• Aucun résultat trouvé

Algebraic and Regular Trees

N/A
N/A
Protected

Academic year: 2022

Partager "Algebraic and Regular Trees"

Copied!
6
0
0

Texte intégral

(1)

P UBLICATIONS DU D ÉPARTEMENT DE MATHÉMATIQUES DE L YON

B. C OURCELLE

Algebraic and Regular Trees

Publications du Département de Mathématiques de Lyon, 1985, fascicule 2B

« Compte rendu des journées infinitistes », , p. 91-95

< http://www.numdam.org/item?id=PDML_1985___2B_91_0 >

© Université de Lyon, 1985, tous droits réservés.

L’accès aux archives de la série « Publications du Département de mathématiques de Lyon » im- plique l’accord avec les conditions générales d’utilisation ( http://www.numdam.org/conditions ).

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pé- nale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme

Numérisation de documents anciens mathématiques

(2)

A L G E B R A I C AND REGULAR TREES by B. COURCELLE

T/ie luctu/ie. iA)CL6 bat>dd on thz hoULowinQ two pubtuhad papz^u ofa which I tiojptioduLCZ beJtow the Znfrio duetto nA and &j>ts ofa tiQLhoAancLQA.

T h e o r e t i c a l C o m p u t e r S c i e n c e 2 5 ( 1 9 8 3 ) 9 5 - 1 6 9 N o r t h - H o l l a n d P u b l i s h i n g C o m p a n y

F U N D A M E N T A L P R O P E R T I E S O F I N F I N I T E T R E E S

B r u n o C O U R C E L L E

VER de Mathématiques et Informatique, Université Bordeaux-Ï, 33405 Talence. France

Introduction

Infinite trees naturally arise in mathematical investigations on the semantics of p r o g r a m m i n g languages. T h e y arise in essentially two ways: when o n e unloops or unfolds a p r o g r a m undefinitely. O n e obtains then either a tree of execution paths (infinite in genera!) in the case of a p r o g r a m written in an imperative language like F O R T R A N or an expression tree in the case of a p r o g r a m written in an applicative language like LISP. In the latter case, the expression tree is usually infinite although its value can be finitely c o m p u t e d in each case; this is possible by the use of if-then-else as a base function (like the addition of integers) and not as a piece of control s t r u c t u r e . O n c e again, the infiniteness of the tree c o r r e s p o n d s to the infiniteness of the set of possible c o m p u t a t i o n s .

In both cases, the semantics of the program is completely defined by the associated tree. H e n c e two p r o g r a m s are equivalent if the associated trees are the same (the converse being not true). Roughly speaking, this allows to distinguish between the equivalence of p r o g r a m s which is only due to the control structure (loops, recursive calls, etc. . . .) from the equivalence which also d e p e n d s on the p r o p e r t i e s of the d o m a i n s of c o m p u t a t i o n and the given base' functions on these d o m a i n s .

It should be n o t e d that these infinite tiees are finitely defined. H e n c e we are lead to try to decide w h e t h e r two infinite trees defined in some finitary way are equal.

91

(3)

T w o types of infinite trees will be considered: the regular trees which are defined by unlooping F O R T R A N - l i k e p r o g r a m or flowcharts and the algebraic trees which are defined by unfolding recursive program schemes m o r e or less derived from LISP p r o g r a m s .

W e shall introduce o p e r a t i o n s on trees: the first-order substitution which corre- sponds (roughly) t o the sequential composition of flowcharts (by the o p e r a t o r ; of A L G O L ) or to functional application (in the case of an applicative language). We shall also introduce t h e second-order substitution which c o r r e s p o n d s to the replace- ment of a function symbol in an expression tree by some expression tree intended to d e n o t e the c o r r e s p o n d i n g function.

H e r e is a brief survey of the content of the p a p e r which is i n t e n d e d to be a synthesis of several aspects of infinite trees usually defined and studied separately for different p u r p o s e s :

(1) Topological (i.e. metric) and order-theoretical properties of infinite trees are investigated in parallel in o r d e r to enlighten similarities and differences.

(2) First- and second-order substitutions are investigated in the two above frameworks.

(3) Regular trees, rational expressions defining them are studied. T h e concept of an iterative theory, d u e to C . C . Elgot, is one of the possible algebraic frameworks where to study infinite t r e e s : the set of regular trees forms the free iterative theory.

Regular trees also arise as most general first-order unifiers in a generalized sense.

(4) Algebraic trees play a similar role with respect to s e c o n d - o r d e r substitutions as regular trees with respect to first-order ones. Their combinatorial p r o p e r t i e s are sufficiently complicated to yield an open problem equivalent to the D P D A equivalence p r o b l e m .

References

[ 1 ] A . A r n o l d a n d M . D a u c h e t , T h é o r i e d e s m a g m o ï d e s , RAIRO Inform. Théor. 12 ( 1 9 7 8 ) 2 3 5 - 2 5 7 . [ 2 ] A . A r n o l d a n d M . N i v a t , M e t r i c i n t e r p r e t a t i o n s of infinite t r e e s a n d s e m a n t i c s of n o n d e t e r m i n i s t i c

r e c u r s i v e p r o g r a m s , Theoret. Comput, Sci. 11 ( 1 9 8 0 ) 1 8 1 - 2 0 5 .

[ 3 ] A . A r n o l d a n d M . N i v a t , T h e m e t r i c s p a c e of infinite t r e e s . A l g e b r a i c a n d t o p o l o g i c a l p r o p e r t i e s , Fund. Inform. III.4 ( 1 9 8 0 ) 4 4 5 - 4 7 6 .

[ 4 ] H . B e k i c , D e f i n a b l e o p e r a t i o n s in g e n e r a l a l g e b r a s , a n d t h e t h e o r y of a u t o m a t a a n d f l o w c h a r t s , U n p u b l i s h e d w o r k , I B M L a b o r a t o r y , V i e n n a ( 1 9 6 9 ) .

[ 5 ] S. B l o o m , All s o l u t i o n s of a s y s t e m of r e c u r s i o n e q u a t i o n s in infinite t r e e s a n d o t h e r c o n t r a c t i o n t h e o r i e s , J. Comput. System Sci., t o a p p e a r .

[ 6 ] S. B l o o m a n d C . E l g o t , T h e e x i s t e n c e a n d c o n s t r u c t i o n of free i t e r a t i v e t h e o r i e s , J. Comput. System Sci. 1 2 ( 1 9 7 6 ) 3 0 5 - 3 1 8 .

[ 7 ] S. B l o o m , C . E l g o t a n d J. W r i g h t , S o l u t i o n s of t h e i t e r a t i o n e q u a t i o n a n d e x t e n s i o n s of t h e s c a l a r i t e r a t i o n o p e r a t i o n , SIAM J. Comput. 9 ( 1 9 8 0 ) 2 5 - 4 5 .

[ 8 ] S. B l o o m , S. G i n a l i a n d J. R u t l e d g e , S c a l a r a n d v e c t o r i t e r a t i o n , J. Comput. System Sci. 1 4 ( 1 9 7 7 ) 2 5 1 - 2 5 6 .

[ 9 ] S. B l o o m a n d D . P a t t e r s o n , E a s y s o l u t i o n s a r e h a r d t o find, Proc. 6th Colloquium on Trees in Algebra and P r o g r a m m i n g , L e c t u r e N o t e s in C o m p u t e r S c i e n c e 1 1 2 ( S p r i n g e r , B e r l i n , 1 9 8 1 ) 1 3 5 - 1 4 6 .

[ 1 0 ] S. B l o o m a n d R . T i n d e l l , C o m p a t i b l e o r d e r i n g s o n t h e m e t r i c t h e o r y of t r e e s , SIAM J. Comput.

9 ( 1 9 8 0 ) 6 8 3 - 6 9 1 .

[ 1 1 ] S. B l o o m a n d R . T i n d e l l , V a r i e t i e s of i f - t h e n - e l s e , S u b m i t t e d for p u b l i c a t i o n ( 1 9 8 1 ) .

[ 1 2 ] R . B o o k , T h e u n d e c i d a b i l i t y of a w o r d p r o b l e m : o n a c o n j e c t u r e of S t r o n g , M a g g i o l o - S c h e t t i n i a n d R o s e n , Inform. Process Lett. 1 2 ( 1 9 8 1 ) 1 2 1 - 1 2 2 .

[ 1 3 ] P. C a s t e r a n , S t r u c t u r e s d e c o n t r ô l e : définitions o p é r a t i o n n e l l e s et a l g é b r i q u e s , T h è s e d e 3 è m e cycle, U n i v e r s i t y P a r i s - 7 ( 1 9 7 9 ) .

[ 1 4 ] B . C o u r c e l l e , O n j u m p - d e t e r m i n i s t i c p u s h d o w n a u t o m a t a , Math. Systems Theory 11 ( 1 9 7 7 ) 8 7 - 1 0 9 . [ 1 5 ] B . C o u r c e l l e , A r e p r e s e n t a t i o n of t r e e s by l a n g u a g e s , Theoret. Comput. Sci. 6 ( 1 9 7 8 ) 2 5 5 - 2 7 9 a n d

7 ( 1 9 7 8 ) 2 5 - 5 5 .

[ 1 6 ] B . C o u r c e l l e , F r o n t i e r s of infinite t r e e s , RAIRO Inform. Théor. 1 2 ( 1 9 7 8 ) 3 1 9 - 3 3 7 . [ 1 7 ] B . C o u r c e l l e , A r b r e s infinis et s y s t è m e s d ' é q u a t i o n s , RAIRO Inform. Théor. 1 3 ( 1 9 7 9 ) 3 1 - 4 8 . [ 1 8 ] B . C o u r c e l l e , Infinite t r e e s in n o r m a l f o r m a n d r e c u r s i v e e q u a t i o n s h a v i n g a u n i q u e s o l u t i o n , Math.

Systems Theory 1 3 ( 1 9 7 9 ) 1 3 1 - 1 8 0 .

[ 1 9 ] B . C o u r c e l l e , A n a x i o m a t i c a p p r o a c h t o t h e K o r e n j a k - H o p c r o f t a l g o r i t h m s , Math. Systems Theory, t o a p p e a r .

[ 2 0 ] B . C o u r c e l l e , W o r k in p r e p a r a t i o n .

[ 2 1 ] B . C o u r c e l l e a n d P . F r a n c h i - Z a n n e t t a c c i , O n t h e e q u i v a l e n c e p r o b l e m for a t t r i b u t e s y s t e m s , Information and Control, t o a p p e a r .

[ 2 2 ] B . C o u r c e l l e a n d I. G u e s s a r i a n , O n s o m e classes of i n t e r p r e t a t i o n s , J. Comput. System Sci. 1 7 ( 1 9 7 8 ) 3 8 8 - 4 1 3 .

(4)

[ 2 3 ] B . C o u r c e l l e , G . K a h n a n d J. V u i l l e m i n , A l g o r i t h m e s d ' é q u i v a l e n c e et d e r é d u c t i o n à d e s e x p r e s s i o n s m i n i m a l e s , d a n s u n e classe d ' é q u a t i o n s r é c u r s i v e s s i m p l e s , Prac. 2nd International Colloquium on Automata, Languages and Programming, L e c t u r e N o t e s in C o m p u t e r S c i e n c e 1 4 ( S p r i n g e r , B e r l i n , 1 9 7 4 ) 2 0 0 - 2 1 3 .

[ 2 4 ] B . C o u r c e l l e a n d M . N i v a t , A l g e b r a i c families of i n t e r p r e t a t i o n s , Proc. Annual Symposium on Foundations of Computer Science, H o u s t o n , T X ( 1 9 7 6 ) 1 3 7 - 1 4 6 .

[ 2 5 ] B . C o u r c e l l e a n d M . N i v a t , T h e a l g e b r a i c s e m a n t i c s of r e c u r s i v e p r o g r a m s c h e m e s , in : Mathematical Foundations of Computer Science 78, L e c t u r e N o t e s in C o m p u t e r S c i e n c e 6 4 ( S p r i n g e r , B e r l i n 1 9 7 8 ) 1 6 - 3 0 .

[ 2 6 ] B . C o u r c e l l e a n d J . C . R a o u l t , C o m p l e t i o n s of o r d e r e d m a g m a s , Fund. Inform. III.1 ( 1 9 8 0 ) 1 0 5 - 1 1 6 . [ 2 7 ] B . C o u r c e l l e a n d J. V u i l l e m i n , C o m p l e t e n e s s results for t h e e q u i v a l e n c e of r e c u r s i v e s c h e m e s , J.

Comput. System Sci. 1 2 ( 1 9 7 6 ) 1 7 9 - 1 9 7 .

[ 2 8 ] G . C o u s i n e a u , L a p r o g r a m m a t i o n en E X E L , Rev. Tech. Thomson-CSF 10 ( 1 9 7 8 ) 2 0 9 - 2 3 4 a n d 11 ( 1 9 7 9 ) 1 3 - 3 5 .

[ 2 9 ] G . C o u s i n e a u , A n a l g e b r a i c definition for c o n t r o l s t r u c t u r e s , Theoret. Comput. Sci. 1 2 ( 1 9 8 0 , 1 7 5 - 1 9 2 .

[ 3 0 ] W . D a m m , T h e I O - a n d O I - h i c r a r c h i e s , Theoret. Comput. Sci. 2 0 ( 1 9 8 2 ) 9 5 - 2 0 7 .

[ 3 1 ] W . D a m m , E . F e h r a n d K. I n d e r m a r k , H i g h e r t y p e r e c u r s i o n a n d s e l f - a p p l i c a t i o n as c o n t r o l s t r u c t u r e s , in : E . N e u h o l d , E d . , Formal Descriptions of Programming Concepts ( N o r t h - H o l l a n d , A m s t e r d a m , 1 9 7 8 ) 4 6 1 - 4 8 7 .

[ 3 2 ] C . E l g o t , M o n a d i c c o m p u t a t i o n a n d i t e r a t i v e a l g e b r a i c t h e o r i e s , in : H . E . R o s e , E d . , Logic Col- loquium 7 3 ( N o r t h - H o l l a n d , A m s t e r d a m , 1975) 1 7 5 - 2 3 0 .

[ 3 3 ] C . E l g o t , S t r u c t u r e d p r o g r a m m i n g with a n d w i t h o u t G O T O s t a t e m e n t s , IEEE Trans. Software Engrg. 2 ( 1 9 7 6 ) 4 1 - 5 4 .

[ 3 4 ] C . E l g o t , S. B l o o m a n d R. T i n d e l l , T h e a l g e b r a i c s t r u c t u r e of r o o t e d t r e e s , J. Comput. System Sci.

1 6 ( 1 9 7 8 ) 3 6 2 - 3 9 9 .

[ 3 5 ] J. E n g e l f r i e t a n d E . S c h m i d t , I O a n d O I , J. Comput. System Sci. 15 ( 1 9 7 7 ) 3 2 8 - 3 6 1 a n d 1 6 ( 1 9 7 8 ) 6 7 - 9 9 .

[ 3 6 ] P. E n j a l b e r t , S y s t è m e s d e d é d u c t i o n s p o u r les a r b r e s et les s c h é m a s d e p r o g r a m m e s , RAIRO Inform. Théor. 1 4 ( 1 9 8 0 ) 2 4 7 - 2 7 8 a n d 15 ( 1 9 8 1 ) 3 - 2 1 .

[ 3 7 ] J. G a l l i e r , D P D A ' s in a t o m i c n o r m a l form a n d a p p l i c a t i o n s t o t h e e q u i v a l e n c e p r o b l e m s , Theoret.

Comput. Sci. 1 4 ( 1 9 8 1 ) 1 5 5 - 1 8 6 .

[ 3 8 ] J. G a l l i e r , R e c u r s i o n c l o s e d a l g e b r a i c t h e o r i e s , J. Comput. System Sci., t o a p p e a r .

[ 3 9 ] J. G a l l i e r , N-rational a l g e b r a s , I : B a s i c P r o p e r t i e s a n d free a l g e b r a s , II : V a r i e t i e s a n d t h e logic of i n e q u a l i t i e s , S u b m i t t e d for p u b l i c a t i o n .

[ 4 0 ] S. G i n a l i , R e g u l a r t r e e s a n d t h e free i t e r a t i v e t h e o r y , J. Comput. System Sci. 1 8 ( 1 9 7 9 ) 2 2 8 - 2 4 2 . [ 4 1 ] J. G o g u e n , J. T h a t c h e r . E . W a g n e r a n d J. W r i g h t , Initial a l g e b r a s e m a n t i c s a n d c o n t i n u o u s

a l g e b r a s , J. ACM 2 4 ( 1 9 7 7 ) 6 8 - 9 5 .

[ 4 2 ] S. G o r n , E x p l i c i t definitions a n d linguistic d o m i n o e s , in : J. H a r t a n d S. T a k a s u , E d s . , Systems and Computer Science ( U n i v e r s i t y of T o r o n t o P r e s s , 1 9 6 7 ) 7 7 - 1 0 5 .

[ 4 3 ] I. G u e s s a r i a n , P r o g r a m t r a n s f o r m a t i o n s a n d a l g e b r a i c s e m a n t i c s , Theoret. Comput. Sci. 9 ( 1 9 7 9 ) 3 9 - 6 5 .

[ 4 4 ] I. G u e s s a r i a n , Algebraic Semantics, L e c t u r e N o t e s in C o m p u t e r S c i e n c e 9 9 ( S p r i n g e r , B e r l i n , 1 9 8 1 ) . [ 4 5 ] M . H a r r i s o n , Introduction to Formal Language Theory ( A d d i s o n - W e s l e y , R e a d i n g , M A , 1 9 7 8 ) . [ 4 6 ] M . H a r r i s o n , I. H a v e l a n d A . Y e h u d a i , O n e q u i v a l e n c e of g r a m m a r s t h r o u g h t r a n s f o r m a t i o n t r e e s ,

Theoret. Comput. Sci. 9 ( 1 9 7 9 ) 1 7 3 - 2 0 5 .

[ 4 7 ] S. H e i l b r u n n e r , A n a l g o r i t h m for t h e s o l u t i o n of fixed-point e q u a t i o n s for infinite w o r d s , RAIRO Inform. Theor. 1 3 ( 1 9 7 9 ) 1 3 1 - 1 4 1 .

[ 4 8 ] G . H u e t , R é s o l u t i o n d ' é q u a t i o n s d a n s les l a n g a g e s d ' o r d r e 1 , 2 , . . . w , D o c t o r a l d i s s e r t a t i o n , U n i v e r s i t y P a r i s - 7 ( 1 9 7 6 ) .

[ 4 9 ] G . H u e t , C o n f l u e n t r e d u c t i o n s : a b s t r a c t p r o p e r t i e s a n d a p p l i c a t i o n s t o t e r m r e w r i t i n g s y s t e m s , J.

ACM 2 7 ( 1 9 8 0 ) 7 9 7 - 8 2 1 .

[ 5 0 ] J. L e s z c z y l o w s k i , A t h e o r e m o n r e s o l v i n g e q u a t i o n s in t h e s p a c e of l a n g u a g e s , Bull. Acad. Polon.

Sci., Ser. Sci. Math. Astronom. Phys. 1 9 ( 1 9 7 9 ) 9 6 7 - 9 7 0 .

[ 5 1 ] G . M a r k o w s k y a n d B . R o s e n , B a s e s for c h a i n - c o m p l e t e p o s e t s , IBM J. Res. Develop. 2 0 ( 1 9 7 6 ) 1 3 8 - 1 4 7 .

[ 5 2 ] J. M y c i e l s k i a n d W . T a y l o r , A c o m p a c t i f i c a t i o n of t h e a l g e b r a of t e r m s , Algebra Universalis 6 ( 1 9 7 6 ) 1 5 9 - 1 6 3 .

[ 5 3 ] M . N i v a t , O n t h e i n t e r p r e t a t i o n of r e c u r s i v e p o l y a d i c p r o g r a m s c h e m e s , S y m p o s i a M a t h e m a t i c a 1 5 ( A c a d e m i c P r e s s , N e w Y o r k , 1 9 7 5 ) 2 5 5 - 2 8 1 .

[ 5 4 ] M . N i v a t , M o t s infinis e n g e n d r é s p a r u n e g r a m m a i r e a l g é b r i q u e , RAIRO Inform. Théor. 1 1 ( 1 9 7 7 ) 3 1 1 - 3 2 7 .

[ 5 5 ] M . N i v a t , P r i v a t e c o m m u n i c a t i o n .

[ 5 6 ] L. N o l i n a n d G . R u g g i n , A f o r m a l i z a t i o n of E X E L , Proc. ACM Symposium on Principles of Programming Languages, B o s t o n ( 1 9 7 3 ) .

[ 5 7 ] M . O ' D o n n e l l , Computing in Systems Described by Equations, L e c t u r e N o t e s in C o m p u t e r S c i e n c e 5 8 ( S p r i n g e r , B e r l i n , 1 9 7 7 ) .

[ 5 8 ] M . O y a m a g u c h i a n d N . H o n d a , T h e d e c i d a b i l i t y of t h e e q u i v a l e n c e for d e t e r m i n i s t i c s t a t e l e s s p u s h d o w n a u t o m a t a , Information and Control 3 8 ( 1 9 7 8 ) 3 6 7 - 3 7 6 .

[ 5 9 ] M . O y a m a g u c h i , N . H o n d a a n d Y. I n a g a k i , T h e e q u i v a l e n c e p r o b l e m for r e a l - t i m e strict d e t e r m i n i s - tic l a n g u a g e s , Information and Control 4 5 ( 1 9 8 0 ) 9 0 - 1 1 5 .

[ 6 0 ] M . P a t e r s o n a n d M . W e g m a n , L i n e a r unification, J. Comput. System Sci. 1 6 ( 1 9 7 8 ) 1 5 8 - 1 6 7 . [ 6 1 ] J. R o b i n s o n , A m a c h i n e - o r i e n t e d logic b a s e d o n t h e r e s o l u t i o n p r i n c i p l e , J. ACM 12 ( 1 9 6 5 ) 2 3 - 4 1 . [ 6 2 ] B . R o s e n , T r e e - m a n i p u l a t i n g s y s t e m s a n d C h u r c h - R o s s e r t h e o r e m s , J. ACM 2 0 ( 1 9 7 3 ) 1 6 0 - 1 8 7 . [ 6 3 ] B . R o s e n , P r o g r a m e q u i v a l e n c e a n d c o n t e x t - f r e e g r a m m a r s , J. Comput. System Sci. 11 ( 1 9 7 5 )

3 5 8 - 3 7 4 .

[ 6 4 ] M . S c h ü t z e n b e r g e r , O n c o n t e x t - f r e e l a n g u a g e s a n d p u s h - d o w n a u t o m a t a . Information and Control 6 ( 1 9 6 3 ) 2 4 6 - 2 6 4 .

[ 6 5 ] J. T i u r y n , F i x e d p o i n t s a n d a l g e b r a s w i t h infinitely l o n g e x p r e s s i o n s , Fund. Inform. II ( 1 9 7 8 ) 1 0 7 - 1 2 8 a n d 11 ( 1 9 7 9 ) 3 1 7 - 3 3 5 .

[ 6 6 ] J. T i u r y n , O n a c o n n e c t i o n b e t w e e n r e g u l a r a l g e b r a s a n d r a t i o n a l a l g e b r a i c t h e o r i e s , Proc. 2nd Workshop on Categorical and Algebraic Methods in Computer Science and System Theory, D o r t - m u n d , W e s t G e r m a n y ( 1 9 7 8 ) .

(5)

[ 6 7 ] J. T i u r y n , U n i q u e fixed p o i n t s vs. least fixed p o i n t s , R e p o r t 4 9 , R W T H A a c h e n , W e s t G e r m a n y ( 1 9 7 8 ) .

[ 6 8 ] L. V a l i a n t , T h e e q u i v a l e n c e p r o b l e m for d e t e r m i n i s t i c f i n i t e - t u r n p u s h - d o w n a u t o m a t a . Information and Control 2 5 ( 1 9 7 4 ) 1 2 3 - 1 3 3 .

[ 6 9 ] J. W r i g h t , J. T h a t c h e r , E . W a g n e r a n d J. G o g u e n , R a t i o n a l a l g e b r a i c t h e o r i e s a n d fixed-point s o l u t i o n s , Proc. 17th Symposium on Foundations of Computer Science, H o u s t o n , T X ( 1 9 7 6 ) 1 4 7 - 1 5 8 . [ 7 0 ] J. W r i g h t , E . W a g n e r a n d J. T h a t c h e r , A u n i f o r m a p p r o a c h t o i n d u c t i v e p o s e t s a n d i n d u c t i v e

c l o s u r e , Theoret. Comput. Sci. 7 ( 1 9 7 8 ) 5 7 - 7 7 .

T h e o r e t i c a l C o m p u t e r S c i e n c e 3 0 ( 1 9 8 4 ) 2 0 5 - 2 3 9 N o r t h - H o l l a n d

T H E SOLUTIONS OF TWO S T A R - H E I G H T PROBLEMS FOR R E G U L A R T R E E S

J P. B R A Q U E L A I R E a n d B. C O U R C E L L E

Department of Mathematics and Computer Science. Bordeaux-l University. 3340* Interne, trance

Introduction

R e g u l a r t r e e s , i.e., t r e e s w h i c h a r e e i t h e r finite o r infinite w i t h o n l y finitely m a n y d i s t i n c t s u b t r e e s , p l a y a n i m p o r t a n t r o l e in t h e t h e o r y of p r o g r a m s c h e m e s I h e y h a v e b e e n i n v e s t i g a t e d b y C o u s i n e a u [ 9 ] , J a c o b [ 1 6 ] , E l g o t et al. [ 1 3 ] a n d ( o u r c e l l e [ 8 ] .

S i n c e t h e y f o r m t h e free i t e r a t i v e t h e o r y ( g e n e r a t e d by s o m e r a n k e d a l p h a b e t F ) , t h e y a r e d e n o t e d by c e r t a i n iterative theory expressions ( s e e [ 2 , 1 3 , 14]) T h e s e i t e r a t i v e t h e o r y e x p r e s s i o n s i n c l u d e t h e rational expressions i n d e p e n d e n t l y d e f i n e d by C o u s i n e a u [ 9 ] . T h e r e l a t i o n b e t w e e n t h e s e t w o c l a s s e s of e x p r e s s i o n s h a s b e e n s h o w n b y C o u r c e l l e [ 8 ] .

All t h e s e e x p r e s s i o n s u s e a n i t e r a t i o n o p e r a t o r ( d e n o t e d t o r *) v e r y c l o s e t o K l e e n e \ * for l a n g u a g e s . T h e y r a i s e a star-height problem, i.e., t h e p r o b l e m of c o n s t r u c t i n g a r a t i o n a l e x p r e s s i o n of m i n i m a l s t a r - h e i g h t w h i c h d e f i n e s a g i v e n r e g u l a r t r e e

T h i s p r o b l e m is trivial for i t e r a t i v e t h e o r y e x p r e s s i o n s w h i c h u s e v e c t o r i t e r a t i o n s i n c e e v e r y r e g u l a r t r e e c a n b e d e f i n e d by s u c h a n e x p r e s s i o n w i t h o n e i t e r a t i o n if t h e t r e e is infinite a n d n o i t e r a t i o n if it is finite [ 1 2 ] . It is n o t if i t e r a t i v e t h e o r y e x p r e s s i o n s a r e r e s t r i c t e d s o as t o u s e o n l y scalar iteration. W e s o l v e it a n d w e s h o w t h a t t h e m i n i m a l s t a r - h e i g h t is e x a c t l y t h e r a n k of t h e m i n i m a l g r a p h of t h e t r e e ( t h e r a n k of a d i r e c t e d g r a p h h a s b e e n i n t r o d u c e d by E g g a n [ 1 0 ] f o r t h e s t u d y of r a t i o n a l e x p r e s s i o n s d e f i n i n g l a n g u a g e s a n d f u r t h e r i n v e s t i g a t e d b y M c N a u g h t o n [ 1 7 . 18] a n d C o h e n a n d B r z o z o w s k i [ 3 - 6 ] ) .

T h e s e e x p r e s s i o n s u s e a n o p e r a t i o n c a l l e d composition, a t y p i c a l c a s e of w h i c h is e.,

r

(e

}

. e

n

), w h i c h d e n o t e s t h e t r e e o b t a i n e d by t h e s u b s t i t u t i o n of V a l ( ? , ) . . Va!( e

n

) at c e r t a i n l e a v e s of V a l ( t ' ) ( w e d e n o t e b y V a l ( ^ ) t h e t r e e d e f i n e d by t h e e x p r e s s i o n e).

T h e m a j o r c o n t r i b u t i o n of C o u s i n e a u w a s t o s h o w t h a t t h e o p e r a t i o n of c o m p o s i - t i o n is d i s p e n s a b l e a n d t h a t t h e r e s u l t i n g e x p r e s s i o n s still g e n e r a t e all r e g u l a r t r e e s ( s e e ¡ 8 ] for a s i m p l e p r o o f ) . T h e s e r e s t r i c t e d e x p r e s s i o n s r a i s e a n o t h e r s t a r - h e i g h t p r o b l e m for w h i c h w e a l s o give t h e s o l u t i o n . T h e m i n i m a l s t a r - h e i g h t in t h i s s e n s e is a l s o o b t a i n e d f r o m t h e c o n s i d e r a t i o n of t h e m i n i m a l g r a p h of t h e t r e e .

94

(6)

F o r t e c h n i c a l r e a s o n s , w e shall w o r k n e i t h e r w i t h i t e r a t i v e t h e o r y e x p r e s s i o n s [ 2 , 8, 1 3 ] n o r w i t h r a t i o n a l e x p r e s s i o n s [ 8 , 9 ] b u t w i t h s l i g h t l y d i f f e r e n t e x p r e s s i o n s (still c a l l e d rational) w h i c h u s e t h e f o l l o w i n g c o n s t r u c t i o n s :

*,ie\. i t e r a t e V a l ( ^ ) w i t h r e s p e c t t o t h e v a r i a b l e v.

(J.<< lK)(e^ . . . , ek): s u b s t i t u t e V a l ( e , ) , . . . , V a l ( ef c

) for Vi,...,v

k

in

V a l ( c ) .

O u r r e s u l t s will be o b t a i n e d for t h e s e r a t i o n a l e x p r e s s i o n s b u t t h e y t r a n s f e r e a s i l y t o t h e a b o v e m e n t i o n e d e x p r e s s i o n s .

T h e p r o o f s of o u r t w o r e s u l t s f o l l o w t h e s a m e p a t t e r n t h a t c a n b e s k e t c h e d a s f o l l o w s .

A r e g u l a r t r e e is m a n i p u l a t e d by m e a n s of a finite p o i n t e d g r a p h of w h i c h it is t h e infinite u n l o o p i n g . T h e s e g r a p h s c a n b e ' s t r u c t u r e d ' , in d i f f e r e n t w a y s , b u t e a c h ' s t r u c t u r i n g ' is c h a r a c t e r i z e d by a n i n t e g e r , its ' d e p t h ' .

F o r e a c h s t r u c t u r i n g of ' d e p t h ' n, o n e c a n c o n s t r u c t a r a t i o n a l e x p e s s i o n of s t a r - h e i g h t n. H e n c e , a c e r t a i n r a t i o n a l e x p r e s s i o n c a n b e a s s o c i a t e d w i t h a ' s t r u c t u r ­ i n g ' of m i n i m a l ' d e p t h ' of t h e m i n i m a l p o i n t e d g r a p h of t h e g i v e n t r e e .

It t u r n s o u t t h a t t h i s r a t i o n a l e x p r e s s i o n is t h e r i g h t o n e , i.e., is of m i n i m a l s t a r - h e i g h t a m o n g all t h o s e d e f i n i n g t h e g i v e n t r e e .

In o r d e r t o p r o v e t h i s , w e first d e f i n e s o m e s y n t a c t i c a l m a n i p u l a t i o n s p e r f o r m i n g s o m e s i m p l i f i c a t i o n s of r a t i o n a l e x p r e s s i o n s . T h e y t r a n s f o r m a r a t i o n a l e x p r e s s i o n i n t o a n e q u i v a l e n t o n e in normal form.

F r o m t h e s y n t a c t i c a l s t r u c t u r i n g of a m i n i m a l r a t i o n a l e x p r e s s i o n in n o r m a l f o r m , o n e c a n c o n s t r u c t a ' s t r u c t u r i n g ' of t h e m i n i m a l g r a p h of t h e t r e e w h o s e ' d e p t h ' is n o t less t h a n t h e s t a r - h e i g h t of t h e e x p r e s s i o n . A n d f r o m t h e first c o n s t r u c t i o n o n e g e t s a n e q u a l i t y a s r e q u i r e d .

References

[1] H. Barendregt. The Lambda-Calculus, Studies in Logic 103 (North-Holland, Amsterdam, 1981 ).

[2] S. Bloom and C Elgot, The existence and construction of free iterative theories .J. Comput. System Sci. 12 ( 1 9 7 6 ) 3 0 5 - 3 1 8 .

[3] R. Cohen, Star-height of certain families of regular events. J. Comput. System Sci. 4 ( 1970) 2 8 1 - 2 9 7 . [4] R. Cohen, Techniques for establishing star-height of regular sets. Math. Systems Theory 5 (1971)

9 7 - 1 1 4 .

[5] R. Cohen, Rank non-increasing transformations on transition graphs, Inform. and Control 20 ( 1972) 9 3 - 1 1 3 .

[6] R. Cohen and J. Brzozowski, General properties of star-height of regular events, J. Comput. System Sci. 4 ( 1 9 7 0 ) 2 6 0 - 2 8 0 .

[7] B. Courcelle, A representation of trees by languages Part I, Theoret. Comput. Sci. 6 (1978) 2 5 5 - 2 7 9 ; Part II, Theoret. Comput. Sci. 7 (1978) 2 5 - 5 5 .

[8] B. Courcelle, Fundamental properties of infinite trees. Theoret. Comput. Sci. 25 (1983) 9 5 - 1 6 9 . [9] G. Cousineau, An algebraic definition for control structures, Theoret. Comput. Sci. 12 (1980)

1 7 5 - 1 9 2 .

[10] L. Eggan, Transition graphs and the star-height of regular events, Michigan Math. J. 10 (1963) 3 8 5 - 3 9 7 .

[11] S. Eilenberg, Automata. Languages and Machines, Vol. A (Academic Press, New York. 1974).

[12] C. Elgot, Monadic computations and iterative algebraic theories, in : H.E. Rose, ed.. Logic Col­

loquium 73 (North-Holland, Amsterdam, 1975) pp. 1 7 5 - 2 3 0 .

[13] C. Elgot, S. Bloom and R. Tindell, The algebraic structure of rooted trees, J. Comput. System Sci.

16 ( 1 9 7 8 ) 3 6 2 - 3 9 9 .

[14] S. Ginali, Regular trees and the free iterative theory, J. Comput. System Sci. 18 (1979) 2 2 8 - 2 4 2 . [15] G. Huet, Confluent reductions: abstract properties and applications to term rewriting systems, J.

Assoc. Comput. Mack 27 ( 1 9 8 0 ) 7 9 7 - 8 2 1 .

[16] G. Jacob, Calcul du rang des arbres infinis réguliers, Proc. CAAP' 81, Lecture Notes Comput. Sci.

112 (Springer, Berlin, 1981) pp. 2 3 8 - 2 5 4 .

[17] R. McNaughton, The loop complexity of pure-group events, Inform. Control 11 (1967) 1 6 7 - 1 7 6 . [18] R. McNaughton, The loop complexity of regular events, Inform. Sci. 1 ( 1 9 6 9 ) 3 0 5 - 3 2 8 .

B. COURCELLE

U.E.R. de Mathematiques et Informatique Université de Bordeaux I - F-33405 TALENCE

Références

Documents relatifs

Then, using an appropriate notion of lower directional derivative, we achieve some results ensuring in finite dimension that for a given mapping a point is strongly regular..

Uniform energy decay rates were studied in [15], [57] for acoustic wave systems with both internal and boundary memory damping terms.. To our knowledge, there has been few work

Regular presheaves on a regular semi- category verify the Yoneda lemma precisely when the semi-category is an.. actual

glabripennis beetles were captured in 40 traps baited with the male beetle pheromone, plant volatile mixtures, or a combination of the two; no control trap collected a beetle

Abstract — We develop a new analysis for residual-type a posteriori error estima- tion for a class of highly indefinite elliptic boundary value problems by considering the

has received grant support from the Federal Austrian Ministry of Health, honoraria or travel support for consulting or lecturing from the following companies and legal entities:

Keywords: automata theory, regular expression derivation, similarity operators, distance operators, extension of regular expressions to similarity operators, extended regular

If n is the number of states of the min- imal deterministic automaton accepting the language, an O(n 3 )-time algorithm is obtained for extensible binary languages in [4], while an