• Aucun résultat trouvé

On the quantum L-operator for the two-dimensional lattice Toda model

N/A
N/A
Protected

Academic year: 2022

Partager "On the quantum L-operator for the two-dimensional lattice Toda model"

Copied!
8
0
0

Texte intégral

(1)

Article

Reference

On the quantum L-operator for the two-dimensional lattice Toda model

BYTSKO, Andréy, DAVYDENKOVA, Irina

Abstract

We consider the two-dimensional quantum lattice Toda model for affine and simple Lie algebras of type A. For its known L-operator, the second-order correction in lattice parameter ε is found. It is proved that the equation determining the third-order correction in ε has no solutions. Bibliography: 9 titles.

BYTSKO, Andréy, DAVYDENKOVA, Irina. On the quantum L-operator for the two-dimensional lattice Toda model. Journal of Mathematical Sciences , 2013, vol. 192, no. 1, p. 50-56

DOI : 10.1007/s10958-013-1372-z

Available at:

http://archive-ouverte.unige.ch/unige:114861

Disclaimer: layout of this document may differ from the published version.

1 / 1

(2)

L

!"!

Æ ! "# $ %

& ' (

" )#" *

## $ %&$%& '"& Æ

! "##$#

!% & '(!

$ )

·½

½

* # + ( ! Æ & & (

Z

,

%(#

-'( ! ! * .

((/

$

)

)

·½

)

{

}

$ÆÆ

0

( , 1 (( % !

2 %3#)4/

$

·½

Æ

Æ

5

$

·½

Æ

Æ

(

Æ

+ "! !(.&#304/

$

6

+!

#3024 *#

%##

$

I

#( ' &$%" '"& , & '(1 ! (( "

% ( 7%(( (1!

%(%8 9#'((

:(# ! !/

3

4$

Æ

((! .((0!(

$8

$

$8 ;

( ('(!(

!

"!#

"!#

+ & &,( -./'

! "#$$ "!

©

% % &' ( )*+

(3)

'((%##364(/

((%+/

$

I

88=

" ! '( ( ! !(

.&6/

$

>

'(( +(! ?2@+#

$

(+

9

# '(( +!!35#4/

$

Æ

Æ

)

$

¾

#

$>!#

$!

)

(# $) )") A(!/

B$

C$

$ Æ

!

$

Æ

"$

#

$

!

,%%34#DE!(%%+'((%!

F #!%/

$

¾

I

$

¨"

¨#

¾

$

$

¾

·½

!

¾

0

" >1" $

, 0"!

$$8 5

&(G1H! ;((

F # ( % 0 %%+# % + )

%$+( ,'(( !'((

364#+'((%>

$ ,%%%# %0

(( "%)") %$+%%$#

$$

$

(4)

-+%>$#"!! !%

$

#$>)0#!/

$

6

$

$

;

$

A&

$

$

¾

%

¨"

%

¨#

¾

)>

F 1"%0 ( Æ%

%

,% #(%#%

>

% ! 9#

)># "

(

-' ; & -' (

!

(

(!%%%!

)*$$ # )

)>

;

$

)

$

¾

&

¨"

&

¨#

&

¨"

¨#

&

¨#

¨"

¾

))

Æ&

$)/ &

&

$%

%

= )0

0/ &$ %

&

$

%

&

&

$%

%

= )5

7 %!7%%+ 7

9()I!(('((!%(

((!%('( (

!

+%+%!))!/

$

¾

&

·½

&

½

¾

&

¾

½

·½

½

¾

·½

Æ ½Æ )

&

¾

·½

·½

½

¾

½

Æ ½Æ

(5)

9 $)# -' ) , # %

$%

$# & $ & $>#

&

$ &

$>#+%#

$

¾

½

$

¾

½

¾

½

$

¾

½

¾

½

½

¾

¾

¾

$

¾

¾

¾

½

½

¾

¾

½

¾

¾

$

½

¾

¾

¾

)6

$&

& %)6">$ %($

#

$

#-')6 &+%!<36#4

0

%

! " '( ! -'# %

+( ,#!

$

$

) %(

%%52 2 %(%%

,&%%%2 %#!%((3;4

%

=1 34 &' >! 1!

"##%%52!/

'

)

'

!2 %/

$B

¨"

¨

#

$

C

¨"

¨#

);

"$

$

Æ

#$

!

$

)

+ );"!(.&6 +

Æ

,Æ#!(%!.%

)*$$ ( )

6

$

$

¾

%

¨"

%

¨#

¾

= 0>

0> ;

$

0

$

¾

&

¨"

&

¨

#

&

¨"

¨

#&

¨

#

¨"

¾

0)

Æ&

)0 )5!

0

7 %!7%%+

9 $)#-'0) 9(##

$> ,#%

$%

$#

&

$>#&

$&

$>#+%#

$

¾

½

$

¾

½

¾

½

$

¾

½

¾

½

¾

¾

$

¾

¾

¾

½

½

¾

¾

½

¾

¾

$

½

¾

¾

¾

00

$&

& %00">$ %($

#

$

#-'00 +%!(3;4

(6)

# " "# J A(!/

$

($½¾ )*$*

$

(

$½¾

( (!

$

½¾

!

(

05

+!Æ

,"%#!34#

¾

+/

$

%

¾

(

%

¾

(

!

0

$

&

·½

¾

·½

(

(

06

&

·½

¾

·½

(

(

!

!

(

&

!

&

!

F+# (( 0206 2; ! (

½

$

(

I

½ ¾

$

I

( ¾

9 # Æ !( % +% ! '(( "# !

* (&( (

I

I

=#

3 (

(4$> 3 ½ ¾4$>

! Æ "

±

¾

!/

8

$8

$ 0

$

!

#% #

8

$

(

(

8

$

((

0;

*#

I

%

I

%

, 34#E ( -'0 ('((% !

( +)

F#-' ; Æ"

¾

½

¾

+

$

±

*

½¾

$

*

½¾

$ 0

%%(!!0; K( #

*

½

¾

$*

¾

½

A

*

$

(

(

Æ

(

(

!

$

±

5>

*

$&

(

(

(

(

%

(

(

(

(

5

*

−−

$!

(

(

!

Æ!

(

(

!

!

$

±

5)

*

−−

$&

!

!

(

(

(

(

!

!

%

!(

(

!

!

(

(

!

50

(7)

*

&

!

(

(

!

&

!

(

(

!

55

%

%

(

(

!

!

(

(

(-'050;!!Æ

!

&% *# !!(%#+/

!

)/

!

$!

$> !

$=

!

0/

$!

!

$> !

$

& (#

*

$8

8

*

−−

$8!

8!

5

*

$8

8

*

−−

$8!

8!

!

$>

±

56

*

$%

%

8

8!

!

$ 5

*

&8

8

%

&8

8

$

%

&

(

(

5;

*

−−

&8!

8!

%

&8!

8!

$

%

& !(

(

!

5

*

&8

8!

&8!

8

$

&

&

(

(

!

!

(

(

>

(#

(;'('(

0!!52> -'(020;% !525

" 0 9(# ! & 0 ! !

5;2> % ! ! '(( , #

(!&

.%

( " "#

"''# )

)>

$

#$ Æ

$

$

±

" +

! -' , (

$ #

$ ,#

$ ,

#

+# %( ! + '(

%! + ) , ! & (# !

'(/

$

)

F#!

$>

±

# )! ,$

,$ '(

(

$> % %!!

, %%!.%#

$

$

0

!(!;!((!

(8)

+

! -'

0 , !

&('( !/

$

5

F'(#((!$+%#+

!

#

(%

! +

F# # %

5 %(

)) (

+

9 # & 5!+ !

! 0) !#! %!

# -'(

+ " "# . A

0>!

)> !

$> J 0

# ( ( *# !

0>(;

. J # !

$> ))#0) 7 % !5>255

*

: (# *

−−

*

! $ $ !

$ !#0## (#%

. , (Æ % J7) +

: (

(%% % L9@L%M>>0>;#>>>>#>)>0

)>>>)>)6>.9D.)0>!JFJ9(

7<@ &

7 N D&# G, ! 1 ! #H %" # +,#

5525;

) 7 F 1 D 7 J# GL% ! 1 (( ! ! %

:'(-

$+%(-

#H &" #+#5;255

0 97 &M#& '#J%#@;

5 K@#*EN#DN#GJ(!!1'(! " #H

(" ##-,#5)2);

D E# GO(( + ! 1 #H ) & " # #,(# 025

;6

6 N - P%# F D @(# 7 < ,1# * + ' & )

,# .#0

. . P( F ?( L&# GO(( % ! 2< '(

%#H% &'# (+#)502)55;0

; 9 K &&# G ! ( QQR % #H ( " #

./+#65266

77#DP#7J#G !Æ #H

" #+0-#)6>2)606

Références

Documents relatifs

By the previous theorem, the classification of all integrable Lie algebras in the class G ′ follows from the classification of finite dimensional simple Lie algebras of the class G

R.. Nous discutons ensuite la possibilit6 d'appliquer ce modsle 5 Tm Se a basses temp6ratures. Abstract - By use of a real space renornalization group method, we show that the

are given on the use of mixed bounce back and specular reflections at the boundary in order that the no slip condition is fulfilled at the same point for all the velocity

Bychkov et al [7a] and Gor’kov and Dzyaloshinskii [7b] pointed out several years ago that the occurrence of the Peierls instability, in the spirit of the Landau mean

Based on a previous classification of SU(2) spin rotation symmetric tensors [18], we systematically construct vari- ational fully symmetric PEPS and nematic PEPS for the

These include among others, the distribution of first and last hitting times of the random walk, where the first hitting time is given by the first time the random walk steps into

8, 9, 10 and 11 show the DC conductivity, the structure factor and the double occupancy curves for different values of the staggered potential ∆ at kT = 0.01.. For ∆ &amp; 1 the

We have recently used a variational wave function for describing the modifications of the classical ground state (the generalized Wigner lattice) induced by a small but fi- nite