• Aucun résultat trouvé

be real valued and set with

N/A
N/A
Protected

Academic year: 2022

Partager "be real valued and set with "

Copied!
11
0
0

Texte intégral

(1)

O s c i l l a t o r y i n t e g r a l s a n d m u l t i p l i e r s o n

F L ~

L ~ s H 6 R M A N D E R University of Lurid, Sweden

O. I n t r o d u c t i o n

I t has been known since a long time t h a t the function in R a

m~(~) = (1 - 1~12)% l~l < 1; m~(~) = 0, I~l ->- 1,

where c~ is a real number, is not a multiplier on F / 2 ( R d) unless

~ O, ~ > d [ l / p - - 1121 - - 112. (0.1)

I n fact, this follows from the asymptotic expansion of the Fourier transi0rm m~.

When d = 1 the sufficiency of (0.1) follows from the estimates of IV[. Riesz for conjugate functions so we assume d > 1 in what follows. Stein [7] showed t h a t a > ( d - 1 ) l l / p - 1/2[ (0.2) is always a sufficient condition b u t it is evidently stronger than (0.1) except when

~o ~ 1 or p = ~ . More recently Fefferman has proved in [2] t h a t (0.1) is a sufficient condition when I 1 / p - - 1/2[ > (d ~- 1)/4d, and in [3] he proved t h a t

> max (0, d l l / p - - 1/2[ -- 1/2) (0.3) is a necessary condition if p # 2. When ~ = 2 Carleson and Sj51in [1] have proved completely t h a t (0.3) is a sufficient condition for m~ to be a multiplier on FLp(Rd). The main point in their proof is an Lp estimate for oscillatory integrals which is v e r y interesting in its own right. I n a special case t h e y developed an idea of Stein and Fefferman (see [2]) to show t h a t it follows from the H a u s d o r f f - u inequality b u t in the general ease t h e y used a much more complicated argument.

In this note we shall simplify their proof b y applying an extension of the I-[ausdorff- Young inequality also in the general case. This gives somewhat more precise estimates also.

(2)

2 L ~ s ~6RM~NDE~

The function ma in R 2 can be replaced b y any function of compact support which is smooth except near a curve with non-zero curvature where it is the distance to the curve raised to the power ~. I n a recent manuscript SjSlin [6] has extended the result to curves with tangents of higher b u t always finite order. We simplify his proof here.

I n a final section we indicate some of the open problems on Lp estimates for oscillatory integrals in a n y number of variables. These seem to be of interest not only in the s t u d y of multiplier problems b u t in other contexts as well.

1. L p estimates for oscillatory integrals

We begin with an extension of the Hausdorff-Young inequality.

THEOREM 1.1.

Let a E

C~(R~d),

let ~o 6

C~(R 2~)

be real valued and set with

A ~ > I

TNI(x) -~ f e 'N~(~'y)a(x, y)f(y)dy, f 6 C~

(Rd). (1.1)

I f

d e t a 2 q ~ / 0 x 0 y r

in

s u p p a

and 1<= p ~ 2, 1/p q- 1/19' = 1 then

IIT~fllf g C-:V-a/P'llfll~,, f 6 C~(lla).

(1.2) That this is an extension of the Hausdorff-Young inequality is seen b y taking

~0(x,

y)-= <x,y>

and a with a(0, 0 ) = 1. I f

f(y)

is replaced b y

f(y%/-N)

the Hausdorff-Young inequality is the limit of (1.2) when _N --> ~ .

_Proof of Theorem

1.1. The statement is obvious when p = 1 so in view of ~ . Riesz' convexity theorem it suffices to prove it when p ---- 2. In the proof we m a y assume t h a t f has small support. W e have to estimate

where

IiT /H = f f a (y,z)f(y)](z)dydz

[ ,

a~(y, z) = J e ~Iv(~(~'x) - r ~))a(x, y)a(x, z)dx.

When y and z are close to a given point and (x,y) 6 s u p p a we have

la/ax(~(x, y)

- ~ ( x ,

z))l

= I ~ ( y - z)l -t- t? O ( [ y - zI ~) ~ oly - zl so /c partial integrations give if k is a n y positive integer

[a~v(y, z~] <=

Ck(1 -1- hrly -- z]) -k.

(3)

O S C I L L A T O R Y I N T E G R A L S A N D M U L T I P L I E R S O N F L P

I f k = d + 1 it follows t h a t

f JaN(y, z) ldy < ON -~, f faN(y, z)[dz < CAT -d.

H e n c e IIT~fl[~ <

ON-allfil~

a n d the t h e o r e m is proved.

]~emark.

Using a r g u m e n t s close to those in H S r m a n d e r [4, sections 2.2 a n d 4.3]

it is e a s y t o show t h a t

2Vd/21]T~]]2 --> sup

[a(x,

y)[ ]det

(O2~/OxOy/2~)l -~1~

p r o v i d e d t h a t

y ---> ;39(x, y)[Ox

is injective for f i x e d x a n d (x, y) E s u p p a.

I f the m a t r i x

029/axay

in T h e o r e m 1.1 is allowed to be singular it is m u c h harder to analyse t h e possible L p estimates for

T N.

The simplest situation occurs w h e n 9 is i n d e p e n d e n t o f Yd, t h u s a f u n c t i o n o f 2d -- 1 variables only. W h e n d --- 2 we shall p r o v e a slightly i m p r o v e d version o f the k e y e s t i m a t e o f Carleson a n d Sj61in [1]:

THEOREM 1.2.

JLet a E

C~~

let q~ E

G| a)

be real valued, and aesume that the Jacobian D(39/Oy, a2q~/Oy~)/Dx has no zero in

s u p p

a. (Here the variables in R a have been denoted by (x,

y);

x -~ (x l, x2). ) Set

Tier(x) ---- f e'N*(x'Y)a(x, y)f(y)dy, f E

C~(R), x ~! R 2. (1.3)

Then it follows that

liT~fi[~ <~ CN-~/q(q/(q --

4))~/4[1fi[~

i f q > 4 and 3/q + l[r

= 1. (1.4)

Proof.

To be able t o a p p l y T h e o r e m 1.1 we introduce

..(x) = (T.:(x)). = f f .,.,.,..., +.,...,,.. ,)o(., .)j(,)f(.),.,,.

However the hypotheses of Theorem I.I are not fulfilled since

t) I

det

O~(9(x, t) + ~f(x, s))/OxO(t, s)) = I q~:,(x, s)cp:n(x, s), '

which vanishes w h e n t = s. F o r t close to s the d e t e r m i n a n t is e q u a l t o

(8 -- t)D(9 :, qh~)[D(xl, x2) + O((t

- - s) 2) so it is b o u n d e d f r o m b e l o w b y

e]t -- s I

in t h e s u p p o r t of

a(x, t)a(x,

s) if a has sufficiently small support. Since 9(x, t) + 9(x, s) is a s y m m e t r i c function o f t, s it is a C ~ f u n c t i o n r of x a n d y --- (t + s, ts). Similarly

2a(x, t)a(x, 8)

is t h e restriction t o /2 = {y; 4y 2 ~ ~ } of a C~ ~ function

b(x, y).

Since

D(y)/D(t,

s ) = t - s, it follows t h a t q~ satisfies the h y p o t h e s e s o f T h e o r e m 1.1, a n d

FN(x) -~ f e'N~(x'Y)b(x, y)f(t)f(s)]t -- s]-ldy.

o d

(4)

4 L ~ s ~ 5 ~ ) v . ~

(ff

H e n c e

I f 1 ~ p _~ 2 i t follows f r o m T h e o r e m 1.1 t h a t

]]TNf]l~e, =

llF~vllp,

< 6'N -2:P" If(t)f(s)IP[t -- sl -Pcl

= ON-':,' f f lf(t)l, lf(s),,lt -- sll-, dt) 1:'.

To e s t i m a t e t h e r i g h t h a n d side we use t h e classical i n e q u a l i t y for f r a e t i o n a r y integrals

f f Ig(t)g(s)l]s- tl~-idsdt ~ C~-lllg[l:, 1 ~ 2/~ = ( ~ + 1 ~ 2.

T a k i n g ~ - - 1 = 1 ~ / 9 , t h a t is, ~ : 2 - - / 9 we o b t a i n

\l]p

If(t)f(s)lPls

-- t]l-Pdsdt) g

C(2 --/9)-~/Pllfll~e,

1 < 2/q = 3 --/9.

HT~vfH~, < CN-~/P" (2 ---- - - / 9 ) -~/2,, Ilfllv/(a-p), 1 ~ /9 < 2.

H e r e we write 21o' = q a n d 2/9/(3--/9) = r . Since l / r = 3 / 2 / 9 - 1/2 a n d 3/q ---- 3/2/0' we o b t a i n 3/q q- 1/r ---- 1 a n d q > 4 which are t h e o n l y restrictions on q a n d on r. The e s t i m a t e (1.4) n o w follows i m m e d i a t e l y .

be a G ~

Proof. Since qs' a n d ~ are a s s u m e d to be linearly i n d e p e n d e n t the f u n c t i o n

~ ( x , y ) = (x, ~b(y)~ satisfies t h e h y p o t h e s i s of T h e o r e m 1.2 in R ~ • Choose b C C ~ ( R 2) w i t h b(0) = 1 a n d a p p l y T h e o r e m 1.2 w i t h a replaced b y b(x)a(y).

This gives t h e desired b o u n d for

COROLLARY 1.3. Let I be an open interval on R, let I ~ y --> ~(y) immersion of I as a curve with curvature :/: O, and set with a E C~(I)

= fe'<x'r f r C~(ll), x r Ir (1.5)

Sf(x) Then it follows that

IlSfiI, < C(q/(q - 4))l/'llfllr / f f e c g ( l l ) , q > 4, 3/q q- 1/r = 1. (1.6) Moreover, i f ~ is the Fourier transform of g

4 3 1

= -- - - , - - - - = 3. (1.7)

Ha(~ o ~b)l], < 6(4 3q)-1/4[[gl] ~ i f g r Cg(lt:), 1 =< q < 3 q q- r

(5)

O S C I L L A T O R Y I N T E G R A L S A N D I ~ U L T I P L I E R S Olq FLP

\ llq

.

When N--> oo the estimate (1.6) follows. B y d u a l i t y we obtain (1.7).

The following is a simple combination of Theorems 1.1 a n d 1.2:

THEO~E~ 1.4. Let a E C~(R4), ~ E Cr176 4) and assume that in supp a we have a~/~yax r 0 and

t 6 R 2, O/ay<t, O~/~x> = O~/Oy~<t, Oq~/Ox> = 0 =~ t = O. (1.8) (Here the variables in R a have been denoted by (x, y); x, y E R~.) I f

T~vf(x) = f e'N~(~'X)a(x, y)f(y)dy, f E C~(R~), x E R ~, it follows that (1.4) is valid.

Proof. The s t a t e m e n t is weaker t h a n Theorem 1.1 if the support of a is close to a point where det ~2q~/ay~x 4: O. L e t us therefore assume t h a t the support of a is close to a point say x ---- y ---- 0 where det a2~/ayax = o. After a linear change of the variables x and y we m a y assume t h a t at (0, 0)

a:q~/OyjOxl ---- 0, j = 1, 2; o~q~/aylax2 ~ o, 03q~/Oy~Oxl V: o.

I t follows t h a t the function (x, y~) --> ~(x, Yl, Y~) satisfies the hypothesis of Theorem 1.2 in a neighbourhood of 0. Writing

S~vf(x, Y2) = f e'NV(~'Y)a( x, y)f(y)dyl we have TNf(x) = f Sivf(x, y~)dy2 and Theorem 1.2 gives

,IT~fl,, <= ~N-="(q/(q-- 4))ll~ f dy~ ( f ,f(y. y~)l'dyO 11" .

We can assume t h a t the support of

f

is in a fixed compact set and the double integral can t h e n be estimated by [[fH, in view of H61der's inequality. The proof is coml~lete.

Example 1.5. L e t ~(x, y) ---- ~5(x -- y) where ~ E C ~ ( R ~ ( 0 } ) is positively homogeneous of degree 1, and let a E C~(R ~ • R ~) vanish near the diagonal. Then the hypotheses of Theorem 1.4 are fulfilled if r r 0 when z ~ 0. I n fact, the equation qS"(z)t = 0 is fulfilled b y t = z since r is homogeneous of degree 0, and qY"(z)z --- -- ~"(z) ~ O.

(6)

6 LARS H~JBIVIANDER

2. Some convolution operators and multipliers

The preceding example leads to the following theorem of Carleson and SjSlin [1].

THEORE~ 2.1. Let q~ E C~(R2~(0)) be real valued, laositively homogeneous of degree 1, and assume that r r 9 for every x r O. I f

gf(x) = f

- y)f(y)dy, f E C~(R2), (2.1) where a E C~(R ~) and a(tz) = t-Za(z) when [z[ :> 1 and t ~> 1, it follows that K is continuous from L P to L P i f

2 > m a x (3/2, 211/1) -- 1/2] -~ 1). (2.2) Proof. B y passage to the adjoint we can reduce the proof to the case p > 2.

Choose z E C f f ( R 4) so t h a t x # y if (x,y) E s u p p g , a n d set for t > l

s . f ( x ) =

f e"~

y)f(y)dy, f E C~~

Then we have

IISJIIp ~

Cp(t)]lf[Ip

(2.3)

I t is obvious t h a t where

.f(x) = fe,,o,. ,z(x

- o

y

--

z)f(y)dy.

f z(x

- - z, Y - - z)dz = F ( x - - y)

where F E C~' vanishes near 0 a n d is ~ 0 if g is. B y suitable choice of Z we can obtain a n y such F , for multiplication of g b y a function g(x -- y) leads where

o,(t) = o t - ~ / , ( p l ( p - 4)) 1/', p > 4; o,(t) = ot-1/2(log t) 1/~-1~', 2 =< p _ 4. (2.4) I n fact, we m a y assume t h a t supp f belongs to a fixed compact set, a n d for 1o > 4 the assertion is t h e n a consequence of Theorem 1.4 as seen in Example 1.5. W h e n t0 -- 2 it follows from Theorem 1.1 applied to a suitable variable as in the proof of Theorem 1.4. Interpolation b y the M. Riesz convexity theorem between p ---- 2 a n d p ---- 4 -k 1/log t gives the estimate for to ~ 4 and another application of Riesz' theorem proves it for p between 2 a n d 4.

I f ~v is a function such t h a t g(x, y) ~ 0 implies ~v(y) = 1, t h e n

I]S,, J l ~ g Cp(t)llv(. -

z)f]]p,f

e G~(R2), z e R 2, (2.3)'

(7)

O S C I L L A T O R Y I N T E G R A L S A N D M ' D ' L T I P L I E R S O N FLP

to t h e f u n c t i o n

gF

i n s t e a d of F . Since

St. =f(x)

can o n l y be different f r o m 0 for Ix -- zI < C, we h a v e b y H51der's i n e q u a l i t y

F S , . z f ( x ) d z P < = . , C1

f ]S,,=f(x)[Pdz.

I n t e g r a t i o n w i t h respect to x gives in view of (2.3)'

NR,fNe <= CCe(t)[lflle, f e

C~(R2), (2.4) where we h a v e w r i t t e n

.,,(x> =

f

s,..,r =

- .>,(.>..

After a change of variables (2.4) takes the form

f e'O('-Z)F((, y)/t)f(y)dy ~ Ct2Ce(t)llf[le, f e Cg.

e

W e m u l t i p l y b y t -~-~ a n d i n t e g r a t e f r o m 1 to ~ w i t h respect to t n o t i n g t h a t cO

ftx-~Cp(t)dt< ~

because 1 - - 2 - - 2 / 1 0 < - - 1 a n d 1 - - 2 - - 1 / 2 < - - 1 b y

1

(2.2). (Recall t h a t p ~ 2.) I f

r

o(x)-- f

1

it follows t h a t K is continuous in i ~. N o w a is homogeneous of degree -- ~ for [xl > R if ~'(x) = 0 for [xl > R, a n d e v e r y such f u n c t i o n can be w r i t t e n as t h e s u m o f one of t h e form (2.5) a n d one o f c o m p a c t support. This completes the proof.

We shall n o w consider some multipliers on F L p. :For t h e r e l e v a n t facts on multipliers we refer to I t S r m a n d e r [5, Chapter 1]. W e shall denote b y Mp t h e space o f multipliers on

F L P.

TH~oar 2.2.

Let I be an interval on R, let ~p C C~(I) assume that W" ~ 0 ou I. I f a E

C ~ ( / •

it follows that

m . ( ~ ) = a ( ~ ) ( $ 2 - - ~ o ( $ 1 ) ) ~

is in M e i f

> m a x (0, 21Wp -

1/2[

- -

li2).

Here we have used the notation

r+ = m a x (r, 0); r E R.

be real valued and

(m6)

Proof.

Since M e is a C~ ~ m o d u l e we m ~ y assume t h a t a(~) = ax(~l)a2(~ -- ~(~1)),

aj E C~.

(8)

8 ~AI~S H 51~g._~VD E R

a a

m s is t h e n t h e F o u r i e r t r a n s f o r m of A(x~)I(xl, x2) w h e r e A(r = 2(r a n d 1 (Xl, x~) - - f e 2~I(~'~' + v($')~)al(r 1.

I t is a well k n o w n c o n s e q u e n c e o f t h e s t a t i o n a r y p h a s e m e t h o d t h a t t h e f u n c t i o n I(x) is r a p i d l y decreasing e x c e p t in directions such t h a t x 1 ~- ~v'(r = 0 for some r fi supp al w h i c h defines r as a h o m o g e n e o u s f u n c t i o n o f x o f degree 0. I f 9 (Xl, x~) == 2~r(r -t- ~v(r for this v a l u e of Cx, we c a n e x t e n d ~b to a h o m o g e n e o u s f u n c t i o n o f degree I satisfying t h e h y p o t h e s e s o f T h e o r e m 2.1, a n d A(x2)I(Xl, x2)e -~0(~) has a n a s y m p t o t i c e x p a n s i o n in C ~ h o m o g e n e o u s t e r m s o f degree - - cr - - 312 , -- ~ -- 5 / 2 , . . . H e n c e t h e t h e o r e m follows f r o m T h e o r e m 2.1 a n d t h e f a c t t h a t c o n v o l u t i o n b y a n y i n t e g r a b l e f u n c t i o n is b o u n d e d in L ~.

T h e following i m p r o v e m e n t is due to Sj51in [6] w h o g a v e a d i f f e r e n t proof:

TH~o~v,~ 2.2'. Theorem 2.2 remains valid i f y / has zeros in I ~rovided that they are of finite order.

Proof. Since v2" c a n o n l y h a v e a f i n i t e n u m b e r o f zeros in supp ax we m a y a s s u m e t h a t t h e r e is o n l y one, s a y a t r -~ 0. Since c o m p o s i t i o n o f a n y m u l t i p l i e r w i t h a l i n e a r t r a n s f o r m a t i o n in 11 ~ is a n o t h e r m u l t i p l i e r with t h e same n o r m we m a y assume t h a t

~(r = cr + 0(r ~ # o.

T o e x a m i n e w h a t h a p p e n s at r = 0 we i n t r o d u c e ~ ( r ~ - ~ ( e r W h e n

~--> 0 we h a v e ~(r --~ c ~ ' in C ~. I f Z E C ~ ( I • vanishes in a n e i g h b o r h o o d o f 0 it follows f r o m T h e o r e m 2.2 t h a t

is in M r f o r 0 < s ~ 1, a n d t h e p r o o f shows t h a t t h e n o r m in 3//v is i n d e p e n d e n t of e. I n view o f t h e i n v a r i a n c e o f multipliers u n d e r c o m p o s i t i o n w i t h linear m a p s ( t t S r m a n d e r [5, T h e o r e m 1.13]) it follows t h a t

z($~/e, r162 - ~(r

is a m u l t i p l i e r w i t h u n i f o r m l y b o u n d e d n o r m w h e n 0 < r ~ 1. I f we choose Z(r = ~0(r - - ~(2r , 2mr w h e r e ~ r C ~ ( I X It) is e q u a l to 1 n e a r 0 a n d n o t e t h a t

~(r162

- v(r = ~ x(2~r 2k~r162 - ~(r r #

o,

0

i t follows t h a t t h e left h a n d side is in Mp since ~ 2 - m ~ < co. T h e t h e o r e m is p r o v e d .

(9)

O S C I L L A T O R Y I N T E G R A L S A-ArD M U L T I P L I E R S 01q F L P

I t was c o n v e n i e n t in t h e p r o o f of T h e o r e m 2.2' t o h a v e t h e s i n g u l a r i t y o f ma on a c u r v e o f t h e f o r m ~2 = ~o(~) b u t a p a r t i t i o n o f u n i t y i m m e d i a t e l y e x t e n d s t h e conclusion t o a r b i t r a r y curves w i t h no t a n g e n t o f infinite order.

3. Open problems

W e shall n o w discuss t h e a n a l o g u e o f T h e o r e m 1.2 for several variables. A t t h e same t i m e we will show t h a t T h e o r e m 1.2 is optimal.

W i t h a E C~~ 2d-l) a n d a real v a l u e d ~0 e C ~ ( R 2d-l) we w r i t e

T~f(x) = f y)f(y)dy, f e

C~(Rd-1), x e t l ~.

W e shall a s s u m e

r a n k

02cf/OxOy

= d - - 1 w h e n (x, y) 6 supp a; (3.1)

O/Oy(Oq~/Ox,

t> -= 0, 0 • t E I t a ~ d e t

02/Oy2(Orf/Ox, t> :/: O, (x, y) E

supp a; (3.2) w h i c h r e d u c e s t o t h e h y p o t h e s e s o f T h e o r e m 1.2 w h e n d ---- 2. A s s u m e for e x a m p l e t h a t a - = 1 n e a r 0. T h e n o r m of TN as a n o p e r a t o r b e t w e e n L e spaces is n o t c h a n g e d i f we r e p l a c e ~(x, y) b y ~(x, y) - - ~0(x, 0) - - ~(0, y) -t- ~0(0, 0) so we m a y a s s u m e t h a t ~0(x, 0) = 0 a n d ~0(9, y) ~ 0 identically. A f t e r a linear c h a n g e o f variables x a n d y we h a v e b y (3.1)

d--1 d--1 d

q~(x, y) = ~, xjyj + ~, aj(x)yj -t- ~ xjbj(y) + O([xIlyl(]xl ~ + ly[~)).

1 1 1

H e r e

a i

a n d b] are q u a d r a t i c forms. I f t h e s u p p o r t o f a is s u f f i c i e n t l y small we can t a k e

x j - ~ a j

a n d

y j ~ b i

as n e w variables, j < d , a n d r e d u c e ~ to t h e f o r m

q)(x, y) --- (x', y~ + xd(Ay, y~/2 + O([x]

[y]([xl ~ -t- ]Y[2]) (3.3) w h e r e A is a s y m m e t r i c m a t r i x a n d x ~ (x', Xd). W r i t i n g

x'--= xdz

we h a v e

of(x, y) -= xd((z, y~ -t- (Ay, y~/2 + ~o(Zd, X, y)),

w h e r e

~p(z, xa, y ) = O([yl(x ~ + IyI2)).

F o r s u f f i c i e n t l y small xa a n d z it follows t h a t ~0 has a u n i q u e critical p o i n t n e a r 0 as a f u n c t i o n o f y. I f f is 1 in a n e i g h b o r - h o o d o f 0 a n d has s u f f i c i e n t l y small s u p p o r t it follows f r o m t h e s t a t i o n a r y p h a s e m e t h o d t h a t

lT~f(x,~z, xd) l

' ~ (2:Tr/l~'Xd)(d-1)/2 [dct A I -~/2

w h e n N x a --> oo a n d z, x a --> 0. I t follows t h a t t h e r e are p o s i t i v e c o n s t a n t s cl, 9 9 c4 such t h a t for lzi ~ c:~, c l / N ~ Xd ~ C2 we h a v e

]T~f(xdz,

Xd)[ =>

c4(NXd) (1-~)/~.

(10)

I - ~ e n c e

ca

f ]TNf]qc~x ~ CS.~q(1--d)/2 f X(d-1)(1-q/2)~Xd"

cl/N

D e p e n d i n g on t h e convergence or divergence of the integral a t O we o b t a i n t h e following conclusions

lim inflITNfll~N(d-a)/2 ~

C(1/q --

1]2 + 1/2d) -a/~, 1]2 --

1/2d < 1/q ~

112; (3.4) lim

infHT2vfll~N(d-~)/2(log N) -x/q ~ C, 1]q =

1/2 - - 1/2d; (3.5)

N--> oo

liminf]lT2vf]]~N d/q ~ C]l/q --

1/2 +

l/2dl -I/q, 1/q

< 1/2 - -

1/2d.

(3.6)

N.--~ oO

H e r e C is a positive c o n s t a n t depending on f. Clearly (3.6) is e q u i v a l e n t t o

liminfllT2vfll~N d!~ >: C}l/q --

1/2 q-

1/2dl 1/e'~-~/2, 1/q

< 1/2 - - 1]2d, (3.6)'

2V-> o:)

so we conclude t h a t the c o n s t a n t in (1.4) cannot be i m p r o v e d even for a f i x e d f.

Comparison of (3.6)' a n d T h e o r e m 1.2 suggests t h a t for

1/q <

1/2 --

1/2d

we should h a v e an e s t i m a t e of t h e form

IlT2Vfllq

_--__

CN-a/q(1] 2 1/2d -- 1/q)am-a/2llfl[,.

(3.7) I f 9 satisfies (3.3) we h a v e

f y)f(y)dy, N-->

where r ~

O~(x, y)/ax, x = O.

~Tote t h a t our a s s u m p t i o n s on ~0 m e a n t h a t y --> r is an immersion of R d-1 as a surface of t o t a l c u r v a t u r e ~ 0; conversely for e v e r y such ~ t h e f u n c t i o n <x, ~5(y)> satisfies (3.1), (3.2). I f we set

Tf(x) = f e'<X'r

(3.8)

where

ao(y)-~ a(O, y)

is in Cff(Rd-1), it follows from

(3.7)

t h a t

lIT/H,

< C ( 1 ] 2 - -

1/2d

- - 1

/q)

1]2d-1[2 Ilfll, f c C~(ltd-x). , (3.9) (Compare this with Corollary 1.3.)

B y

(3.3)

we h a v e

qS(y) _= (y, <Ay, y>/2) -t-

O(lYla).

2r

set

f,(y) =f(y/e)

where

f qC:

a n d e > 0. Then we h a v e ]If~lt, = 8(d-1)/rllfllr a n d

(Tf,)(z'/~,

x,/82)e 1-~ -->

Sf(x)

where w e h a v e used the n o t a t i o n

Sf(x)

= f e ~<~' y> +

ixa<AY' Y>/2f(y)dy.

(3.1 O)

J

(11)

O S C I L L A T O R Y I I f f T E G R A L S A_~D M U L T I P L I E R S O N F L P 11 I~ence, if 1 / r - ~ 1 / r ' : 1,

lira i n f e (a+l)l~-

(d-~)k'liTf, llq/llf~ll , >= llSfllq/ilfll,.

a-'~ID

W e conclude t h a t n e i t h e r (3.7) n o r (3.9) c a n be v a l i d unless

1/q < 1/2 - - 1/2d, (d + 1)/(d - - 1)q -~ 1/r :<_ 1. (3.11) I f t h e r e is e q u a l i t y in t h e second i n e q u a l i t y it follows t h a t

llSfllq

-<__ O(1/q - 1 / 2 d -- 1/q)l/~a-x/21lfll,,f

e C~(Ra-~). (3.12)

W h e n d = 2 t h e second c o n d i t i o n in (3.11) b e c o m e s 3/q + 1/r ~ 1 w h i c h shows t h a t T h e o r e m 1.2 is o p t i m a l also w i t h r e s p e c t t o t h e L p classes i n v o l v e d .

Question 3.1. Does (3.7) follow f r o m (3.1), (3.2) a n d (3.11)?

Question 3.2. Does (3.9) follow f r o m (3.11) w h e n y--> # ( y ) is a n i m m e r s i o n d e f i n i n g a surface w i t h t o t a l c u r v a t u r e ~ 07

Question 3.3. Is (3.12) v a l i d for a n y real s y m m e t r i c n o n - s i n g u l a r m a t r i x A w h e n (3.11) is v a l i d with e q u a l i t y in t h e second inequality.~

N o t e t h a t we h a v e p r o v e d t h a t a p o s i t i v e a n s w e r t o one o f t h e s e implies a p o s i t i v e a n s w e r t o t h e following ones. T h e a r g u m e n t s given in sections 1 a n d 2 still a p p l y t o show t h a t a p o s i t i v e answer t o Q u e s t i o n 3.1 implies t h a t ma is a m u l t i p l i e r o n _FLP(R a) w h e n (0.3) is fulfilled.

References

1. CAgLESON, L., & SJSLIN, P., Oscillatory integrals and a multiplier problem for the disc.

Studia Math. 44 (1972), 287--299.

2. FEFFE~_a~r C., Inequalities for strongly singular convolution operators. Acta Math. 124 (1970), 9--36.

3. --~>-- The multiplier problem for the ball. Ann. of Math. 94 (1971), 330--336.

4. I-I6R~A~qI)ER, L., Fourier integral operators I. Acts Math. 127 (1971), 79--183.

5. --~>-- Estimates for translation invariant operators in LP spaces. Acts Math. 104 (1960), 93-- 140.

6. SJ6LI~, P., Multipliers and restrictions of Fourier transforms in the plane, l~Iimeographed manuscript 1972.

7. STEIN, E. M., Interpolation of linear operators. Trans. Amer. J~Iath. Soc. 83 (1956), 4 8 2 - 492.

Received October 26, 1972

Références

Documents relatifs

ERRATUM ON “ENTROPY-ENERGY INEQUALITIES AND IMPROVED CONVERGENCE RATES FOR NONLINEAR..

This identification will be denoted ~ (cf. Hence the claim follows. In the following text two different operators ~ will be used. As there is no risk

Without it, the theo- rem is a well-known consequence of the theorem of Thue about the approximation of algebraic numbers b y rationals which was subsequently

In this note we prove that the essential spectrum of a Schrödinger operator with δ-potential supported on a finite number of compact Lipschitz hypersurfaces is given by [0, +∞)..

If an abstract graph G admits an edge-inserting com- binatorial decomposition, then the reconstruction of the graph from the atomic decomposition produces a set of equations and

We assume a set of function symbols, all of which have a computational interpretation as a PPT algorithm. Then, if M is the set of ground terms constructed using this set of

Bound-bound transitions (line transitions) between the lower energy level i and the upper energy level j may occur as radiative excitation, spon- taneous radiative

The hierarchical perspective is an original method of representing the three-dimensional space on a flat surface, which characterises the art of Ancient Egypt and a considerable part