• Aucun résultat trouvé

Annealed and quenched fluctuations of transient random walks in random environment on Z

N/A
N/A
Protected

Academic year: 2022

Partager "Annealed and quenched fluctuations of transient random walks in random environment on Z"

Copied!
36
0
0

Texte intégral

(1)

Annealed and quenched fluctuations of transient random walks in random environment

on Z

Laurent Tournier

UMPA, ENS Lyon – IMPA, Rio de Janeiro Joint work with N. Enriquez, C. Sabot and O. Zindy

June 16, 2011. LaPietra Week in Probability, Florence

(2)

RWRE on Z : definitions

Letµbe a law on(0,1).

Define an i.i.d. sequenceω= (ωx)x∈Zwith lawµ(“environment”).

ω0 ω1

ω1

1−ω1

0 1 2 3

− 1

− 2

− 3 · · · · · ·

ex.:µ=pδα+ (1−p)δβ, µ=B(a,b)(Beta distribution) (Givenω) QuenchedlawPωof Markov chain of transitionω (Randomω) AnnealedlawPof RWRE:

P(·) =E[Pω(·)] = Z

Pω(·)dµZ(ω) UnderP, the RW “learns” aboutω; transitions arereinforced.

(3)

RWRE on Z : definitions

Letµbe a law on(0,1).

Define an i.i.d. sequenceω= (ωx)x∈Zwith lawµ(“environment”).

ω0 ω1

ω−1

1−ω1

1−ω0

1−ω−1

0 1 2 3

− 1

− 2

− 3 · · · · · ·

· · ·

· · ·

ex.:µ=pδα+ (1−p)δβ, µ=B(a,b)(Beta distribution) (Givenω) QuenchedlawPωof Markov chain of transitionω (Randomω) AnnealedlawPof RWRE:

P(·) =E[Pω(·)] = Z

Pω(·)dµZ(ω) UnderP, the RW “learns” aboutω; transitions arereinforced.

(4)

RWRE on Z : definitions

Letµbe a law on(0,1).

Define an i.i.d. sequenceω= (ωx)x∈Zwith lawµ(“environment”).

ω0 ω1

ω−1

1−ω1

1−ω0

1−ω−1

0 1 2 3

− 1

− 2

− 3 · · · · · ·

· · ·

· · ·

ex.:µ=pδα+ (1−p)δβ, µ=B(a,b)(Beta distribution)

(Givenω) QuenchedlawPωof Markov chain of transitionω (Randomω) AnnealedlawPof RWRE:

P(·) =E[Pω(·)] = Z

Pω(·)dµZ(ω) UnderP, the RW “learns” aboutω; transitions arereinforced.

(5)

RWRE on Z : definitions

Letµbe a law on(0,1).

Define an i.i.d. sequenceω= (ωx)x∈Zwith lawµ(“environment”).

ω0 ω1

ω−1

1−ω1

1−ω0

1−ω−1

0 1 2 3

− 1

− 2

− 3 · · · · · ·

· · ·

· · ·

ex.:µ=pδα+ (1−p)δβ, µ=B(a,b)(Beta distribution) (Givenω) QuenchedlawPωof Markov chain of transitionω (Randomω) AnnealedlawPof RWRE:

P(·) =E[Pω(·)] = Z

Pω(·)dµZ(ω)

UnderP, the RW “learns” aboutω; transitions arereinforced.

(6)

RWRE on Z : definitions

Letµbe a law on(0,1).

Define an i.i.d. sequenceω= (ωx)x∈Zwith lawµ(“environment”).

ω0 ω1

ω−1

1−ω1

1−ω0

1−ω−1

0 1 2 3

− 1

− 2

− 3 · · · · · ·

· · ·

· · ·

ex.:µ=pδα+ (1−p)δβ, µ=B(a,b)(Beta distribution) (Givenω) QuenchedlawPωof Markov chain of transitionω (Randomω) AnnealedlawPof RWRE:

P(·) =E[Pω(·)] = Z

Pω(·)dµZ(ω) UnderP, the RW “learns” aboutω; transitions arereinforced.

(7)

Potential – Transience and speed

0 1 2 3

− 1

− 2

− 3 ω

DefineVbyV(0) =0 andωx= e−V(x) e−V(x)+e−V(x−1),

e−V(x)=Cx,x+1

i.e.V(x) =logρ1+· · ·+logρxforx≥0, whereρx= 1−ωx

ωx

Theorem (Solomon 1975)

( Xn→+∞ iff E[logρ0]<0(⇔V(x)x→∞−→ −∞) (Xn)nrecurrent iff E[logρ0] =0

AssumeE[logρ0]<0.P-a.s.,Xn

n →vwhere

v>0 if E[ρ0]<1 v=0 else.

(8)

Potential – Transience and speed

0 1 2 3

− 1

− 2

− 3 V ω

V (x) < V (x − 1) ⇔ ω

x

>

12

DefineVbyV(0) =0 andωx= e−V(x) e−V(x)+e−V(x−1),

e−V(x)=Cx,x+1

i.e.V(x) =logρ1+· · ·+logρxforx≥0, whereρx= 1−ωx

ωx

Theorem (Solomon 1975)

( Xn→+∞ iff E[logρ0]<0(⇔V(x)x→∞−→ −∞) (Xn)nrecurrent iff E[logρ0] =0

AssumeE[logρ0]<0.P-a.s.,Xn

n →vwhere

v>0 if E[ρ0]<1 v=0 else.

(9)

Potential – Transience and speed

0 1 2 3

− 1

− 2

− 3 V ω

V (x) < V (x − 1) ⇔ ω

x

>

12

DefineVbyV(0) =0 andωx= e−V(x) e−V(x)+e−V(x−1),

e−V(x)=Cx,x+1

i.e.V(x) =logρ1+· · ·+logρxforx≥0, whereρx=1−ωx

ωx

Theorem (Solomon 1975)

( Xn→+∞ iff E[logρ0]<0(⇔V(x)x→∞−→ −∞) (Xn)nrecurrent iff E[logρ0] =0

AssumeE[logρ0]<0.P-a.s.,Xn

n →vwhere

v>0 if E[ρ0]<1 v=0 else.

(10)

Potential – Transience and speed

0 1 2 3

− 1

− 2

− 3 V ω

V (x) < V (x − 1) ⇔ ω

x

>

12

DefineVbyV(0) =0 andωx= e−V(x)

e−V(x)+e−V(x−1),e−V(x)=Cx,x+1

i.e.V(x) =logρ1+· · ·+logρxforx≥0, whereρx=1−ωx

ωx

Theorem (Solomon 1975)

( Xn→+∞ iff E[logρ0]<0(⇔V(x)x→∞−→ −∞) (Xn)nrecurrent iff E[logρ0] =0

AssumeE[logρ0]<0.P-a.s.,Xn

n →vwhere

v>0 if E[ρ0]<1 v=0 else.

(11)

Potential – Transience and speed

0 1 2 3

− 1

− 2

− 3 V ω

V (x) < V (x − 1) ⇔ ω

x

>

12

DefineVbyV(0) =0 andωx= e−V(x)

e−V(x)+e−V(x−1),e−V(x)=Cx,x+1

i.e.V(x) =logρ1+· · ·+logρxforx≥0, whereρx=1−ωx

ωx

Theorem (Solomon 1975)

P-a.s.,

( Xn→+∞ iff E[logρ0]<0(⇔V(x)x→∞−→ −∞) (Xn)nrecurrent iff E[logρ0] =0

AssumeE[logρ0]<0.P-a.s.,Xn

n →vwhere

v>0 if E[ρ0]<1 v=0 else.

(12)

Potential – Transience and speed

0 1 2 3

− 1

− 2

− 3 V ω

V (x) < V (x − 1) ⇔ ω

x

>

12

DefineVbyV(0) =0 andωx= e−V(x)

e−V(x)+e−V(x−1),e−V(x)=Cx,x+1

i.e.V(x) =logρ1+· · ·+logρxforx≥0, whereρx=1−ωx

ωx

Theorem (Solomon 1975)

Pω-a.s.

for P-a.e.ω,

( Xn →+∞ iff E[logρ0]<0(⇔V(x)x→∞−→ −∞) (Xn)nrecurrent iff E[logρ0] =0

AssumeE[logρ0]<0.P-a.s.,Xn

n →vwhere

v>0 if E[ρ0]<1 v=0 else.

(13)

Potential – Transience and speed

0 1 2 3

− 1

− 2

− 3 V ω

V (x) < V (x − 1) ⇔ ω

x

>

12

DefineVbyV(0) =0 andωx= e−V(x)

e−V(x)+e−V(x−1),e−V(x)=Cx,x+1

i.e.V(x) =logρ1+· · ·+logρxforx≥0, whereρx=1−ωx

ωx

Theorem (Solomon 1975)

Pω-a.s.

for P-a.e.ω,

( Xn →+∞ iff E[logρ0]<0(⇔V(x)x→∞−→ −∞) (Xn)nrecurrent iff E[logρ0] =0

AssumeE[logρ0]<0.P-a.s.,Xn

n →vwhere

v>0 if E[ρ0]<1 v=0 else.

(14)

Fluctuations: KKS theorem

Hypotheses

(a)∃κ >0 such thatE[ρκ0] =1, andE[ρκ0(logρ0)+]<∞ (b) The law of logρ0is non-arithmetic.

Ex. Forµ=B(a,b),κ=b−a.

Theorem (Kesten-Kozlov-Spitzer 1975) Assume (a)-(b). Then, underP,

If 0< κ <1, Xn

nκ

(law)

−→n (AκSκ)−1/κ E[eitSκ] =e−(−it)κ If 1< κ <2, Xn−vn

n1/κ

(law)

−→n −v1+κ1AκSκ E[eitSκ] =e(−it)κ Ifκ >2, Xn−vn

√n

(law)

−→n N(0, σ2)

whereAκ>0 (Sκis a totally asymmetricκ-stable r.v.)

(15)

Fluctuations: KKS theorem

Hypotheses

(a)∃κ >0 such thatE[eκlogρ0] =1, andE[ρκ0(logρ0)+]<∞ (b) The law of logρ0is non-arithmetic.

Ex. Forµ=B(a,b),κ=b−a.

Theorem (Kesten-Kozlov-Spitzer 1975) Assume (a)-(b). Then, underP,

If 0< κ <1, Xn

nκ

(law)

−→n (AκSκ)−1/κ E[eitSκ] =e−(−it)κ If 1< κ <2, Xn−vn

n1/κ

(law)

−→n −v1+κ1AκSκ E[eitSκ] =e(−it)κ Ifκ >2, Xn−vn

√n

(law)

−→n N(0, σ2)

whereAκ>0 (Sκis a totally asymmetricκ-stable r.v.)

(16)

Fluctuations: KKS theorem

Hypotheses

(a)∃κ >0 such thatE[eκlogρ0] =1, andE[ρκ0(logρ0)+]<∞ (b) The law of logρ0is non-arithmetic.

Ex. Forµ=B(a,b),κ=b−a.

Theorem (Kesten-Kozlov-Spitzer 1975)

Assume (a)-(b). Then, underP, (letτ(x) =inf{n:Xn=x}) If 0< κ <1, Xn

nκ

(law)

−→n (AκSκ)−1/κ τ(x) x1/κ

(law)

−→n AκSκ If 1< κ <2, Xn−vn

n1/κ

(law)

−→n −v1+κ1AκSκ τ(x)−xv

x1/κ

(law)

−→x AκSκ Ifκ >2, Xn−vn

√n

(law)

−→n N(0, σ2) τ(x)√−xv

x

(law)

−→x N(0, σ02) whereAκ>0 (Sκis a totally asymmetricκ-stable r.v.)

(17)

Main result

Theorem (Enriquez-Sabot-T.-Zindy 2010) For 0< κ <2 (κ6=1),

Aκ=2

πκ2

|sin(πκ)|(CK)2E[ρκ0logρ0] 1/κ

whereCKis Kesten’s renewal constant:P(R>t)∼CKt−κwith R=1+ρ11ρ2+· · ·.

Description of thequenchedbehaviour for 0< κ <2

(18)

Main result

Theorem (Enriquez-Sabot-T.-Zindy 2010) For 0< κ <2 (κ6=1),

Aκ=2

πκ2

|sin(πκ)|(CK)2E[ρκ0logρ0] 1/κ

whereCKis Kesten’s renewal constant:P(R>t)∼CKt−κwith R=1+ρ11ρ2+· · ·.

Description of thequenchedbehaviour for 0< κ <2

(19)

Sample trajectory (0 < κ < 1)

150

40000 100

20000 10000

0 50000 60000

0 50

30000 70000

200 250

-50

(20)

Sample trajectory (1 < κ < 2)

(21)

Sample trajectory (1 < κ < 2)

(22)

General scheme of proof

Excursions ofV:e0=0,en+1 =inf{k≥en|V(k)≤V(en)}. V

τ(en) =X

k

τ(ek+1)−τ(ek)

=

small exc. H<hn

+

high exc. H≥hn

•There are very few large excursions (⇒crossing times almost i.i.d.)

Crossings of small excursions iso(n1/κ) (0< κ <1)

Fluctuation of crossings of small excursions iso(n1/κ) (1< κ <2)

(23)

General scheme of proof

Excursions ofV:e0=0,en+1 =inf{k≥en|V(k)≤V(en)}. V

Hk= max

ekx<ek+1V(x)−V(ek) ek

τ(en) =X

k

τ(ek+1)−τ(ek)

=

small exc. H<hn

+

high exc. H≥hn

•There are very few large excursions (⇒crossing times almost i.i.d.)

Crossings of small excursions iso(n1/κ) (0< κ <1)

Fluctuation of crossings of small excursions iso(n1/κ) (1< κ <2)

(24)

General scheme of proof

Excursions ofV:e0=0,en+1 =inf{k≥en|V(k)≤V(en)}. V

Hk= max

ekx<ek+1V(x)−V(ek) ek

τ(en) =X

k

τ(ek+1)−τ(ek)

=

small exc.

H<hn

+

high exc.

H≥hn

•There are very few large excursions (⇒crossing times almost i.i.d.)

Crossings of small excursions iso(n1/κ) (0< κ <1)

Fluctuation of crossings of small excursions iso(n1/κ) (1< κ <2)

(25)

Crossing time of a (high) excursion

Goal: estimateP(τ(e1)>t)ast→ ∞.

P(τ(e1)>t) =P(τ(e1)>t,H>logt−log logt) +o(t−κ)

F

i

V

H 0

S

e

1

•M1,M2,Hare almost independent on{H>h}withhlarge

•Property (Feller – Iglehart):P(eH>u)∼CIu−κ Thus,P(τ(e1)>t)∼Ct−κfor some (rather explicit)C.

(26)

Crossing time of a (high) excursion

Goal: estimateP(τ(e1)>t)ast→ ∞.

P(τ(e1)>t) =P(τ(e1)>t,H>logt−log logt) +o(t−κ)

F

i

V

H 0

S

e

1

τ(e1) =F1+· · ·+FN

'M1M2eHe e∼ E(1),

M1=PTH

−∞e−V(x),M2=P 0 eV(x)−H

•M1,M2,Hare almost independent on{H>h}withhlarge

•Property (Feller – Iglehart):P(eH>u)∼CIu−κ Thus,P(τ(e1)>t)∼Ct−κfor some (rather explicit)C.

(27)

Crossing time of a (high) excursion

Goal: estimateP(τ(e1)>t)ast→ ∞.

P(τ(e1)>t) =P(τ(e1)>t,H>logt−log logt) +o(t−κ)

F

i

V

H 0

S

e

1

τ(e1) =F1+· · ·+FN+S

'M1M2eHe e∼ E(1),

M1=PTH

−∞e−V(x),M2=P 0 eV(x)−H

•M1,M2,Hare almost independent on{H>h}withhlarge

•Property (Feller – Iglehart):P(eH>u)∼CIu−κ Thus,P(τ(e1)>t)∼Ct−κfor some (rather explicit)C.

(28)

Crossing time of a (high) excursion

Goal: estimateP(τ(e1)>t)ast→ ∞.

P(τ(e1)>t) =P(τ(e1)>t,H>logt−log logt) +o(t−κ)

F

i

V

H 0

S

e

1

τ(e1) =F1+· · ·+FN+S 'Eω[F]N

'M1M2eHe e∼ E(1),

M1=PTH

−∞e−V(x),M2=P 0 eV(x)−H

•M1,M2,Hare almost independent on{H>h}withhlarge

•Property (Feller – Iglehart):P(eH>u)∼CIu−κ Thus,P(τ(e1)>t)∼Ct−κfor some (rather explicit)C.

(29)

Crossing time of a (high) excursion

Goal: estimateP(τ(e1)>t)ast→ ∞.

P(τ(e1)>t) =P(τ(e1)>t,H>logt−log logt) +o(t−κ)

F

i

V

H 0

S

e

1

τ(e1) =F1+· · ·+FN+S 'Eω[F]N

'Eω[F]Eω[N]e

'M1M2eHe

e∼ E(1),

M1=PTH

−∞e−V(x),M2=P 0 eV(x)−H

•M1,M2,Hare almost independent on{H>h}withhlarge

•Property (Feller – Iglehart):P(eH>u)∼CIu−κ Thus,P(τ(e1)>t)∼Ct−κfor some (rather explicit)C.

(30)

Crossing time of a (high) excursion

Goal: estimateP(τ(e1)>t)ast→ ∞.

P(τ(e1)>t) =P(τ(e1)>t,H>logt−log logt) +o(t−κ)

F

i

V

H 0

S

e

1

M

1

M

2

T

H

τ(e1) =F1+· · ·+FN+S 'Eω[F]N

'Eω[F]Eω[N]e 'M1M2eHe e∼ E(1),

M1=PTH

−∞e−V(x),M2=P 0 eV(x)−H

•M1,M2,Hare almost independent on{H>h}withhlarge

•Property (Feller – Iglehart):P(eH>u)∼CIu−κ Thus,P(τ(e1)>t)∼Ct−κfor some (rather explicit)C.

(31)

Interlude on heavy-tailed distributions

LetT1,T2, . . .be i.i.d. r.v.≥0 such that P(Ti>t)∼Ct−κ. Then, if 0< κ <1, T1+· · ·+Tn

n1/κ

(law)

−→n (CΓ(1−κ))1/κSκ and, if 1< κ <2, T1+· · ·+Tn−nE[Ti]

n1/κ

(law)

−→n (−CΓ(1−κ))1/κSκ. Forκ >2, CLT.

Heavy-tail phenomenon:

•#{1≤i≤n:Ti≥εn1/κ}(law)−→n P(Cε−κ)

•(for 0< κ <1)E h X

1≤i≤n

Ti1{T

i<εn1/κ}

i∼Cε1−κn1/κ

⇒Up to an error of orderε1−κ,T1+···+Tn1/κ n is given by theP(Cε−κ)terms larger thanεn1/κ.

(32)

Interlude on heavy-tailed distributions

LetT1,T2, . . .be i.i.d. r.v.≥0 such that P(Ti>t)∼Ct−κ. Then, if 0< κ <1, T1+· · ·+Tn

n1/κ

(law)

−→n (CΓ(1−κ))1/κSκ and, if 1< κ <2, T1+· · ·+Tn−nE[Ti]

n1/κ

(law)

−→n (−CΓ(1−κ))1/κSκ. Forκ >2, CLT.

Heavy-tail phenomenon:

•#{1≤i≤n:Ti≥εn1/κ}(law)−→n P(Cε−κ)

•(for 1< κ <2) Var X

1≤i≤n

Ti1{Ti<εn1/κ}

∼Cε2−κn2/κ

⇒Up to an error of orderε1−κ/2, T1+···+Tn1/κn−nE[Ti] is given by the (centered) P(Cε−κ)terms larger thanεn1/κ.

(33)

Next steps of the proof of the main result (KKS)

Lethn=κ1 logn−log logn(henceehnnn1/κn= log1n, cf.τ'MeH)

τ(en) =X

k

τ(ek+1)−τ(ek)

=

small exc.

H<hn

+

high exc.

H≥hn

Neglect (fluctuations of) crossing times of small excursions Ensure large excursions are way appart of each other w.h.p.

Neglect time spent “backtracking” far away to the left of a high excursion before crossing it

Replace neglected parts by independent versions of them (which are negligible as well)

⇒Reduction to i.i.d. copies ofτ(e1), hence the (annealed) limit theorem.

(34)

Next steps of the proof of the main result (KKS)

Lethn=κ1 logn−log logn(henceehnnn1/κn= log1n, cf.τ'MeH)

τ(en) =X

k

τ(ek+1)−τ(ek)

=

small exc.

H<hn

+

high exc.

H≥hn

Neglect (fluctuations of) crossing times of small excursions Ensure large excursions are way appart of each other w.h.p.

Neglect time spent “backtracking” far away to the left of a high excursion before crossing it

Replace neglected parts by independent versions of them (which are negligible as well)

⇒Reduction to i.i.d. copies ofτ(e1), hence the (annealed) limit theorem.

(35)

Consequences of the quenched description

0< κ <1

τ(en)is mainly given by a few termsMeHeattached to deep valleys.

The time spent in-between is negligible in comparison to them.

⇒Localizationin a (random) deep valley. (cf. Enriquez-Sabot-Zindy) 1< κ <2

The fluctuations ofτ(en)are mainly given by a few termsMeH(e−1) attached to deep valleys.

⇒Practical interest(explicit confidence intervals,. . . )

The fluctuations ofτ(en)are almost a sum of i.i.d. terms likeMeH(e−1) (re-introducing independent small valleys).

L

τ(en)−Eω[τ(en)]

n1/κ ω

' L

n

X

i=1

MbiebHi

n1/κ (ei−1)

M,b Hb

!

⇒Limit theoremfor the law of the quenched law of fluctuations IfT1,T2, . . .are i.i.d. withP(T >t)∼Ct−κand 0< κ <2,

Ti n1/κ

1≤i≤n (law)

−→ {ξi|i≥1} whereξis a PPP of intensityλκt−(κ+1)dt.

(36)

Consequences of the quenched description

0< κ <1

τ(en)is mainly given by a few termsMeHeattached to deep valleys.

The time spent in-between is negligible in comparison to them.

⇒Localizationin a (random) deep valley. (cf. Enriquez-Sabot-Zindy) 1< κ <2

The fluctuations ofτ(en)are mainly given by a few termsMeH(e−1) attached to deep valleys.

⇒Practical interest(explicit confidence intervals,. . . )

The fluctuations ofτ(en)are almost a sum of i.i.d. terms likeMeH(e−1) (re-introducing independent small valleys).

L

τ(en)−Eω[τ(en)]

n1/κ ω

' L

n

X

i=1

MbiebHi

n1/κ (ei−1)

M,b Hb

!

⇒Limit theoremfor the law of the quenched law of fluctuations L

τ(en)−Eω[τ(en)]

n1/κ ω

(law,W1)

−→n L

X

i=1

ξi(ei−1) ξ

!

whereξis a PPP of intensityλκt−(κ+1)dt. AndW1is Wasserstein distance.

Références

Documents relatifs

In the same spirit, we focus in this work on the quenched fluctuations of hitting times in the case of a general transient subdiffusive random walk in random environment..

In 1975, Solomon gives, in a seminal work [22], a criterion of transience-recurrence for these walks, and shows that three different regimes can be distinguished: the random walk may

Let us finally mention that Theorem 1 generalizes the aging result obtained by heuristical methods of renormalization by Le Doussal, Fisher and Monthus in [13] in the limit case

Remembering that the annealed random walk in Dirichlet environment is an oriented edge linearly reinforced random walk where the initial weights on the edges are the parameters of

Roughly speaking functional central limit theorems hold true as soon as the self-intersection local time of the random walk converges almost surely to some constant.. To be com-

We focus on the existence and characterization of the limit for a certain critical branching random walks in time–space random environment in one dimension which was introduced

In Section 4, using coupling, we obtain heat kernel estimates, which is later used in Section 5 to show the uniqueness of the non-zero limiting velocity.. Throughout the paper,

In this section we repeatedly apply Lemma 3.1 and Corollary 3.3 to reduce the problem of finding weak quenched limits of the hitting times T n to the problem of finding weak