• Aucun résultat trouvé

QUANTUM THEORY OF HOT ELECTRON-PHONON TRANSPORT IN INHOMOGENEOUS SEMICONDUCTORS

N/A
N/A
Protected

Academic year: 2021

Partager "QUANTUM THEORY OF HOT ELECTRON-PHONON TRANSPORT IN INHOMOGENEOUS SEMICONDUCTORS"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00221672

https://hal.archives-ouvertes.fr/jpa-00221672

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

QUANTUM THEORY OF HOT

ELECTRON-PHONON TRANSPORT IN INHOMOGENEOUS SEMICONDUCTORS

J. Barker, D. Lowe

To cite this version:

J. Barker, D. Lowe. QUANTUM THEORY OF HOT ELECTRON-PHONON TRANSPORT IN

INHOMOGENEOUS SEMICONDUCTORS. Journal de Physique Colloques, 1981, 42 (C7), pp.C7-

293-C7-300. �10.1051/jphyscol:1981735�. �jpa-00221672�

(2)

QUANTUM THEORY OF HOT ELECTRON-PHONON TRANSPORT IN INHOMOGENEOUS SEMICONDUCTORS

J.R. Barker and D. Lowe

Warwick University, Coventry CV4 7AL, United Kingdom

Abstract - Functional derivative techniques are used to devise systems of coupled transport equations for the electron and'phonon Wigner distributions evolving in the presence of inhomogeneous time-dependent strong electric fields.

The formalism is designed to handle the quasi-particle dressing and undressing effects anticipated in different domains of evolution and includes a description of the dynamic field-dependent self-consistent screening of the interactions.

1. Introduction.- The recent concentration of interest on electron injection and transport in small device structures, layered media and transient dynamics of hot electrons has exposed many weaknesses in the traditional Boltzmann-Bloch. approach to transport physics [1,2]. In previous studies we have developed a quantum

mechanical framework for incorporating intra-collisional field effects [3], field- dependent dynamical screening [4], retarded spatio-temporal response [5] and non- local effects of the driving electron fields [6,7], However, in all these studies the basic models have assured an already renormalised Hamiltonian for electrons and phonons, with the exception of [3,4] which included the influence of conduction electrons in screening the electron-phonon interaction. In general, this procedure is suspect, as first pointed out for linear response theory by Martin in 1967 [8]:

for non-equilibrium problems it is not possible to define a renormalised Hamiltonian which can be used to construct transport equations, unless the space-time scales of interest are such that the renormalisation of phonon frequencies, polaronic masses, coupling constants etc. takes place on scales short-fast compared to the variation of the driving fields (and, indeed, is insensitive to the detailed struct- JOURNAL DE PHYSIQUE

Colloque C7, supplément au n°10

y

Tome 42, octobre 1981 page C7-293

Résumé - Des techniques de dérivation de fonctionnelles sont utilisées pour décrire les systèmes couplés d'équation de transport des distributions de Wigner d'électrons et de phonons évoluant en présence de forts champs électriques inhomogènes et dépen- dant du temps. Le formalisme est conçu pour traiter les effets d'habillement et de déshabillement des quasi-particules prévu dans les différents domaines d'évolution et inclut une description de l'écrantage self-consistant et dépendant du champ dyna- mique des interactions.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981735

(3)

C7-294 JOURNAL DE PHYSIQUE

u r e of t h e carrier/phonon d i s t r i b u t i o n s ) . In. p r i n c i p l e , one should i n s t e a d s o l v e f o r t h e d r e s s i n g of t h e electron/phonon s t a t e s simultaneously with t h e d e r i v a t i o n of t r a n s p o r t equations. The problem would be academic, were it n o t f o r t h e i n t e r e s t i n t h e i n j e c t i o n of c a r r i e r s a c r o s s i n t e r f a c e s i n t o channel r e g i o n s where t h e r e exist s t r o n g d i s c o n t i n u i t i e s i n c a r r i e r d e n s i t y , electron-phonon coupling c o n s t a n t s e t c . Thus, i n c o n s i d e r i n g s h o r t channel h i g h f i e l d t r a n s p o r t , t h e f o l l o w i n g q u e s t i o n s a r i s e : - t o what e x t e n t can t h e c a r r i e r s w i t h i n t h e channel b e d e s c r i b e d by t h e e q u i v a l e n t b u l k channel e l e c t r o n s t a t e s ; how much of t h e pre- i n j e c t i o n quasi-electron/phonon s t r u c t u r e s u r v i v e s i n j e c t i o n ; how i s t h e dynamical t r a n s i e n t c u r r e n t f l o w determined by t h e s c a t t e r i n g / d r i v i n g f o r c e s ; what i s t h e n a t u r e of t h e t r a n s i e n t coupling t o s c a t t e r i n g mechanisms and s o on. I n a t t e m p t i n g t o a d d r e s s t h e s e q u e s t i o n s we have been f o r c e d back t o a more fundamental approach t o non-equilibrium t r a n s p o r t based on double time Green f u n c t i o n techniques a s f i r s t developed f o r l i n e a r r e s p o n s e by KadalnoK and Baym

[ 9 ] .

The non-linear t h e o r y d i f f e r s s u b s t a n t i a l l y from Kadwoff and Baym, p a r t i c u l a r l y w i t h r e s p e c t t o t h e i n f l u e n c e of t h e f i e l d s and t h e non-asymptotic n a t u r e of t h e s c a t t e r i n g processes.

The p r e s e n t paper s k e t c h e s an o u t l i n e of t h e k i n e t i c t h e o r y , a d e t a i l e d a n a l y s i s w i l l b e g i v e n elsewhere [lo].

2. F u n c t i o n a l t r a n s p o r t equations. -

O u r

p r i n c i p a l concern i s t o e s t a b l i s h k i n e t i c e q u a t i o n s f o r t h e d r e s s e d e l e c t r o n and phonon Wigner d i s t r i b u t i o n s , where t h e former i s d e f i n e d a s i n t h e accompanying paper [Ill, i n terms of t h e r e t a r d e d r e a l time Green f u n c t i o n

The b a s i c approach i s s i m i l a r t o t h a t of Kadanoff and Baym [2], e x c e p t t h a t ( a ) we i n c l u d e non-linear inhomogeneous time dependent a p p l i e d f i e l d s which can couple t o t h e e l e c t r o n s o r phonons; ( b ) we c o n s i d e r electron-phonon s c a t t e r i n g , and non-equilibrium s c r e e n i n g of p o l a r and non-polar phonon i n t e r a c t i o n s ; ( c ) we u s e non-equilibrium phonon d i s t r i b u t i o n s ; ( d ) t h e a n a l y s i s of t h e r e t a r d e d response i s performed d i f f e r e n t l y t o i n c l u d e i n t r a - c o l l i s i o n a l f i e l d e f f e c t s and quasi- p a r t i c l e s t r i p p i n g a s i n [ll]. The e q u a t i o n s of motion f o r

G~

and t h e e q u i v a l e n t phonon d i s t r i b u t i o n s a r e obtained from a n a l y t i c c o n t i n u a t i o n s of t h e imaginary t i m e Green f u n c t i o n s f o l l o w i n g e s s e n t i a l l y t h e same p r e s c r i p t i o n a s i n [11,9].

The i n i t i a l s t a t e of t h e system i s supposed t o b e a thermal e q u i l i b r i u m s t a t e w i t h no f i e l d s p r e s e n t . The d r i v i n g f i e l d s we i n i t i a t e d a t time T=O and g i v e s r i s e t o a d d i t i o n a l terms i n t h e Hamiltonian

where &,

$+

a r e e l e c t r o n f i e l d o p e r a t o r s , q i s t h e normal phonon displacement

o p e r a t o r , and J i s a c l a s s i c a l f i e l d coupled t o t h e phonons ( t h i s f i e l d i s s e t t o

z e r o a t t h e end of t h e c a l c u l a t i o n s

if

u l t r a sound d r i v i n g f o r c e s a r e n e g l e c t e d ) .

(4)

The a p p l i e d e l e c t r i c p o t e n t i a l

cp

( r , t ) may a l s o b e coupled t o t h e p o l a r phonon modes b u t we s h a l l l e a v e d e t a i l s of t h i s case t o a subsequent paper.

The imaginary time Green f u n c t i o n s ( l a b e l l e d by S ) a r e d e f i n e d b y

t o

S =

exp { - i p d2 [PIa(2)&+(2)+(2) - ~ ( 2 ) ~ ( 2 ) ] ] to-ia

T

i s

t h e time o r d e r i n g o p e r a t o r , and t h e averages < > a r e o v e r t h e i n i t i a l thermal e q u i l i b r i u m d e n s i t y matrix. ( 1 , l f )

=

( r l t l , r i t l t ) .

The Heisenberg e q u a t i o n s of motion f o r

G, D

e t c . a r e coupled via. t h e two p a r t i c l e Green f u n c t i o n s

G2

e t c . t o t h e complete many-body h i e r a r c h y . Decoupling can f o r m a l l y b e achieved by u s i n g f u n c t i o n a l d e r i v a t i v e s s i n c e we can show

The e l e c t r o n e q u a t i o n of motion i s t h u s e x a c t l y (imaginary t i m e s )

where cp i s t h e b a r e coulomb p o t e n t i a l ,

V

i s t h e b a r e electron-phonon coupling, and t h e e f f e c t i v e t o t a l d r i v i n g p o t e n t i a l i n c l u d e s t h e induced mean f i e l d s : -

To c o n s i d e r s c r e e n i n g we a c t u a l l y need t h e non-equilibrium screened i n t e r -

a c t i o n s . These a r e d e f i n e d f o r t h e coulomb s c a t t e r i n g and electron-phonon

s c a t t e r i n g by t h e non l o c a l forms:-

(5)

C7-296 JOURNAL DE PHYSIQUE

From ( 7 ) - (10) and (11) we s e e t h a t G i s coupled t o t h e phonon Green f u n c t i o n s . The phonon e q u a t i o n of motion

i s

s i m i l a r l y ( b u t i n momentum coordinates):-

Both t h e e l e c t r o n and phonon e q u a t i o n may b e s i m p l i f i e d by i n t r o d u c i n g t h e e q u i v a l e n t s e l f e n e r g i e s

C

and n

Here 2 i s t h e b a r e phonon frequency. Now T i s d e f i n e d by t h e f u n c t i o n a l e q u a t i o n

Z

= -i

Jd2 63 V(1-2)C(lr3) c1 ( 3 , 1 1 ) + Coulomk term (18)

6 J ( 2 )

where we i n c l u d e only t h e electron-phonon c o n t r i b u t i o n . Since

we can i t e r a t e equ (16) t o o b t a i n s e l f - c o n s i s t e n t dynamical approximation t o

C.

Thus we s t o p a t t h e g e n e r a l i s e d Born approximation [12], t o g e t

Using t h e f u n c t i o n a l i d e n t i t i e s ( 7 ) - ( l o ) , (13)-(14) we f i n d Y i n terms of s e l f c o n s i s t e n t l y screened p o t e n t i a l s

S i m i l a r l y t h e phonon self-energy i s

3. Screening:- To proceed we must e v a l u a t e t h e screened p o t e n t i a l s . For c o n s i s t e n c y we u s e t h e same l e v e l of i t e r a t i o n on t h e d e f i n i n g e q u a t i o n s f 1 2 ) ( 1 3 )

(14) a s f o r t h e s e l f e n e r g i e s . Thus from (13)

(6)

This e x p r e s s i o n may b e Wigner transformed under t h e l o c a l homogeneity approximation [ 3 , l l ] ( w h i c h assumes t h e mean f i e l d s a r e slowly varying on t h e s c a l e o f t h e c o l l i s - i o n d u r a t i o n s and c o l l i s i o n w i d t h s ) t o o b t a i n :

where L i s t h e Wigner transform of

G

(34) ~ ( 4 3 + ) . A s i m i l a r procedure f o l l o w s f o r

Vs,

s o t h a t f i n a l l y we o b t a i n f o r t h e sum of t h e screened p o t e n t i a l s : -

We observe t h a t t h e q u a n t i t y (1-0 L) i s e s s e n t i a l l y t h e non-local imaginary time non-equilibrium d i e l e c t r i c f u n c t i o n e (k,w,

R, T)

.

It remains t o e v a l u a t e t h e renormalised phonon f r e q u e n c i e s which a r i s e a s a consequence of b o t h t h e electron-phonon i n t e r a c t i o n and t h e s c r e e n i n g o f t h a t i n t e r a c t i o n . The renormalised phonon f r e q u e n c i e s rn a r e determined i n t h e q u a s i - p a r t i c l e approximation [12] by i d e n t i f y i n g t h e p o l e s i n t h e phonon Green f u n c t i o n . A s t a n d a r d argument g i v e s t h e r e n o r m a l i s a t i o n e q u a t i o n

lbut w i t h i n our approximation scheme

rr

i s

s o t h a t a f t e r some a l g e b r a we r e c o v e r

2 2

w

= m

/(l-GcL) where wo i s g i v e n by:-

wo2

=

a 2 -

i?

n w ( w o )

( 2 9 )

lwhere

n "

i s t h e b a r e electron-phonon c o n t r i b u t i o n t o

n

. Discussion of phonon lsoftening e f f e c t s e t c . due t o h i g h f i e l d s and t r a n s i e n t i n j e c t i o n i s d e f e r r e d t o a /subsequent p u b l i c a t i o n (10).

14. Transport equations:- Having determined a p p r o p r i a t e approximations f o r X,

rr,

@SC KJ

we n e x t follow t h e g e n e r a l procedure d i s c u s s e d i n rll]. The Equations (16) and

(7)

C7-298 JOURNAL DE PHYSIQUE

(17) a r e a n a l y t i c a l l y continued i n t o t h e r e a l time domain, which g e n e r a t e s two

R A

coupled e q u a t i o n s f o r G , G t h e r e t a r d e d and advanced Green f u n c t i o n s , and two

A R

coupled e q u a t i o n s f o r

D~

and D . The e q u a t i o n f o r G , f o r example, i s

Here we have used t h e l o c a l homogeneity approximation on t h e L.H.S. ( s e e [ 3 1 ) and taken t h e s p a t i a l l y l o c a l l i m i t on t h e

RHS

( t h e r e l a x a t i o n of t h i s approxim- a t i o n i s d i s c u s s e d i n [ l ] ) : t h e time dependence i s exact.

A

s i m i l a r e q u a t i o n h o l d s f o r t h e phonons. These e q u a t i o n s may b e converted i n t o e q u a t i o n s f o r t h e

R .

e l e c t r o n and phonon d i s t r i b u t i o n s alone. We f i r s t n o t e t h a t

G

1s r e l a t e d t o

G A

via. t h e s p e c t r a l f u n c t i o n A(p,w;R,T) [9,11] o r i n terms of t h e Wigner f u n c t i o n

S i m i l a r l y t h e phonon d i s t r i b u t i o n n(pRT)

i s

c o n s t r u c t e d from t h e phonon s p e c t r a l f u n c t i o n B(pwRT)

=

D(w + i o + ) -D(w-io+)

:-

Using t h e s e d e f i n i t i o n s and i n t e g r a t i n g over w we a r r i v e a t two e q u a t i o n s f o r

f

and n, and two e q u a t i o n s f o r

A

and

B.

The e q u a t i o n f o r

A

i s

which h a s t h e s o l u t i o n [ll] :- A

= 2116[w

- e(p)]

2r

where p -

=

p - J I' d-reE [ R ( T ) ,

T].

I n s e r t i n g t h e e x p r e s s i o n f o r

A ,

and a s i m i l a r expres- s i o n f o r

B ,

i n t o t h e s e l f - e n e r g y terms we o b t a i n t h e r e q u i r e d t r a n s p o r t e q u a t i o n s . o '.?he e q u a t i o n f o r f i s s i m i l a r t o t h e quantum k i n e t i c e q u a t i o n s d e r i v e d i n [3,5]

e x c e p t

:

(a) t h e space dependence i s i n c l u d e d

;

(b) t h e e l e c t r o n - e l e c t r o n i n t e r a c t i o n and e l e c t r o n phonon i n t e r a c t i o n terms i n v o l v e t h e s c r e e n e d p o t e n t i a l s .

The k i n e t i c e q u a t i o n s a r e rbT + M R - b$ bp] f (pRT)

=

-

b t c o l l i s i o n s CbT + v b 1 n (p,R, T)

=

- On

P R -1 b t c o l l i s i o n s

(8)

where v i s t h e e l e c t r o n group v e l o c i t y ( a c t u a l l y a q u a s i - p a r t i c l e group v e l o c i t y : s e e [ I l l ) , V i s t h e phonon q u a s i - p a r t i c l e group v e l o c i t y . We s h a l l d i s c u s s t h e

P

g e n e r a l s t r u c t u r e s of t h e c o l l i s i o n i n t e g r a l s i n a subsequent paper; h e r e it s u f f i c e s t o g i v e t h e s i m p l i f i e d forms ( l o c a l space dependent s t r u c t u r e s and no s e l f energy e f f e c t s )

:-

This term d e s c r i b e s Coulomb s c a t t e r i n g ( i f we l e t

A

+ 6 (m - e ( k ) 1, and

T +a

t h i s term i s t h e normal screened Born approximation c o l l i s i o n i n t e g r a l ) . The momentum c o n s e r v a t i o n term combined w i t h t h e r e t a r d e d forms f o r t h e s p e c t r a l f u n c t i o n s h a s t h e e f f e c t of inducing t h e momentum and t i m e r e t a r d a t i o n i n t h e t e r m s i n

f

( f i e l d dependent), and a l s o g i v e s r i s e t o t h e g e n e r a l form f o r t h e i n t r a - c o l l i s i o n a l f i e l d e f f e c t . It should b e note2 t h a t t h e w , C2, i n t e g r a l s induce a d i r e c t f i e l d dependence i n t o t h e screened Coulomb p o t e n t i a l via. t h e g e n e r a l i s e d d i e l e c t r i c f u n c t i o n , t h e e l e c t r o n i c component of which is:-

This Lindhard l i k e form was d e r i v e d by a d i f f e r e n t approach i n [4]. The p r e s e n t t h e o r y i s more g e n e r a l : i t i n c l u d e s t h e phonon c o n t r i b u t i o n s t o e, and indeed can handle t h e l a t t i c e p o l a r i s a t i o n , and i s designed t o handle f u l l q u a s i - p a r t i c l e e f f e c t s . E x p r e s s i o n

( 3 8 ) i s

a new r e s u l t . S i m i l a r forms e x i s t f o r bf/bt/e-ph b u t s i n c e t h e y a r e analogous t o s t r u c t u r e s d i s c u s s e d i n [3 1 we omit. them h e r e , e x c e p t t o n o t e t h a t t h e e l e c t r o n phonon coupling i s screened i n t h e form:-

and t h e phonon e n e r g i e s a r e renormalised ( i n a f i e l d dependent form). The phonon

s c a t t e r i n g r a t e ( b n / b t ) c o l l i s i o n s i s a l s o of t h e above s t r u c t u r e ; no e s p e c i a l l y

new f e a t u r e s emerge s o i t s d e t a i l e d form i s omitted. We n o t e t h a t a l l t h e forms

reduce t o electron/phonon Boltzmann e q u a t i o n s i f we t a k e t h e asymptotic l i m i t

T+m, n e g l e c t i n t r a - c o l l i s i o n a l f i e l d e f f e c t s , and t h e s p a t i a l n o n - l o c a l i t y of t h e

s e l f e n e r g i e s and Green f u n c t i o n s . F i n a l l y we n o t e t h a t i f t h e phonon d r i v i n g

f i e l d J i s n o t s e t t o zero, it appears i n a renormalised form on t h e LHS of

(9)

JOmNAL DE PHYSIQUE

e q u a t i o n

( 3 7 ) .

5. Conclusion:- I n t h i s paper we have very b r i e f l y o u t l i n e d a r i g o r o u s approach t o inhomogeneous time dependent coupled electron-phonon t r a n s p o r t which i s intended t o b e a b a s e f o r model c a l c u l a t i o n s of e l e c t r o n i n j e c t i o n

across

i n t e r f a c e s , d l e l e c - t r i c response i n h e t e r o s t r u c t u r e s and sub micron d e v i c e physics. Space does n o t allow u s t o e l a b o r a t e on t h e q u a s i - p a r t i c l e s t r u c t u r e s , although some d i s c u s s i o n i s given i n

[ll].

We n o t e f i n a l l y t h a t t h i s approach does n o t presuppose a screened o r renormalised Hamiltonian , and a s such g i v e s a uniform, non-phenomenological model f o r quantum t r a n s p o r t .

6. References :-

1. Barker,

J.R.

and F e r r y

D.K.,

Sol-State E l e c t r o n i c s 23 (1980) 519.

2. Barker,

J.R.

and F e r r y ,

D.K.,

Sol-State E l e c t r o n i c s 23 (1980) 531.

3. Barker,

J.R.,

i n Non-linear t r a n s p o r t i n Semiconductors, ed F e r r y

D.,

Barker, J., and Jacoloni, C. (Plenum, New York, 1980) 127.

4.

Barker,

J.R.,

Sol-State Communications 32 (1979) 1013.

5. Barker,

J.R.

and Ferry,

D.K.,

Phys Rev Letters 42 (1979) 1776.

6. Barker,

J.R.,

J, Luminescence, 1981, i n t h e p r e s s . 7. Barker,

J.R.,

Sol-State E l e c t r o n i c s 21 (1978) 267.

8. Martin, P.C., Phys. Rev. 161 (1967) 143.

9. Kadanoff,

L.P.

and Baym, G., Quantum S t a t i s t i c a l Mechanics (Benjamin, 1962).

10. Barker,

J.R.

and Lowe,

D.,

t o b e published.

11. Barker,

J.R.,

t h e s e proceedings.

12. Barker,

J.R.,

Handbook of Semiconductors vol.1, ed Paul W. (North Holland, 1981)

Ch.

13.

Références

Documents relatifs

- The total electron content of flux tubes, and the electron densities in both the equatorial plane and at the altitude of I 000 km, have been calculated for

It is considered that the second force is small because ,through the one-shot experiment within the interval in the order of T , displacement 6 is not

In this paper we propose a different approach based on real space Airy functions, which greatly simplifies the scattering vertex in high fields. The theory predicts strong

This article will survey recent developments in phonon spectroscopy with, special re- ference to those phonon transport and decay processes which are directly related to hot

Keywords : graphene, field effect transistor, ab initio, density-functional theory, electron- phonon coupling, gauge field, deformation potential, screening, Boltzmann

We treat such solutions as extended objects created by non-homogeneous quantum boson condensation in the vacuum state of the theory and use the variational method to study

It is shown that the apparent contra- diction between the two formulations is due to the fact that while the Lorentz-Lorenz correction tends to reduce the polarisability

To study surface and mean free path effects we perform slab calculations in the case of silicon, whereas we for the metals use a simpler infinite barrier model in which