• Aucun résultat trouvé

Some remarks on the value distribution of meromorphic functions

N/A
N/A
Protected

Academic year: 2022

Partager "Some remarks on the value distribution of meromorphic functions "

Copied!
9
0
0

Texte intégral

(1)

Some remarks on the value distribution of meromorphic functions

SAKARI TOPPILA

Institut Mittag-Leffler, Djursholm, Sweden and University of Helsinki, Finland 1

1. Introduction

1. Let E be a closed set in the complex plane and f a meromorphic function outside E omitting a set 3". We shall consider the following problem: I f E is thin, under w h a t conditions is F thin, too? I n Chapter 2 we consider the case when E and F are of Hausdorff dimension less t h a n one. In Chapter 3 E and F are countable sets with one limit point, and in Chapter 4 E is a countable set whose points converge to infinity, f is entire, and F is allowed to contain at most one finite value.

2. Sets of dimension less than one

2. Let f be meromorphic and non-constant outside a closed set E in the complex plane. I t is known t h a t if the logarithmic capacity of E is zero then f cannot omit a set of positive capacity, and if E has linear measure zero then f cannot omit a set of positive (1 ~- e)-dimensional measure. I f the dimension of E is greater t h a n one then there exists a non-constant function f which is regular and bounded outside E. Carleson [13 has proved t h a t there exists a set E of positive capacity such t h a t if f omits 4 values outside E t h e n f is rational. We consider the following problem: L e t E be of dimension less t h a n one. Can f omit a set whose dimension is greater t h a n t h e dimension of E?

We denote b y Dim (A) the H a u s d o r f f dimension of a set A, and let dim (A) be the dimension of A obtained b y using coverings consisting of discs with equal radii. For example for usual Cantor sets these dimensions are equal. We have the following answer to our question:

THEORE~ 1. Let E be a closed set with dim (E) < 1. I f f is merornorphic and non-constant outside E and omits F then Dim (F) _< dim (E).

The proof will be given in 3 a n d 4.

1 This research was done at the I n s t i t u t Mittag-Leffler. The author takes pleasure in thanking Professor L e n n a r t Carleson for helpful suggestions.

(2)

ARKIV ~'6R M.A_TE1Vf/kTIK. Vol. 9 No. 1

3. I t does n o t m e a n a n y essential r e s t r i c t i o n t o a s s u m e t h a t m E F , E C {z : Iz[ < 1}, a n d t h a t f is n o n - r a t i o n a l . I n o r d e r t o p r o v e T h e o r e m 1 it is s u f f i c i e n t t o p r o v e t h a t for a n y ~, d i m ( E ) < ~ < 1, a n d a n y R , 0 < R < m, we h a v e D i m ( B ) < a w h e r e B = 2 ' 1 3 { w : ]w I < R } . L e t t h e s e ~ a n d /~ b e chosen. W e d e f i n e

U(a , r) = {z : ]z - - a I < r} .

T h e n we can choose a s e q u e n c e r= w i t h lira r= = 0 a n d coverings

n - - ~ c o

N,

(J U(a~, r ) ~ E

v ~ l

li:m N . r ~ = 0 . (1)

r t - - > o o

such t h a t

F o r a n y a E B we define

f~ is r e g u l a r in {z : 3 < Izl < 4}.

(a E B) for a n y f i x e d

for a n y a E B . W e a s s u m e t h a t siderations. L e t D

f~(z) - - 2~ri (f($) - - a)($ - - z) "

]z] < 4 a n d t h e r e f o r e f~(z) ~ 1/(f(z) - - a). W e set G = B e c a u s e fa(z) a n d 1 / ( f ( z ) - a ) a r e c o n t i n u o u s f u n c t i o n s o f a

r~ < 1/2 for a n y n. L e t n be f i x e d in t h e following con- be t h e c o m p o n e n t o f t h e c o m p l e m e n t of

N=

I.J U(a~, 2 r )

w h i c h contains t h e p o i n t a t infinity. T h e b o u n d a r y o f D consists o f simple closed curves. T h e s e can be d i v i d e d i n t o c o n t i n u o u s c u r v e s y~, v = 1 , 2 . . . . , N , , such t h a t t h e l e n g t h o f a n y y~ is a t m o s t 4zr~. T h e n we get for z C G , a E B ,

fa(Z) 1 1 N~ f dr ] Nn 1

7v

w h e r e % ( a ) = rain I f ( z ) - a L. I t follows f r o m (2) t h a t t h e r e exists a c o n s t a n t

z E y v

fi > 0 n o t d e p e n d i n g on t h e choice o f n such t h a t Nn

v = I

for a n y a E B '

z E G a n d B is c o m p a c t , t h e r e exists fll > 0 such t h a t

f~(z) 1

sup > ~1 (2)

= ~ G f ( z ) - a

(3)

SOME R E ~ A R K S ON T H E V A L U E D I S T R I B U T I O N OF MEROMORPHIC I~UI~CTIONS

W e n e e d t h e following

LI~MMA. T h e r e exists a n absolute constant K > 4 such that i f o , ( a ) <_ ~ (q > O) .for s o m e a E B then o~(b) > K e f o r a n y b E B - - U ( a , 2 K ~ ) .

Proof. T h e l e n g t h o f y~ is a t m o s t 4zr~ a n d U ( $ , r = ) f3 E = 0 for a n y E 7~. T h e l e m m a follows f r o m S c h o t t k y ' s t h e o r e m .

4. L e t 2, ~ < 2 < 1, be chosen. W e choose a p o s i t i v e i n t e g e r k such t h a t

> a(1 + Xk) . (b)

L e t q o = N , . F o r m---- 1 , 2 . . . . , k we set

~,~ ~ 2"r~q,,_lf1-1 , (c)

qm = (P,~/r,) ~ , (d)

a n d let p ~ be t h e i n t e g e r d e f i n e d b y qm --< P , < q , ~- 1. L e t Qk+l be d e f i n e d b y (c) a n d qk+l --= Pk+l ---- 1. I t follows f r o m t h e s e d e f i n i t i o n s t h a t for 1 < m < k -r 1

~m = MmrnN~n m-1 (e)

w h e r e M ~ is a p o s i t i v e c o n s t a n t d e p e n d i n g o n l y on /5. I t does n o t m e a n a n y essential r e s t r i c t i o n t o a s s u m e t h a t -]~n ~ GO as ~--~ OO b e c a u s e o t h e r w i s e E consists o f a f i n i t e n u m b e r o f points. T h e r e f o r e it follows f r o m (e) t h a t we c a n a s s u m e t h a t em+~ < e~ for a n y m.

L e t m, l < m < k A - 1 , be fixed. I f possible, we choose b m , ~ E B such t h a t t h e i n e q u a l i t y %(bz, 1) ~< ~ is satisfied a t least for p ~ d i f f e r e n t v a l u e s o f v. W e set C~, ~ = U(b~, 1 , 2 K e z ) w h e r e K is t h e c o n s t a n t o f t h e lamina. I n t h e s a m e m a n n e r , s t a r t i n g w i t h t h e set

s--1 B - - U C m , p

p=l

(s > 1) we define t h e disc Cm, s. L e t this m e t h o d yieId t h e discs C~ ....

s - - - l , 2 . . . Sin. T h e n it follows f r o m t h e l e m m a t h a t S,~ < Nn/qm.

L e t us suppose t h a t t h e r e exists

k + l S m b E B - - U U C m , p 9

r n = l p = l

T h e n o,(b) > ~k+l for each v a n d ~m+l < %(b) < ~m (1 < m < k) is satisfied at~

m o s t f o r p ~ - 1 d i f f e r e n t v a l u e s o f v. T h e r e f o r e i t follows f r o m (e) t h a t

N= N~ P l - 1 P k - - 1 k+l fi

Z <_ - - + - - + . . . + - - <_ y < S/ro.

v = l e l ~2 ~k-I- 1 m = l

T h i s is a c o n t r a d i c t i o n to (a) a n d so k+l Sm

B e D

U C,~,p.

m = l p = l

(4)

ARKIV le6R MATEMATIK. Vol 9 No. 1

I t follows f r o m (d) a n d (e) t h a t t h e radii o f C m , P s a t i s f y t h e i n e q u a l i t y

k+s k+s N,Q~ A ~s+;~k~ ~.

5 Sm(2Ke ,,,)~ ~< "AS ~ - - < " ' 2 ' ' n " n

m = S m = S q m - -

w h e r e As a n d .4 2 are positive c o n s t a n t s n o t d e p e n d i n g on t h e choice o f n. F r o m (t) a n d (b) it follows t h a t

1 + 2k~,

N . , . < (N.r~) s+~'k --~ 0

as n - - > ~ . T h e r e f o r e D i m ( B ) < 2 . This is t r u e for a n y 2 > a a n d so :Dim (B) < a. This completes t h e p r o o f o f T h e o r e m 1.

3. Countable sets

5. L e t A a n d B be t w o c o u n t a b l e sets whose p o i n t s c o n v e r g e t o i n f i n i t y . I f B is g i v e n t h e n it is a l w a y s possible t o c o n s t r u c t A such t h a t t h e r e exists a m e r o m o r p h i c f u n c t i o n o m i t t i n g B o u t s i d e A. I n f a c t , we t a k e a n e n t i r e f u n c t i o n f a n d set A = f - l ( B ) . I n this m a n n e r , it is e a s y t o c o n s t r u c t A such t h a t t h e r e exists a c o u n t a b l e f a m i l y o f e n t i r e f u n c t i o n s o m i t t i n g B o u t s i d e A. T h e n t h e following q u e s t i o n arises: Is t h e f a m i l y o f t r a n s c e n d e n t a l e n t i r e f u n c t i o n s o m i t t i n g

o u t s i d e A a l w a y s a t m o s t c o u n t a b l e ? T h e o r e m 2 gives a n e g a t i v e answer.

THEOREM 2. Given a n y countable set B = {bn} w i t h lira b n = ~ then we can construct a countable set A ~ (a,} w i t h lim a~ ~ ~ such that there exists a n o n - countable f a m i l y o f transcendental entire f u n c t i o n s o m i t t i n g B outside A .

Proof. L e t a 0 # 0 a n d a 0 g B. W e shall choose i n d u c t i v e l y a sequence {f.}

of p o l y n o m i a l s such t h a t t h e p r o d u c t

a o " ~ (fn(Z)) ~ (1)

n ~ S

(e~(1 - - e~) = O) converges u n i f o r m l y in h o u n d e d d o m a i n s for a n y choice of t h e sequence {e,}.

L e t f l ( z ) = z a n d r s = 1 + [bs[. L e t f~ a n d G be d e f i n e d for v--~

I , 2 , . . . , n - - 1 (n > 1). W e d e n o t e b y G, t h e f a m i l y of t h e p o l y n o m i a l s

n--S

g(z) = a o ~-[ (f~(z))~

v=S

w h e r e e ~ ( 1 - e ~ ) = 0 for a n y v. W e choose r . > 2rn_s such t h a t g ( z ) r on

~lz[

---- r . for a n y g q G.. T h e n t h e r e exists 8. > 0 such t h a t Ig(z) - - bl > 5. on

~ z l = r . for all b C B a n d g E G . . W e set

M . = m a x { m a x ]g(z) l } gEGn Izl = r n

(5)

S O M E R E M A R K S O N T H E V A L U E D I S T R I B U T I O N O F M E R O M O R P t I I C F U N C T I O N S 5

a n d A . = [J {z:g(z) E B a n d [z I < r , } .

g E G n

Because lim b~ = co and G, consists of finitely m a n y polynomials, A , contains a finite number of points. We define

= ] - [ (z - a ) "

a E A n

where t~ is the largest multiplicity of the root a of the equations g(z) ~ b for all g e G. a n d b E B. We set f.(z) = 1 --

e,,h.(z)

where e, ~ 0. Let b e B and g e G . . On ]z] ---r, we have

g(z) f~(z) - g(z)] M.e.lh.(z)]

g(z) -- b l ~-- ~ .

Now we see t h a t we can choose the sequence {Q~} such t h a t

g(z) ~ ]'~ (f,(z)) ~, _ b - - g(z) [

< 1 (2)

on ]z] = r , for all b E B a n d g C G , , and a n y sequence (e,} (n>__2).

L e t F be the family of entire functions defined b y (1). We define A -= U (z : f(z) E B } .

f E F

L e t

f e F

and b E B. We choose n _> 2. We write

f(z) = g(z) T-T (f~(z)) "" (3)

where g E G,. I t follows from (2) a n d Rouch6's theorem t h a t the functions f a n d g have the same number of b-points in IzL < r,. I t follows from t h e construction of the sequence (f~} t h a t the b-points of g lying in [z[ < r, are b-points of f, a n d not of smaller multiplicity. Therefore in lz[ < r,,

f

can take a value of B only at the points of A , a n d we see t h a t

A c U A ~ .

n ~ 2

I f we choose f such t h a t f E G.+~ we get

(A.+I -- A.) fl {z : ]z I < r,} = 0

a n d we see t h a t co is the only limit point of A. Clearly F contains a non-countable set of transcendental entire functions. Theorem 2 is proved.

(6)

.~d~KIV FOR MATE~IATIK. Vol. 9 No. 1 4. Picard sets for entire f u n c t i o n s

6. Following L e h t o , we call a set E in t h e complex plane a P i c a r d set for e n t i r e functions i f e v e r y n o n - r a t i o n a l entire f u n c t i o n omits a t m o s t one finite value outside E. L e h t o [3] has p r o v e d t h a t a countable set E = {a.} whose points converge t o i n f i n i t y is a P i c a r d set for entire functions if t h e points a , s a t i s f y t h e condition

[a,,/an+l[ = O(n-2) .

M a t s n m o t o [5] has p r o v e d t h e same assertion u n d e r t h e condition exp (K/log la.+x/anl)

lim,~.o~sup

log

lan+l[ < O0

(K a positive constant) w h e n ([an]}~=l,2 .... is s t r i c t l y increasing. Winkler [6] has p r o v e d this assertion in t h e case t h a t E is a finite u n i o n of sets whose points s a t i s f y t h e condition

la=+x/a=l

_> q > 1 a n d

{z : e -laz~ < Lz - aI < lal - ~ } fl E = 0

(e > 0, p > 0) for all sufficiently large la[, a E E. W e shall give a n essentially best possible d e n s i t y condition u n d e r w h i c h a countable set is a P i c a r d set f o r e n t i r e functions.

7. W e shall n e e d t h e following results in our considerations. W e define

If'(z) l

e(f(z)) -- 1 + If(z)[ m '

a n d b y h(r) we denote a n a r b i t r a r y positive f u n c t i o n of t h e positive variable r, w i t h t h e p r o p e r t y h ( r ) = O(r) as r--~ ~ . L e h t o [4] has p r o v e d t h e following THEOREM A. Let f be meromorphic in a neighbourhood

of

the singularity z = oo.

I f for a sequence {z,}, limzn = oo and

n - - ~ o o

lim h(Iz.l ) e(f(zn)) = oo

I I . - > o o

then Picard's theorem holds for f in the union of any infinite subsequence of the discs

C.

= { z : Iz - z.I < ~h(lz.I)}

for each e > O.

Clunie a n d H a y m a n [2] h a v e p r o v e d t h e following THEOI~I~M B. ] f f is an entire non-rational function then

[zle(f(z))

limz~| logIz] -- o o .

(7)

S O M E R E M A R K S ON T H E V A L U E D I S T R I B U T I O N O F M E R O N I O R P H I 0 F U N C T I O N S 7

8. N o w we p r o v e t h e following

TREOREM 3. A countable set E ~ (an) whose points converge to infinity is a Picard set for entire functions i f there exists e > 0 such that

[

z : 0 < ] z - - a ~ ] < log l a n [ / l ' l E =

!~ I

O (1) for all sufficiently large n.

Proof. C o n t r a r y t o o u r assertion, let us suppose t h a t t h e r e exists an e n t i r e non- r a t i o n a l f u n c t i o n f o m i t t i n g t w o f i n i t e v a l u e s outside E . T h e n we can assume t h a t

f

o m i t s t h e values 0 a n d 1 in t h e c o m p l e m e n t o f E .

F r o m T h e o r e m A a n d T h e o r e m B it follows t h a t we can choose a sequence {zn}

such t h a t lim z, ---- ~ a n d P i c a r d ' s t h e o r e m holds for f in t h e u n i o n o f a n y infinite s n b s e q u e n c e o f t h e discs Cn ~- U(zn, r,) w h e r e

~[z.I r , - - 8 log [znl "

T h e n C~ c o n t a i n s at least one zero or 1-point of f for s u f f i c i e n t l y large n, s a y for n > nl. I t follows f r o m (1) t h a t U(zn, 4r,) c o n t a i n s a t m o s t one p o i n t of E if n is large e n o u g h , s a y if n > n 2 > n 1. L e t n > n 2. L e t us suppose t h a t Cn c o n t a i n s a 1-point o f f. B e c a u s e

f

has n o zeros in U ( z , , 2rn), it follows f r o m t h e m a x i m u m principle t h a t t h e r e exists a p o i n t ~ o n ] z - zn[ ~ 2rn such t h a t

If(~)l

~ 1. B e c a u s e f has n e i t h e r zeros n o r 1-points in t h e ring d o m a i n r , < I z - - z ~ ] < 4rn, it follows f r o m S c h o t t k y ' s t h e o r e m t h a t If(z)[ < M on ]z - - z~l ---- 2 r , w h e r e M is a n a b s o l u t e c o n s t a n t . T h e n If(z)[ < M in C,. I f C~

c o n t a i n s a zero o f f we consider t h e f u n c t i o n 1 - - f ( z ) , a n d we see t h a t If(z)] < M Jr 1 in C~ for n > n2. This is a c o n t r a d i c t i o n b e c a u s e f o m i t s a t m o s t one f i n i t e v a l u e in t h e u n i o n o f t h e s e discs. T h e o r e m 3 is p r o v e d .

9. W e n o w p r o v e t h a t t h e c o n d i t i o n (1) is b e s t possible.

THEOREM 4. Corresponding to each real-valued function h(r) satisfying the condition h(r) ---> oo as r ---> ~ , there exists a countable set E -~ {an} whose points converge to infinity, which is not a Picard set for entire functions, and which satisfies the condition

z : 0 < I z - - a , l <

for all sufficiently large n.

laol ]

n E :

D

h(ia~]) log Ia,] ]

(2)

Proof. I n o r d e r t o p r o v e o u r assertion, we shall show t h a t t h e set o f t h e zeros a n d 1-points of t h e e n t i r e f u n c t i o n

f(z) = ~ (1

--

z/e'-)'-

(8)

A R K I V FOR M A T E M A T I K . V o ] . 9 N O . 1

(t n being positive integers, tn+ 1 ~ 4tn) satisfies the condition (2) if tn tends to infinity with a sufficient rapidity.

Let n ~ 3 . We define D n = { z : Iz-etnl ~ e x p ( t n - - l t n _ l ) } and

n - - I

g(z) = (1 - Z/etn)'n ]--[ (1 --

It is easy to see t h a t if t~ t e n d s to infinity sufficiently rapidly then

If(z) --

g(z) I <_ 88 Ig(z) l

(3)

in D n. On the b o u n d a r y of D~ we have

Lf(z)l >__

89 > 2. Therefore f has only a finite number of 1-points outside the union of the discs D~, ~ _> 3.

Let $~, ~---- 1 , 2 . . . . ,t,, be the 1-points of g. We set

Then C, c D ~ . On the b o u n d a r y rays of C, we have R e g ( z ) : 0 . Then it is easy to see t h a t

]g(z) l <

211 --

g(z) l

at the b o u n d a r y points of D~ and Q , ~ ---- 1 , 2 . . . t,. Now it follows from (3) and Rouch6's theorem t h a t f has exactly t, 1-points in Dn, each C~ containing one 1-point of f. Then the distance between

n--1

two different 1-points of f in D , is at least r----t~ -~ exp ( t , - ~ t~). Because

n--1 v = l

the term ~ t~ does not depend on t~, we can assume t h a t tn is chosen so large t h a t ~=1

Izl

r ~

h(lzl) log ]zl

for any z E D.. Therefore if E = {an} is the set of the zeros and 1-points of f then E satisfies the condition (2) for all sufficiently large n. Theorem 4 is proved.

(9)

SOME REMARKS OH T H E V A L U E DIST1RIBUTION OF MEROMORPHIC F U N C T I O N S 9

References

1. C~LESON, L., A remark o n Picard's theorem. Bull. Amer. Math. Soc., 67 (1961), 142-- 144.

2. CLVNI]~, J. & HAYMAN, W. K., The spherical derivative of integral a n d meromorphie functions. Comment. Math. Itelv., 40 (1966), 117--148.

3. L]~HTO, O., A generalization of Picard's theorem. A r k . Mat., 3 (1958), 495--500.

4. --~)-- The spherical derivative of functions meromorphic in the neighbourhood of a n isolated singularity. Comment. Math. Helv., 33 (1959), 196--205.

5. MATSVMOTO, K., R e m a r k on Lehto's paper ~)A generalization of Picard's theorems). Proc.

J a p a n Acad., 38 (1962), 636--640.

6. W I N K L E R , J . , ~lber Picardmengen ganzer F u n k t i o n e n . Manuscripta Math., 1 (1969), 191-- 199.

Received M a y 15, 1970 Sakari Toppila,

Maalinauhantie I0 B 36, Rajakyl/i,

Finland

Références

Documents relatifs

A.M.S.. of polynomials and rational maps [B3], [EL5], This paper studies some classes of entire functions for which the dynamics are more or less similar to those of polynomials.

In view of the proof of Theorem 2.1 and as a consequence of Theorem 3.1, here we obtain a family of functions, depending on a real parameter, µ, in the Laguerre-Pólya class such

Due to the generality of Theorem 1.7, it is likely that it could be applied to counting problems on convex co-compact surfaces of variable negative curvature and various zeta

of the present paper. Partly by necessity and partly from expediency it only treats entire functions without any conditions of growth. See the example above...

Applications of this theorem include Julia sets of trigonometric and elliptic

maps M diffeomorphically onto the interval with asymptotic values 0, I/A as the endpoints, so f\ has an attracting fixed point p\ 6 (0; I/A), and the entire real axis lies in

We present, in theorem 5.2, a simple necessary and sufficient condition on a sequence Z of complex numbers that it be the precise sequence of zeros of some entire function of

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention