• Aucun résultat trouvé

KONDO EFFECT AND RKKY COUPLING IN PdHx(α') Fe

N/A
N/A
Protected

Academic year: 2021

Partager "KONDO EFFECT AND RKKY COUPLING IN PdHx(α') Fe"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: jpa-00217852

https://hal.archives-ouvertes.fr/jpa-00217852

Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

KONDO EFFECT AND RKKY COUPLING IN

PdHx(α’) Fe

R. Brand, H. Georges-Gibert, C. Kovacic

To cite this version:

(2)

JOURNAL DE PHYSIQUE Colloque C6, supplément au n° 8, Tome 39, août 1978, page C6-862

KONDO EFFECT AND RKKY COUPLING IN PdH («') F

e

X

R.A. Brand, H. Georges-Gibert and C. Kovacic

Labovatoire de Physique du Solids, Vniversite de Nanay - I

Case Offiaielle n° 140, 54037 Nanoy Cedex, France .

Résumé.- Le comportement du fer dans Pd H (a1) a été étudié par effet Mossbauer sous champ magnétique. Pour une faible concentration en fer, l'effet Kondo et l'effet d'in-teraction entre impuretés ont pu être séparés. Le moment magnétique reste constant dans un grand domaine de compositions, tandis que la température Kondo croît avec la

concen-tration en hydrogène.

Abstract. The Mossbauer effect in magnetic field is used to investigate the behaviour of Fe in Pd Hx (a'). It is shown that the single moment Kondo and impurity interaction

effects can be separated. It is found that the magnetic moment remains constant for 0.53 < x < 0.7 but that the Kondo temperature increases with hydrogen content.

The existence of Kondo effects and spin glass properties in PdH M alloys (M = transition metal impurity) has been known for some time /1,2,3/. In PdH , the role of the hydrogen is to progressively fill the 4d band of Pd, raising the Fermi energy into the 5s band and yielding an alloy with many of the electronic properties of Ag /4/. At ambient temperature PdH in the range of H/M = x from about 0.01 to about 0.57 /4/ exists as a two phase mixture a + a'. (In the literature, a' is frequently denoted as 8 ) . It has been found that the properties of PdH (a) Fe are very similar to those of PdFe ; Kondo and spin glass effects have been detected in PdH (a') Fe 151.

The advantages of using hyperfine techni-ques to determine the Kondo temperature T are

two-Is.

fold. First we cati obtain T at experimental tempe-ratures T > T„ (T„ *1 K ) , Second we can separate

mes K K

the single impurity Kondo from impurity interaction effects.Since only Fe has a convenient Mossbauer isotope in the first transition metal series, we are here concerned with PdH (a') Feo#

Q03-The technique used for preparing the PdFe alloy (supplied by I.A. Campbell have been descri-bed elsewhere /6/. The electrolytic charging with hydrogen was done at room temperature for H/M < 0.7 and at dry ice temperatures for H/M>0.7 llI.

Spectra were taken in a Mossbauer cryos-tat fitted with a 60 kOe magnet. Typical results are shown in Figure 1 a where the solid lines are the calculated fits to variable-width Lorentzians. From the single line spectra at zero field we cal-culate the isomer shift. In magnetic field, the single peak is split into 4peaks,numbered 1,3,4,6

(peaks 2 and 5 are not observed : gamma ray direc-tion parallel to magnetic field). This splitting is proportional to the total magnetic field at the nucleus H . . A random component in H produces

mes mes the broadening observed in the outer peaks for the

spectra in magnetic field, the inner peaks remai-ning essentially unchanged. First we discuss the measured isomer shifts and compare these with pre-vious results. Then we discuss the analysis of the average measured field H in terms of a Kondo

mes

moment. Third we discuss calculations of impurity interactions which justify using the average H for the single moment.

- 5 VELOCITY 0 (mm/s j 5

^ J OkOe « • « V,

Fig. 1 : Mossbauer spectra for H/M = 0.53. For He x t = 0, velocity scale expanded by a factor of 3.

Extensive hyperfine measurements were made on the compositions H/M = 0.53 and 0.7. The res-pective isomer shifts (IS) were 0.38 and 0.41 mm/s at 4.2 K (with respect to Fe in metallic Fe at 300 K ) . IS(0.53) agrees with that for a 'm i n re-ported in /8/ for 2 % Fe; IS(0.7) indicates a' as IS increases with H/M due to lattice expansion.

(3)

The h i g h e s t HIM > 0.7 y i e l d e d two phase s p e c t r a a t 77 and 4.2 K w i t h IS(aVmax) = 0.62 and IS(f3) =

0.89 m / s a t 4.2 K. Some p r e l i m i n a r y h y p e r f i n e measurements were made on a composition (IS = 0.60) c l o s e t o t h a t of armax.

Hmes i s composed of s e v e r a l terms

HHF i s t h e h y p e r f i n e f i e l d produced by t h e l o c a l moment,

YIF

= Ho mZ (Hext), and i s t h e q u a n t i t y of i n t e r e s t . The h y p e r f i n e c o n s t a n t H i s n e g a t i v e (due t o c o r e ~ o l a r i z a t i o n / 9 / . The Van Vleck term

%

i s t a k e n t o b e independent of temperature. It w i l l be shown t h a t $ = HW/Hext i s z e r o , s o t h a t -%F = H s a t + Hmes'

We a n a l y s e

HHF

i n terms of a modified B r i l l o u i n f u n c t i o n :

= Hsat BS (XI w i t h

x =

usat

Hext/kB(T

+@I

T h i s form h a s no t h e o r e t i c a l j u s t i f i c a t i o n b u t i s numerically a c c u r a t e f o r a Kondo system i n t h e range 4T < T < 100 TK i f 8 = 4 TK / l o / . The

K

s a t u r a t i o n h y p e r f i n e f i e l d H i s g i v e n by H

u

s a t o s a t

whereusat = psatpB i s t h e e f f e c t i v e moment. Figu- r e s 2 ( a ) and (b) shows

%Insat

a s a f u n c t i o n o f

usat

Hext/kB

(T

+8) f o r HIM = 0.53 and 0.7 respec- t i v e l y . The parameters H s a t , Psat.and 8 a r e o b t a i - ned 6y numerical i t e r a t i o n (assuming 13 = 0 ) s t a r - t i n g w i t h t h e h y p e r f i n e s u s c e p t i b i l i t y

x

HF

=a

HHF

/

a

Hext which i n t h e l i m i t of z e r o

next

i s g i v e n by :

'

B

s

+

I P s a t Hext XHF =

-

kg

-

3 s T + 8 The e x t r a p o l a t i o n l/xHF = 0 g i v e s a s shown i n t h e i n s e r t s t o f i g u r e s 2 ( a ) and (b). From f i t t i n g HHF/Hsat t o BS(x) we o b t a i n . S = 1 and psat. Any non zero f3 can be d e t e c t e d by e x t r a p o l a - t i n g

xHF

t o I / (T

+

8) = 0 , shown i n t h e second i n s e r t s . The i n t e r c e p t

xHF

= 0 shows t h a t t h e r e i s no temperature independent term : 6 = 0 . R e s u l t s a r e given i n t a b l e I. Table I Summary of h y p e r f i n e r e s u l t s i n Pd Hx (a')Fe0.003. & S=l r e p r e s e n t s experimental r e s u l t s b u t i s n o t t h e unique s o l u t i o n . These r e s u l t s i n d i c a t e t h a t t h e Fe g i a n t mo- ment i n Fe ( 1 2 . 6 . ~ ~ ) i s d r a m a t i c a l l y reduced i n Pd H x ( a t ) Fe. For H/M < 0.7, "at remains c o n s t a n t

-

a t about 4.2

ug and Hsat

a t about

-

295 kOe. The s i g n and magnitude of.Hsat i n d i c a t e a moment of s p i n o r i g i n . 8 i n c r e a s e s w i t h H/M, a s was s e e n f o r T from r e s i s t i v i t y measurements / I / , b u t n o t T K g of t h e s p i n g l a s s t r a n s i t i o n which d e c r e a s e s / 2 / . Thus we conclude t h a t 8 i s r e l a t e d t o TK: 6 = 4 T K' For H/M> 0.7, p r e l i m i n a r y r e s u l t s i n d i c a t e t h a t l H s a t l d e c r e a s e s , s i m i l a r t o what i s observed a t h i g h e r c o n c e n t r a t i o n s of Fe i n t h e m a g n e t i c a l l y ordered phase 1 5 , 11/. T h i s could s i g n a l t h e e x i s - t e n c e of an o r b i t a l component

191

t o t h e moment, b u t f u r t h e r work i s needed t o c l a r i f y t h i s p o i n t .

Fig. 2a.

F i g . 2b.

F i g . 2 : The reduced %/Hsat a s a f u n c t i o n of lleffHext/kB(T + 8) :

4.2 K, A 7 K, 1 10 K , m15 K. BS (x) indica- t e d by s o l i d l i n e s : (a) H/M = 0.53, (b) H/M = 0.7 I n s e r t s , . s e e t e x t .

(4)

a v e r a g e d e f i n e s t h e b e h a v i o u r o f t h e l o c a l mo- ment i n Hext, b u t o n l y a r e l a x a t i o n time model c a n

R e f e r e n c e s

g i v e s u c h a d i f f e r e n c e i n enlargement between i n n e r / 1 / Mydosh, J.A., Phys. Rev. L e t t . ,

2

(1974) 1562. and o u t e r l i n e s . / 2 / Burger, J . P . , Mac-Lachlan, D.S., - . M a i l f e r t , R.,

We i n t e r p r e t t h e l i n e b r o a d e n i n g a s b e i n g and S o u f f a c h e , B . . P r o c . o f t h e 1 4 t h I n t e r n a - t i o n a l Conference o n Low Temperature P h y s i c s due t o t h e

RKKY

c o u p l i n g between moments which l e a d s . - ( F i n l a n d ) , (North-Holland, Amsterdam) 1975, Vol. a t h i g h e r Fe c o n c e n t r a t i o n s t o t h e s p i n g l a s s t r a n s i - . - 3 , 278. t i o n . R e l a x a t i o n time e f f e c t s a r e t h u s s i m i l a r t o t h e r e l a x a t i o n e f f e c t s s e e n i n s p i n g l a s s e s . F u r t h e r c a l c u l a t i o n s w i l l b e p u b l i s h e d l a t e r . I n c o n c l u s i o n , i t s h o u l d b e n o t e d t h a t t h e g r e a t a d v a n t a g e o f h y p e r f i n e t e c h n i q u e s a p p l i e d t o d i l u t e m a g n e t i c and e s p e c i a l l y Kondo systems i s t h e p o s s i b i l i t y t o s e p a r a t e s i n g l e moment b e h a v i o u r from r e l a x a t i o n and i n t e r a c t i o n e f f e c t s .

One of t h e a u t h o r s (R.A.B.) would l i k e t o

/ 3 / S e n o u s s i , S., Burger, J . P . and S o u f f a c h e , B . , Phys. L e t t .

54

(I 975) 288.

/ 4 / Lewis, F.A., The P a l l a d i u m Hydrogen System, (Academic P r e s s London), 1967.

/5/ Carlow, J . S . and Meads, R.E., J. Phys. C : S o l i d S t a t e Phys. 2 (1969) 2120.

J. Phys. F : ~ e t a l - p h y s . ,

2

(1972) 982. / 6 / Khoi,L., V e i l l e t , P. and Campbell, I.A., J.

Phys. F : Metal Phys.

6

(1976) L 197.

/ 7 / Mac-Lachlan, D.S., Doyle, T.B. and B u r g e r , J.P., 3 . Low Temp. P h y s . ,

6

(1977) 589.

thank I . A . Campbell, A. F e r t and S. S e n o u s s i f o r / 8 / P h i l l i p s , 165 (1968) 401. W.C. and Kimball, C.W., Phys. Rev.

-

many h e l p f u l d i s c u s s i o n s . /,J/ Freeman, A.J. and Watson, R.E. i n Magnetism Vol. IIA, Rado and S u h l , e d s . , (Academic P r e s s ; New York) 1965.

/ l o / Heeger, A . J . , S o l i d S t a t e Phys.,

3

(1969) 283. Efanley, M.P. and T a y l o r , R.D. Phys. Rev.

(1970) 4213.

/ I I / Wortmann, G . , J. P h y s i q u e ,

21

(1 976) C 6

-

333.

/12/ Perez-Ramirez, J.G.,Thomas, L.K. and S t e i n e r , P.,J.Low Temp. Phys.,

6

(1977) 8 3 and r e f e - r e n c e s t h e r e i n .

Références

Documents relatifs

Kondo effect for spin 1/2 impurity a minimal effort scaling

feature observed in the transport properties of cerium Kondo compounds, namely, the anisotropy of the electrical resistivity, the thermoelectric power and the thermal

rature paramagnetic properties of many intermediate valence compounds appear to exhibit strong para- magnons feature of nearly magnetic Fermi liquids. We have

We briefly present hereafter results obtained for the Kondo effect in the presence of an external magnetic field, of ferromagnetic leads, and for interacting magnetic impurities..

The linear term in the low temperature specific heat of (Ti, -,Vx)203 should then include both a magnetic contribution related to the spin glass properties and a purely

In order to study the first contribution, we present results for a simple single atom cluster with two specific local environments : one which simulates a disordered compact

At low temperatures the impurity life-time is finite, decreases gradually when the temperature is raised and approaches a Korringa-law (TI x T % (JQ)-~, with strongly enhan-

Josephson effect and high frequency emission in a carbon nanotube in the Kondo regime.. Mesoscopic Systems and Quantum Hall