveI

d

-invariant.

Proposition 4.1. There always exist many polynomials V suhthat the

resolvent L

V;f

isaGalois resolvent. ForsuhaV,eahrootofthe Galois

resolvent isaprimitive element ofthe algebraiextensionkjK.

Proof. Sinek isaperfetinniteeldandf issquare-free,see[10℄.

Remark 4. 1. With the assumptions of denition 3.6 and for an L-

primitiveH-invariant(HL),theL-relativeresolventL

;f;L

isofdegree

[H:L℄anditis afatoroftheabsolute resolventL

;f .

LetusonsiderapolynomialV 2k[x

1

;:::;x

d

℄suh thatL

V;f

beaGalois

resolventandletF oneofitssquare-freefatorirreduibleoverk. Without

lossof informations, we ansuppose that V(

f

) is one of theroots ofF

andthus,F ishisminimalpolynomialoverk.

IfLis asubgroupof S

d

ontainingtheGaloisgroupG

f

thenbyremark

4.1 thedegreeof theresolventL

V;f;L

isthe order ofL and L

V;f;L is a

fatoroverkoftheGaloisresolventL

V;f .

IftheorderofthegroupLissuÆientlysmall,itispossibletoomputethe

resolventL

V;

f

;L

(see [15℄,[18℄ andtheGI-methodin [20℄). Thus, tond

suhgroupLitisneessarytoapplyrststepsoftheompleteGI-method

untiltheomputationoftheGaloisidealI L

f .

4.2. ComparingHaque methodand CompleteGI-method

Reall that the GI-method is the algorithm of [20℄ whih produes the

ideal of -relations and alist, alled Candidate List, ontaining groups

(17)

andidate to be theGalois group(see setion 3.4). Ifthe Candidate List

ontainsonlyoneelement,itistheGaloisgroupG

f .

As the Haque method requires therst steps of GI-method to ompute

somegroupL,itisnaturaltoomparetheHaquemethodandtheomplete

GI-method(see setion 3). Infat,supposethat rst stepsof GI-method

omputesaGaloisidealI L

f

andaCandidateListwhihontainsagroup

Lverifyingonditionsofsetion4.1.

Let set V anL-primitive I

n

-invariant. For the Haque method, werst

must omputeand fatorize the resolvent L

V;f;L

. Next, weidentify the

Haque system (see theorem 2.3) with some group of Candidate List to

havetheGaloisgroup.

Besides, the omplete GI-method (see setion 3) omputes the resolvent

L

V;

f

;L

. After that,wegiveaGrobnerbasis ofthe idealof

f

-relations:

I

f

=I L

f

+<F(V)> whereF, aminimal polynomial ofV(

f

)overk,

is a square-free fator, irreduible over k, of L

V;

f

;L

. But, we prefer to

omputeandfatorize theresolventL

H

;

f

;L

where

H

isanL-primitive

H-invariantandH asubgroupof L ontainedin G

f

(the groupH may

be found usingCandidate Listsee also theorem 3.2 andsetion 3.4). So,

here,weompute relativeresolventsof degreesmaller thanthe degreeof

theresolventL

V;

f

;L

omputedintheHaquemethod.

Furthermore, after theomputation of theidealof

f

-relations,wemust

omputeaGrobnerbasisofitinorderto applythealgorithm IDG.

5.EXAMPLE OFCOMPUTATION OFTHEGALOIS

GROUP FOR N =6

For n = 6, let f = x 6

+2. The GI-method applied to f gives a list of

groupsandidatetobeGaloisgroupoff (thislistontainssomesubgroups

ofPGL(2;5)),italsogivestheidealI

PGL(2;5)

f

(see[20℄):

I PGL(2;5)

f

= <24x6+x 3

3 x

3

2 x1+8x

3

3 x

2

2 x

2

1 +6x

3

3 x2x

3

1 +5x

3

3 x

4

1 +

8x 2

3 x

3

2 x

2

1 +4x

2

3 x

2

2 x

3

1 +8x

2

3 x

2 x

4

1 +6x

3 x

3

2 x

3

1 +

8x3x 2

2 x

4

1

4x3x2x 5

1

+12x3+5x 3

2 x

4

1

+12x2+14x1;

24x

5 5x

3

3 x

4

2 7x

3

3 x

3

2 x

1 16x

3

3 x

2

2 x

2

1 7x

3

3 x

2 x

3

1

5x 3

3 x

4

1 8x

2

3 x

4

2

x1 12x 2

3 x

3

2 x

2

1 12x

2

3 x

2

2 x

3

1

8x 2

3 x

2 x

4

1 12x

3 x

4

2 x

2

1 16x

3 x

3

2 x

3

1 12x

3 x

2

2 x

4

1

+8x

3 5x

4

2 x

3

1 5x

3

2 x

4

1 2x

2 2x

1

;

24x4+5x 3

x 4

+6x 3

x 3

x1+8x 3

x 2

x 2

+x 3

x2x 3

(18)

+8x 2

3 x

4

2 x1+4x

2

3 x

3

2 x

2

1 +8x

2

3 x

2

2 x

3

1 +

12x3x 4

2 x

2

1

+10x3x 3

2 x

3

1 +4x3x

2

2 x

4

1

+4x3x2x 5

1 +

4x

3 +5x

4

2 x

3

1 +14x

2 +12x

1

;

x 4

3 +x

3

3 x2+x

3

3 x1+x

2

3 x

2

2 +x

2

3

x2x1+x 2

3 x

2

1 +

x

3 x

3

2 +x

3 x

2

2 x

1 +x

3 x

2 x

2

1 +x

3 x

3

1 +x

4

2 +x

3

2 x

1 +

x 2

2 x

2

1 +x2x

3

1 +x

4

1

;

x 5

2 +x

4

2 x1+x

3

2 x

2

1 +x

2

2 x

3

1 +x2x

4

1 +x

5

1

;

x 6

1

+2> :

the Haquemethod

LetV =x

3 +2x

2 +3x

1

beaPGL(2;5)-primitiveI

6

-invariantomputed

with the algorithm PrimitiveInvariant in [1℄ (see [2℄ and [14℄ for the

omputation of primitiveinvariants). The relative resolventof f byV is

omputedwiththegeneralizationofalgorithmin [17℄(see[5℄):

L

V;

f

;PGL(2;5)

= (T 12

+15444T 6

+343064484)(T 12

21164T 6

+188183524)

(T 12

572T 6

+470596)(T 6

3456) 2

(T 6

+128) 2

(T 6

+2) 2

(T 12

+1012T 6

+19307236) 2

(T 6

54) 4

:

TheresolventL

V;

f

;PGL(2;5)

ofdegree120isafatoroftheGaloisresol-

ventL

V;f

ofdegree6!=720. Theomputationtimeand thefatorization

of theresolvent L

V;

f

;PGL(2;5)

is immediate (less thantwoseonds). Let

F =T 12

572T 6

+470596beasquare-freefator, irreduibleoverQ,of

L

V;

f

;PGL(2;5)

. So, theGaloisgroupisatransitivegroupoforder 12and

G

f

PGL(2;5).

TheHaquesystemof F is asystemof 12 2

=144equationsand asmuh

unknowns. By identiation in the list of andidate ontaining all sub-

groupsofPGL(2;5),theGaloisgroupofF andforf isisomorphitoD

6

thedihedralgroupofS

6 .

the CompleteGI-method

Itis suÆienttoomputeadisriminantresolventofdegree20insteadof

theresolventofdegree120forHaque. Infat,weomputethePGL(2;5)-

resolventassoiatedto

C6

aPGL(2;5)-relativeC

6

-invariant,whereC

6 is

a yli group of order 6 in S

6

. We also ompute a Grobner basis of

I

f

=I

PGL(2;5)

f

+<F(

C6

)>,whereF isasquare-freefator,irreduible

overQ,ofthePGL(2;5)-resolventassoiatedto

C .

(19)

6.CONCLUSION

TheHaquemethodisanewapproahoftheGaloistheoryandithara-

terizesit withasystemof equations. TobeeÆient, this method anbe

usedinthenalstepoftheompleteGI-method.

TheompleteGI-methodmirrorsthedesentmethodofStauduharandwe

an saythat the diereneis that thetest forrationalityof anevaluated

invariantisreplaedbyatest forinvarianeofanideal. Itisneessaryto

omputeaGrobnerbasisoftheidealofrelationstoobtaintheGaloisgroup.

In this ase, if the degree of the Galois group is reasonable, it would be

preferabletouseHaquemethod(theHaquesystemwillnotbesolarge).

Otherwise,liketheexampleof setion5,it issometimes moreeÆientto

omputeadisriminatingresolventthatwillreduethelistCandidateList

tooneelement: theGaloisgroup.

The omplete GI-Method is also used to ompute the ideal of relations

whih allows us to make algebrai omputations on the splitting eld of

thepolynomial. So,ifwewanttoomputeonthesplittingeld,theom-

pleteGI-methodisthebest method.

REFERENCES

1. I. Abdeljaouad. Pakage PrimitiveInvariant sous GAP. pub/gap/gap-

3.4.4/deposit/gap/priminv.g,1997.

2. I.Abdeljaouad. Calulsd'InvariantsPrimitifsdegroupesnis. RAIRO-Informa-

tiqueThoriqueetProgrammation,EDP-Siene,33(1),1999.

3. J.M. Arnaudies and A. Valibouze. Lagrange resolvents. Rapport Interne LITP,

93-61,Deember1993.

4. J.M.ArnaudiesandA.Valibouze.ComputationoftheGaloisgroupoftheResolvent

FatorsfortheDiret andInverseGaloisproblem. AAECC'95Conferene.LNCS

948,Paris,pages456{468,July1995.

5. P. Aubry and A. Valibouze. Computing harateristi polynomials assoiated to

somequotientring.MEGA'98,1998.

6. E.H.Berwik. Onsolublesextiequations. Pro.LondonMath.So.,2(29),1929.

7. Y.EihenlaubandM.Olivier. Computationof Galoisgroupsforpolynomialwith

degreeuptoeleven. Preprint,UniversiteBordeaux1,1995.

8. J.C.Faugere.NewgenerationsofGrobnerbasesalgorithms.ColloqueMEGA'98,to

appearinWorkshopSolvingSystemsofEquations,MSRI,Berkeley,1998.

9. R.Froberg. AnIntrodutiontoGrobnerbases. PureandAppliedMathematis,A

Wiley-Intersiene SeriesofTexts,Monographs,andTrats,1998.

10. E.Galois. Oeuvres Mathmatiques. publiessousles auspiesdelaSMF,Gauthier

Villard,1879.

11. M.Haque.ThoriedeGaloisdesanneauxpresque-simples.JournalofAlgebra,108,

(20)

12. M.Haque. CaratrisationdesgroupesdeGaloisommesous-groupesdegroupes

algbriqueslinaires. Privateommuniation,1995.

13. Geissler K.and Kluners J. Galoisgroup Computation for Rational polynomials.

JournalofSymboliComputation,11:1{23,2000.

14. G.Kemper. Calulating invariant rings of nite groups overarbitrary elds. J.

SymboliComputation,1995.

15. F.Lehobey.Resolventomputationbyresultantswithoutextraneouspowers. Jour-

nalofPureandAppliedAlgebra,1997.

16. M.NoroandK.Yokoyama. Fatoring polynomialsoveralgebraiextensionelds.

toappear,1997.

17. N.Rennert and A. Valibouze. Calul dersolvantes ave les modules deCauhy.

ExperimentalMathematis,8(4):351{366,1999.

18. L.SoiherandJ.MKay. ComputingGaloisgroupsovertherationals. Journal of

numbertheory,20:273{281,1985.

19. R.P.Stauduhar. TheomputationofGaloisgroups.Math.Comp.,27,1973.

20. A.Valibouze. Etudedesrelationsalgbriquesentre lesrainesd'unpolynmed'une

variable. Bulletinof the Belgian Mathematial Soiety Simon Stevin, 6:507{535,

1999.

21. B.L.VanDerWaerden. AModernAlgebra,volume1. Ungar,NewYork,1953.

Références

Documents relatifs

We consider Galois group Inf-gal (L/K) of the differential field extension L/K in general Galois theory of Umemura, and compare it to Galois group Gal(L P V /K) of the

Using an inequality for the Weil height on an abelian extension of the rationals and a theorem of Linnik, we prove a lower bound for the index of the annihilator of the ideal

It is also worth mentioning that in the introduction to the paper [2] Bombieri remarks that an approach alternative to Siegel’s for the arithmetical study of values of

In the same way that PRC fields generalize PAC fields, Artin-Schreier structures enrich Galois groups by taking into account the orderings.. The corresponding Artin-Schreier

We should note here that in Rousseau’s thesis, this result has been proven also when the residue field of k is not perfect, and under some additional hypothesis on the reductive group

We shall be able to do that for local regular singular systems (although, as in the case of mon- odromy, more general results are known for global systems, as well as for

In the rest of the section, we will expand on the first question, namely, on conditions on sym- plectic compatible systems that allow some control on the images of the

Finally, the last section gives an overview of the results in [3] and [4] (see also [2]), where tame Galois realizations of the groups in the family GSp 4 ( F ` ) are obtained for