• Aucun résultat trouvé

Timing of Eocene–Miocene thrust activity in the Western Axial Zone and Chaînons Béarnais (west-central Pyrenees) revealed by multi-method thermochronology

N/A
N/A
Protected

Academic year: 2021

Partager "Timing of Eocene–Miocene thrust activity in the Western Axial Zone and Chaînons Béarnais (west-central Pyrenees) revealed by multi-method thermochronology"

Copied!
12
0
0

Texte intégral

(1)

HAL Id: insu-01301995

https://hal-insu.archives-ouvertes.fr/insu-01301995

Submitted on 2 Mar 2021

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Distributed under a Creative Commons Attribution - NoDerivatives| 4.0 International

License

Timing of Eocene–Miocene thrust activity in the

Western Axial Zone and Chaînons Béarnais

(west-central Pyrenees) revealed by multi-method

thermochronology

Gemma de Vicente I Bosch, Antonio Teixell, Marc Jolivet, Pierre Labaume,

Daniel Stockli, Mireia Domenech, Patrick Monie

To cite this version:

Gemma de Vicente I Bosch, Antonio Teixell, Marc Jolivet, Pierre Labaume, Daniel Stockli, et al..

Timing of Eocene–Miocene thrust activity in the Western Axial Zone and Chaînons Béarnais

(west-central Pyrenees) revealed by multi-method thermochronology. Comptes Rendus Géoscience,

Else-vier Masson, 2016, From rifting to mountain building: the Pyrenean Belt, 348 (3-4), pp.246-256.

�10.1016/j.crte.2016.01.001�. �insu-01301995�

(2)

Tectonics,

Tectonophysics

Timing

of

Eocene–Miocene

thrust

activity

in

the

Western

Axial

Zone

and

Chaıˆnons

Be´arnais

(west-central

Pyrenees)

revealed

by

multi-method

thermochronology

Gemma

V.

Bosch

a,b,

*

,

Antonio

Teixell

c

,

Marc

Jolivet

a

,

Pierre

Labaume

d

,

Daniel

Stockli

e

,

Mireia

Dome`nech

c

,

Patrick

Monie´

d

a

Ge´osciencesRennes,Universite´ Rennes-1,CNRS,35042Rennes,France

b

BRGM,45100Orle´ans,France

c

DepartmentdeGeologia,UniversitatAuto`nomadeBarcelona,08193Bellaterra,Spain

dGe´osciencesMontpellier,Universite´ deMontpellier,CNRS,34095Montpellier,France eJacksonSchoolofGeosciences,UniversityofTexasatAustin,Austin,TX78759,UnitedStates

1. Introduction

Unraveling the timing and dynamics of mountain building is a long-standing goal in collisional orogen

studies.Thisgoalistraditionallyaddressedby tectonics-sedimentationanalysisofsynorogenicdepositsand,more recently, by low-temperature thermochronology on the assumption that dated exhumation paths reflect the vertical component of the evolution of thrust belts. In thePyrenees,theforelandbasinrecordiswellknown,and thermochronology studies have focused in the past decades on the Paleozoic massifs of the Axial Zone (Fitzgerald et al., 1999; Gibson et al., 2007; Gunnell

ARTICLE INFO

Articlehistory:

Received23November2015

Acceptedafterrevision1stJanuary2016 Availableonline30March2016 HandledbyYvesLagabrielle Keywords:

Thermochronology Apatitefissiontracks Apatiteandzircon(U–Th)/He Thrusting

Pyrenees

ABSTRACT

Wepresentnewapatite(U–Th)/He(AHe),apatitefissiontrack(AFT)andzircon(U–Th)/He (ZHe)datatounravelthetimingofexhumationandthrustinginthewesternAxialZoneof thePyreneesandtheadjacentNorthPyreneanZone(ChaıˆnonsBe´arnais).Inthenorth,ZHe datayieldcoolingsignalsbetween26and50MaintheChaıˆnonsBe´arnais,whichare consistentwiththeonset ofthrust-relatedcoolingintheneighboring Maule´onBasin modeledbypreviousauthors.Non-resetTriassicagesarefoundinthefootwallofthe NorthPyreneanFrontalthrust(AquitaineBasin).Tothesouth,similarZHeagesinboththe hangingwallandfootwalloftheLakorathrustrecordLateEocenetoOligocenecoolingthat weattributetotheactivityoftheGavarniethrust.Thermalmodelingofsamplesfromthe LakorathrusthangingwallindicatescoolingfromEarlyEocenetimes,recordingactivityof theLakorathrust.PaleozoicdetritalsamplesfromthewesternmostAxialZoneandfrom theEaux-Chaudes andBalaitous–PanticosagraniticplutonsyieldAFTsignalsbetween 20and30MaandZHebetween20and25Ma.Modellingindicatesfastcoolingduringthis time,whichweattributetothemotionoftheGuargathrust.AHedatafromtheseAxial Zoneplutons,combinedwithmodelling,showapost-tectonicsignal(8–9Ma),which indicatesrenewederosionafteraperiodwithoutmajorcoolingandexhumationbetween 20to10Ma.

ß2016Acade´miedessciences.PublishedbyElsevierMassonSAS.Thisisanopenaccess articleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

* Correspondingauthorat:UMR6118Ge´osciencesRennes, B.15-Off.127,CampusdeBeaulieu,35042Rennescedex,France.

E-mailaddress:gemmav.bosch@gmail.com(G.V.Bosch).

ContentslistsavailableatScienceDirect

Comptes

Rendus

Geoscience

ww w . sci e nc e di r e ct . com

http://dx.doi.org/10.1016/j.crte.2016.01.001

1631-0713/ß2016Acade´miedessciences.PublishedbyElsevierMassonSAS.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

(3)

etal.,2009;Jolivetetal.,2007;Maureletal.,2008;Metcalf et al., 2009; Morris et al., 1998; Sinclair et al., 2005) (Fig. 1A). More recent thermochronology studies have included the Cenozoic sedimentary rocks of the South PyreneanforelandbasinandthePaleozoicandMesozoic rocksoftheNorthPyreneanZone,tobetterconstrainthe relationshipsbetween theexhumationintheAxialZone and the exhumation and burial in the adjacent basins (Beamudetal.,2011;FillonandvanderBeek,2012;Fillon et al., 2013; Meresse, 2010; Mouthereau et al., 2014; Rushlowet al.,2013;Vacheratet al.,2014; Whitchurch etal.,2011).

Whilemostofthethermochronologystudiesfocuson theeastern and east-centralPyrenees, oftenaroundthe ECORS-Pyrenees profile, the western Axial Zone and adjoiningareashavebeenlessinvestigated.Tounderstand the relationships between the exhumation in the Axial Zoneandthedynamicsofthefoldandthrustbeltinthe forelands,thewesternAxialZonegiveskeyinformation; thispartofthebasementinteractstothesouthwiththe

Tertiary Jaca basin, which contains the most complete forelandbasinsequencerecordingthestructural develop-ment (e.g., Barnolas and Teixell, 1994; Ca´mara and Klimowitz, 1985; Labaume et al., 1985; Milla´n et al., 2000;Teixell,1996;TeixellandGarcı´a-Sansegundo,1995). This work presents the first multi-method thermo-chronology database of the western Axial Zone of the Pyrenees(Fig.1A),includingapatitefissiontrack(AFT),(U– Th)/Heinzircon(ZHe)andapatite(AHe)data,withtheaim to investigate the Pyrenean Cenozoic evolution. A few samplesoftheadjacentNorthPyreneanZone(Chaıˆnons Be´arnais area) arealso included in thestudy. The area investigatedisparticularlyinterestingbecauseit compri-sesthewestern terminationoftheAxialZonePaleozoic units where it plunges under Upper Cretaceous and Paleogenerocks. Italsoconstitutes theonlyarea where can be observed the Cretaceous North Pyrenean basin overthrustingtheSouthernPyrenees(Teixell,1990,1998). Thethermochronologydataobtainedarecomparedwith thetectonostratigraphicrecordoftheforelandbasinsand

Fig.1.A.GeologicalsketchofthePyreneeswithpreviousthermochronologyresultsobtainedintheAxialZone(Fitzgeraldetal.,1999;Gibsonetal.,2007; Gunnelletal.,2009;Jolivetetal.,2007;Maureletal.,2008;Metcalfetal.,2009;Morrisetal.,1998;Sinclairetal.,2005).MB:Mauleonbasin;LT:Lakora Thrust;ChB:ChaıˆnonsBe´arnais;GT:GavarnieThrust.B.Simplifiedcross-sectionacrossthewest-centralPyreneesshowingthemaintectonicunits discussedinthisworkandprojectedstructurallocationsofthestudiedsamples(largestars:severalsamples;smallstars:singlesamples;Anso´-Arzaq transectofTeixell,1998).

(4)

integratedinthetectonicframeworkofthewest-central Pyrenees,providingamorecompletepictureofthehistory of thrust uplift and exhumation (both syntectonic and post-tectonic)ofthissegmentofthechain.

2. Geologicalsetting

The Pyrenees formed from Late Cretaceous to Early Miocenetimesdue toconvergencebetween theIberian and European continental margins (Choukroune et al., 1990;Mun˜ oz,1992).Asaresultofthecollision,the west-centralPyreneesroseasadoubly-vergingorogenicprism built by basement and cover-involved thrusts. This collisionbeltisunderlainbynorth-directedlowercrustal subduction(Lagabrielleetal.,2010;Teixell,1998;Teixell et al., 2016). The main upper crustal structures of this segment of thechain are shown on Fig. 1B. The North PyreneanZonewasarapidly-subsidingCretaceousbasin between the European and Iberian margins, floored by hyper-thinned continental crust and mantle exhumed during Albian–Cenomaniantimes (Jammes et al., 2009; Lagabrielle and Bodinier, 2008). This basin is now completely inverted, overthrusting to the north the AquitaineBasinalongtheNorthPyreneanFrontalthrust, andtothesouthalongtheLakorathrust(Fig.1).

The North Pyrenean Zone in the studied Chaıˆnons Be´arnais area contains thick and relatively complete Jurassic and Cretaceous successions and is internally deformedintoasystemoffoldsandthrustsdetachedin theTriassic Keuperfacies (Lagabrielle et al., 2010). The Lakorathrustcropsoutasagently-dippingfault,largely paralleltobeddingintheUpperCretaceouscoverofthe AxialZone(thefootwall),andcarryingathinthrustsheet ofPaleozoic,TriassicandMiddle–UpperCretaceousrocks initshangingwall(LakoraklippeandIguntze–Mendibelza massifs,Fig.1;Teixell,1990,1996).Eastward,theLakora thrustpasseslaterallytovariousthrustsalsocarryingthin Paleozoicbasementsliceslocatedatthesouthernedgeof theChaıˆnonsBe´arnais(e.g.,Eaux-ChaudesandCinq-Monts thrusts;Ternetetal.,2004).TheLakorathrustandthese easternextensionsderivefromtheinversionof extension-al structures in the upper Iberian continental margin (Teixelletal.,2016).

The southern part of the west-central Pyrenees is characterized bysouth-verging thrustsand includes (1) theAxialZone,abasementantiformalculminationcaused bytheGavarniethrust,and(2)thePaleogeneJacabasin,a large-scaleasymmetricsynformbetweentheAxialZone andtheSouthPyreneanFrontalthrust(Fig.1).

Paleozoicrocksof theAxialZone areunconformably coveredbyUpperCretaceousshelfcarbonates.Abranchof the Lakora thrust, the Larra thrust, propagated across UpperCretaceous–Eocene rocks oftheAxial Zonecover andthenorthernJaca basin.Eastof thestudyarea, the AxialZonecomprisesstackedbasementthrustsheetsthat caused a greater structural relief and a large basement exposure(e.g.,Mun˜ oz,1992;Roureetal.,1989).There,the northernboundary of the Axial Zone is marked by the North Pyrenean Fault, a steeply-dipping structure with complex kinematics that passes westward to a south-vergingde´collementatthesouthernedgeoftheChaıˆnons

Be´arnais.Thewestwardplunge oftheAxialZoneinthe studyareaprovidesconstraintonthestructuralreliefand shapeofthetopoftheAxialZoneandontherelationships betweenthemainstructuralunits.Non-exposedbasement thrustsunderlietheJacabasinandcausemajorvariations ofstructuralrelief(e.g.,theGuargathrust,Fig.1B;Ca´mara andKlimowitz,1985;Labaumeetal.,1985;Teixell,1996; TeixellandGarcı´a-Sansegundo,1995).

Pre-orogenicMesozoicsuccessionsintheJacabasinare relativelythinandincomplete;incontrast,thePaleogene infillisverythick(upto9km)andconformstoatypical flysch-to-molasse forelandbasinsequence (Mutti et al., 1988; Puigdefa`bregas, 1975). Tectonics–sedimentation relationshipsindicateapiggy-backsequenceofthrusting fromtheLakoratotheGuargathruststhatspanstheentire Pyreneanorogeny.TheLakorathrustprobablyinitiatedin theLateSantonian,asindicatedbyflexureinitsfootwall sediments,anditsmainactivitycontinueduntiltheMiddle Eocene(Bartonian).Thisincludesthefootwallsplaysofthe Larra thrust and the laterally equivalent Eaux-Chaudes thrust(Teixell,1996).TheGavarniethrustwasactivefrom theLateEocenetotheEarlyOligocene,whereastheGuarga thrusttookupfinalcompressivedeformationfromtheLate OligocenetotheEarliestMiocene(Teixell,1996).

Thechronology oftheNorthPyrenean thrustsis less known. TheinternalstructuresoftheChaıˆnonsBe´arnais wereinitiatedduringtheLateJurassic–EarlyCretaceousas diapiricsaltwallsinextensionalcontext(Cane´rot,1985; Teixellet al.,2016),but theirevolution inthePyrenean orogenyislessconstrainedintime. TheNorthPyrenean Frontal thrust appears as a long-lived structure partly contemporaneoustotheLakorathrustandextendinguntil morerecenttimes.Indeed,inthestudyarea,growthstrata in its footwall syncline indicate thrusting beginning in Campanian–Maastrichtian times and continuing during thePaleogene(Poitevinetal.,2014),and thermochrono-logically-constrained coolingintheMaule´onsegmentof theNorthPyreneanZone,tothewestofthestudyarea, begunsome50Maago(Vacheratetal.,2014).Inspiteof thisearlythrustingactivity,themolassedepositioninthe Aquitainebasinderived fromthePyreneanreliefs spans fromtheLate–MiddleEocenetotheMiocene(Biteauetal., 2006).

Theextenttowhichthedescribedsequenceofthrustsis reflected in the exhumation history is not known yet. NortheastoftheJacabasin,AFTinthegranitesoftheAxial Zone, yield Cenozoic cooling ages (e.g., Ne´ouvielle and Bielsamassifs;Jolivetetal.,2007),butthedegreeof post-Variscan reset and the amount of exhumation of the westernmost Axial Zone and the Lakora thrust are unknown.Inspiteoftherichtectonostratigraphicrecord oftheJacabasin,discrepanciesremainforthetimingof some major structures. Mun˜ oz et al. (2013) recently attributedtheemplacementoftheGavarniethrustsheetto theMiddleEocene,onthebasisofacorrelationbetween thebasementthrustandthegrowingandrotatingcover structuresintheAı´nsabasin.Thepreviousattributionof theGavarniethrusttomorerecenttimeswasbasedonthe refoldingitproducedintheoverlyingLarra–MontePerdido thrust,whichwaslinkedtotheBoltan˜ aanticline,inturn datedasLateLutetiantoBartonian(Teixell,1996).

(5)

ALateEocenetoOligoceneagefortheGavarniethrust hasalsobeenfavoredbyJolivetetal.(2007)onthebasisof AFTagesofca.35Maofthethrusthangingwallathigh elevationintheNe´ouviellegranite.Ontheotherhand,AFT agesaround20MadominatethesouthernmostAxialZone in thecentral Pyrenees,in thefootwall of theGavarnie thrust(Fitzgeraldetal.,1999;Jolivetetal.,2007;Sinclair et al., 2005). In post-tectonic times, an acceleration of exhumationratesat9MawasdetectedbyAHemodeling intheeasternpartoftheSouthPyreneanforelandbasin (FillonandvanderBeek,2012).Todate,thiseventhasnot beenreportedintheAxialZoneexceptfora10.91.0Ma sampleobtainedbyJolivetetal.(2007)intheBielsamassif. 3. Samplingandmethods

Atotalof18sampleswerecollectedforZHe,AFTand AHestudiesandfivemoresamplesfromMeresse(2010) wereusedtocompletethedataset(seelocationonFig.2). FivesamplesweretakeninthePaleozoicgranitesofthe Balaitous–PanticosaandEaux-Chaudesplutons,andthree inPaleozoicdetritalrockstothewesttounravelthetiming of exhumation of the western Axial Zone. These were complemented with the five previous AFT resultsfrom Meresse(2010)andnewHedatamadeonthesesamples. TogaininsightintotheactivityoftheLakorathrust,two samplesweretakeninUpperCretaceousandLowerEocene turbiditicsedimentsfromthefootwall(AxialZonecover) andthreeinAlbianconglomeratesfromthehangingwall. To complete thestudyto thenorth,foursampleswere

taken in the Chaıˆnons Be´arnais (NPZ) and two in the Aquitaine basin, in the footwall of the North Pyrenean FrontalThrust.

Theninesamplesthatcontainedasufficientnumberof high-qualityapatiteswereanalyzedforfissiontracksand/ or (U–Th)/He (Tables 1 and 2 in Annex 1, online supplementary data). Zircon grains could be retrieved frommostsamples,andZHeanalyseswereperformedon 18 samples (Table3 in Annex1, online supplementary data). Sample JA2 did not provide zircon suitable for analysis.Thedataobtainedallowedthermalmodelingof fourprofilesinthegraniticmassifsofBalaitous–Panticosa andEaux-ChaudesandintheLakorathrustsheet.

The AFT analyses were performed following the proceduredescribedbyJolivetetal.(2007).Themounted samplesweresenttoOregonStateUniversityfor irradia-tion.Ageswerecalculatedusinganoverallzetavalueof 3442acm2(GVB)obtainedonbothDurango(McDowell

etal., 2005) andMountDromedary(Green,1985;Tagami, 1987)apatitestandards.

Apatite(U–Th)/Hedatingmeasurementswere perfor-medatGeosciencesMontpellier,followingtheprocedure describedinRomagnyetal.(2014).Prismaticapatiteswere selected,withtwoornopyramidsandsizesrangingfrom 50 to 200

m

m. For the samples from the Balaitous– Panticosapluton,twotothreeapatitegrainsofthesame size were used for each aliquot with the exception of sampleGPY15forwhichsinglecrystalsweredated.Inthe Eaux-Chaudes pluton, only two aliquots from sample GPY09containedtwograins.

Fig.2.MapofthewesternPyreneanAxialZoneandadjacentChaıˆnonsBe´arnais,showinglocationofsamplesandthermochronologicalresults;zircon(U– Th)/He(ZHe)resultsingreen,apatitefissiontrack(AFT)inredandapatite(U–Th)/He(AHe)inblue.ForHedata,weindicatetheageranges(forfurther information,seeTables1,2and3inAnnex1,onlinesupplementarydata).Thebluedashedlineindicatesthedrainagedivide.

(6)

Zircon (U–Th)/He dating was carried out at the University of Texas-Austin using laboratory procedures describedinWolfeandStockli(2010).Individualageswere calculated using standard

a

-ejection corrections (e.g., Farley et al., 1996; Farley, 2002) and reported age uncertaintiesofabout8%(2

s

)arebasedonthe reproduc-ibilityofreplicateanalysisoflaboratorystandards(Farley etal.,2001;Reinersetal.,2004).Bothuncorrectedand

a

-ejectioncorrectedagesarereported(Table3inAnnex1, onlinesupplementarydata).

4. Results

Inwhat follows,dataare organizedaccordingtothe structuralpositionofthesamplesinthedifferenttectonic orlithologicunits(Fig.2).ForZHeages,wepresent age-elevationplotsandagesversusUeplotsinAnnex1(online supplementarydata).

4.1. TheChaıˆnonsBe´arnaisandtheAquitaineBasin The sample set of the Chaıˆnons Be´arnais and the AquitaineBasinconsistsofterrigenousrocksof Carbonif-eroustoCretaceousagethatprovidedonlyzirconcrystals suitableforanalysis.IntheAquitaineBasin,samplesASS1 andNAY2arepoorlycementedsandstonesofCampanian andMaastrichtian,respectively,andyieldadispersionof ZHeagesolderthanthedepositionalage,rangingbetween 150and 270 Ma (for error marginssee Table 3 in Annex1,onlinesupplementarydata),indicatingnoreset afterdeposition.IntheChaıˆnonsBe´arnais,ZHeagesrange between 26 and 50 Ma, which is younger than the depositional ages, and attest for exhumation in the hangingwalloftheNorthPyreneanFrontalthrust.Sample CTH1yieldstheoldestagerange(41–50Ma)inaccordance withitshigheststructuralpositioninan Albian–Cenoma-niansyncline.ThesouthernmostsampleGPY17fromthe Carboniferoussandstoneof theChaıˆnonsBe´arnais base-mentyieldstheyoungeragerange,between26and29Ma, inspiteofahigherelevation.SamplesfromthePermian– Triassicredbeds(LBT2andMCT7)yieldintermediateages between33and42Ma.

4.2. TheLakorathrustsheet

ThreesamplesfromtheAlbianMendibelza conglomer-ate(BoirieandSouquet,1982)providedzirconssuitable foranalysis,but no apatites. Thethree samplesprovide ZHe ages in the Late Eocene–Early Oligocene interval, rangingfrom27and29Maattheloweraltitude(312m, GPY03)to30and35Maathigheraltitude(1800minthe Lakoraklippe,GPY04).

4.3. TheAxialZonecover

Inthepost-VariscancoveroftheAxialZone(hanging wall of the Gavarnie thrust), a Maastrichtian turbiditic sandstone(GPY07,1579m)provides ZHeages of31–36 Ma, younger than the depositional age and strikingly similartotheageintheLakora thrustsheetjust above (Fig.2).AsampleofLowerEoceneflyschlocated5kmto

thesouth(GPY08,1810m)yieldsawidedispersionofZHe ages(37–80Ma),someofthemolderthanthedepositional age,indicativeofpartialreset.

4.4. ThewesternAxialZone:detritalPaleozoicrocks SamplesfromthewesternmostPaleozoicexposuresof the Axial Zone also belong tothe hanging wall of the GavarniethrustandcompriseCarboniferousand Perm-iansandstonesthatprovidedapatiteandzirconcrystals with large age dispersion. SamplesJA2and JA3of the southern Axial Zone near the Somport pass yield comparable AFT(Meresse, 2010)andZHe centralages thatmayindicaterapidcoolingat25–30Ma,asdosome zirconcrystalsfromsamplesGPY05andGPY06fromthe UpperArago´nSuborda´nvalley.Thelattersamplesshow however a greater dispersion, as does Carboniferous sandstonefromtheLescunareafurthernorth (GPY14), whose age dispersion ranges between 14 and 52 Ma (Fig. 2 andTable 3 in Annex 1, online supplementary data).

4.5. ThewesternAxialZone:theEaux-Chaudesand Balaitous–Panticosaplutons

These granitic bodies provided apatite and zircon crystalsthatweresuitableforAFT,AHeandZHeanalyses. MostofthesamplesshowZHeagesindependentoftheeU concentration,suggestingcompletereset(seeAnnex1).In theEaux-Chaudespluton,samplesGPY11andGPY12yield similarZHeandAFTagesthatmaybeindicativeofrapid coolingbetween20and25Ma,furtherattestedtobythe similarity in age between the samples in spite of a difference in elevation of 531m. Sample GPY09 at an intermediatealtitudeyieldsaZHeageof24–28Ma,while theAFTageissignificantlyyounger,around12Ma(Figs. 2and3,Tables1and3inAnnex1,onlinesupplementary data). In theBalaitous–Panticosa granites, ZHeages are also markedly clustered at 20–25 Ma for different elevations. However, samples BA1 and BA5 from the BalaitousmountaingiveAFTagesof28–29Ma(Meresse, 2010),slightlyolderthantheZHeages obtainedforthe same samplesinthis study (Table 3in Annex1,online supplementary data). Sample GPY15 at lower elevation yieldsanAFTageof18Ma,whereasZHeagesaremore dispersed(18–36Ma).TheAHeagesobtainedforthissetof samples range between 21 and 6 Ma, with a cluster between 6and10Ma,againyoungerthantheAFT ages (Fig.3andTable2inAnnex1,onlinesupplementarydata), butwithsimilarageifwetakeintoaccountthe2

s

errorsof bothAFTandAHedata.

5. Thermalmodeling

ThermalhistorymodelingwasperformedusingQTQt software(Gallagher,2012;Gallagheretal.,2009).ForAFT modelingoftheonlysamplewithconfinedtracklengths (GPY11), we used Ketcham et al.’s (2007) multikinetic annealing model, with the Dpar parameter as kinetic

constraint.(U–Th)/Heagesweremodeledusingaspherical diffusion domain (based on the crystal’s equivalent

(7)

sphericalradius),and takingintoaccounteU-dependent radiationdamagemodulateddiffusivityforHediffusion, following the models of Flowers et al. (2009) and Guenthner et al. (2013).In cases whereAHe ageswere obtainedbymultigrainaliquots,wedidnotuseaspecific diffusion model. Models were run for the sub-vertical profiles at the Balaitous–Panticosa and Eaux-Chaudes granitesandattheLakorathrustsheet.Allmodelswere forcedtobeatsurfacetemperatureatpresenttimeandwe allowedthetemperatureoffsetbetweensamplestovary throughtimeinarangeequivalenttogeothermalgradients of15to358C/km.

For theBalaitous–Panticosa andEaux-Chaudes grani-tes, independent constraints derived fromfield geology (unconformity of the Cenomanian carbonates above Paleozoic rocks of the Axial Zone) were used as input parameters in the thermal models to force thecooling curvestopassnearthesurfaceinCenomaniantimes.The profile in the hanging wall of the Lakora thrust was constrained to pass near the surface in Albian times (stratigraphic age of the Mendibelza conglomerate), whereasamodelofthewesternmostAxialZone(Paleozoic rocks andtheir cover)wasconstrained tobeatshallow levelsfromtheCenomaniantotheEarlyEocene.

ModelsoftheEaux-Chaudesand Balaitous–Panticosa sub-vertical profiles show similar results, with a fast exhumationfrom30Mato20Ma(Fig.4).Priortothat ageinterval,thethermalhistoryisnotwellconstrainedby thedata,asreflectedbythehighdegreeofuncertaintyin the thermal path, taking into account the 95% credible intervals(Fig.4A–B).After20Ma,theEaux-Chaudesprofile showsa slowercoolingtowardsthesurface.Incontrast, theBalaitous–Panticosaprofileshowsaperiodofstability, althoughnotwellconstrainedbythedata,withalastrapid coolingeventat8–9Ma.Themeangeothermalgradient inferredfromthetemperatureoffsetbetweensamplesisof 258C/km,withnomajorvariationovertime(Fig.4C–D). ZHeandAHeagespredictedfrommodelingarecoherent withinerrormarginswiththeobservedages. AFTshow worse predicted ages; therefore,the predicted ages are

withintheerrormarginsoftheobservedAFTagesonlyin thecaseofGPY09andGPY15(Fig.4E–F).

ModelingresultsoftheLakorathrustsheetshowthat thesamplescrossedthelowerlimitofthezircon partial-retention zone (ZPRZ) at 50–42 Ma (bottom and top samples), with a moderate rate of cooling, and passed throughtheupperlimitoftheZPRZat25–30Ma(Fig.5). Thepre-Eocene thermal historyis not wellconstrained, duetolargeuncertaintiesinthemodels,reflectedbythe 95%credibleintervals(Fig.5A).Therefore,theonsetageof exhumation cannot be determined from the models, althoughmodelingsuggeststheywerealreadyexhuming by 50–42Ma. Abovethe ZPRZ, thethermal path is not constrained, as no AFT and AHe ages wereobtained in thosesamples.AsshownonFig.5E,themodel-predicted ages are consistent, within error margins, with the observedages.

The modeled thermal path of the Lakora thrust’s footwallindicatesafastcoolingat25Ma,followedby a slower rate finalcooling from 25 Ma tothe Present. However,thisfinalcoolingpatternisnotwellconstrained, since AHe ages were only obtained from one sample (Fig. 5B). Data modeling shows a constant geothermal gradient of 258C/km, inferred from the offset between samples. In this case, ZHe ages are badly predicted, as shownonFig.5F.Samplesfromthisverticalprofileshow largeintra-sampleagedispersionthatcannotbepredicted bytheQTQtsoftware,indicatingthatthedispersioncannot be explained by crystals eU content or size. The age dispersion couldbeproduced, for example,by complex internalzonationinzircongrains,whicharenot incorpo-ratedinthemodelingduetolackofinformation.Thepoor predictions showed by the model imply that this last coolinghistoryshouldbeconsideredwithcaution.

6. Interpretationanddiscussion

Single-graindatingperformedinthisstudyprovidethe followingfivemainresults:

Fig.3.Apatitefissiontrack(AFT)age-elevationplotoftheEaux-ChaudesandBalaitous–Panticosagranodioritesdataset(inred),andoftheGPY14sample fromPaleozoicsedimentsinthewesternmostAxialZone(black).

(8)

in the Aquitaine Basin, ZHe data indicate no post-depositionalresetofages;

theChaıˆnonsBe´arnaisoftheNorthPyreneanZonerecord aprotractedexhumationbetween50and26Ma(Eocene toOligocene);

theLakorathrustsheetwasexhumedthroughtheZHe closure temperaturetogether withitsfootwall (upper levelsoftheGavarniethrustsheet)at30–36Ma(Late EocenetoOligocene);

the granitic massifs of Eaux-Chaudes and Balaitous– Panticosa,andtheUpperPaleozoicrocksoftheSomport area,alllocatedintheGavarniethrustsheet,recordarapid exhumationat26–20Ma(LateOligocenetoAquitanian); the granitic massifs record a final acceleration of exhumation at 8–9 Ma (Late Miocene), which is constrainedbytheAHedata.

Thermalmodelsfurtherconstrainthecoolinghistoryof theLakorathrustsheet,indicatingthatitwasexhumingat leastbetween50–42Maand30–25Ma(EarlyEoceneto Oligocene),andbetterdefinetherapidexhumationhistory oftheEaux-ChaudesandBalaitous–Panticosagranites.

Inwhatfollows,weinterprettheobtainedcoolingages andpathsasindicatingexhumationprimarilylinkedtothe activity of tectonic units, although we understand that climatic events mayhave playeda role toan unknown degree.ThesamplesfromtheUppermostCretaceousrocks oftheAquitaineBasinpreserveZHedetritalagesolderthan thestratigraphicage,indicatingthatburialunderCenozoic forelandbasindepositswasnotenoughtoresettheZHe system. This is consistent with the limited degree of diagenesisandcementationobservedintheserocks.This pattern changes across the NPFT, where rocks from

Fig.4. A,B.ModeledthermalhistoryoftheEaux-ChaudesandBalaitous–Panticosasub-verticalprofiles.Theredlinecorrespondstothepathofthehottest (lowestelevation)sample(with95%credibleintervalrangeinmagenta)andthebluelinecorrespondstothecoolest(highestelevation)sample(with95% credibleintervalrangeincyan).Intermediatesamplesareshowningrey.Blackboxescorrespondtotheconstraintsimposedonthemodeling(seetextfor furtherinformation).C,D.Modeledgeothermalgradientsinredwith95%credibleintervalrangeingrey.E,F.Observedandmodel-predictedapatite(U–Th)/ He(AHe)andzircon(U–Th)/He(ZHe)uncorrectedagesversuselevation.ThepredictedtracklengthdistributiononsampleGY11isplottedinredwith95% credibleintervalsinorangeincomparisonwithobservedtracklengthdata(histograms).

(9)

Paleozoic to Albian age have been buried and heated enoughtoresettheZHesystem.IntheChaıˆnonsBe´arnais area,theeffectofburialwasreinforcedbyhighheatflow duringtheMiddleandLateCretaceoustimes,detectedby Ramanspectroscopyofcarbonaceousmaterialthat provid-edpaleo-temperaturesof250–3008C(Clercetal.,2015). TherangeofZHecoolingagesobtainedattestforlong-lived exhumation in the North Pyrenean Zone initiating at 50 Ma (including the Lakora thrust hanging wall), consistent with thermal modeling by Vacherat et al. (2014)intheMaule´onbasin.Totheeastofthestudyarea, AFTagesbyMeresse(2010)fromtheBagne`res-de-Bigorre NorthPyreneanmassifwerecenteredatca.41Ma.Farther east,alongtheECORS-Pyre´ne´estransect,mostoftheAFT data from the North Pyrenean basement rocks indicate exhumation during the Eocene (Fitzgerald et al., 1999; Morrisetal.,1998).Thesedatatogethersupportanearly exhumationoftheNorthPyreneanZoneduringtheEarlyto Middle Eocene. In the study area, we associate the

exhumation of the Chaıˆnons Be´arnais with the pop-up extrusionoftheformerNorthPyreneanbasinbytheNPFT to the north and the Lakora thrust and its eastern extensions such as the Eaux-Chaudes thrust (Teixell etal., 2016). Younger coolingages obtainedin the area, especiallyatdeepstratigraphiclevels,indicatethat thrust-related exhumation proceeded during younger times, causedbycontinuedupliftontheNPFTandprobablyalso by the thick-skinned basement thrusts of the southern Pyrenees,suchastheGavarnieandGuargathrusts(Fig.1B). ZHeagescenteredon34–40MainPermian–Triassicrocks indicate exhumationduring Middle and Late Eocene to Oligocene,whichisconsistentwiththeonsetofmolasse sedimentationofthis ageintheAquitainebasin (Biteau etal.,2006).Ontheotherhand,thesouthwardextentofthe Lakorathrustsheetisconstrainedbythenon-completely resetEocenesamplefromPicoMatz(GPY08),inagreement withthehangingwallrampoftheLakorathrustobserved intheLakoraklippe,6kmtothenorthofPicoMatz.

Fig.5.A,B.ModeledthermalhistoryoftheverticalprofilelocatedinthefootwallandhangingwalloftheLakorathrust.Theredlinecorrespondstothepath ofthehottest(lowestelevation)sample(with95%credibleintervalrangeinmagenta).Thebluelinecorrespondstothecoolest(highestelevation)sample (with95%credibleintervalrangeincyan).Intermediatesamplesareshowningrey.Blackboxescorrespondtotheconstraintsimposedintothemodeling (seethetextforfurtherinformation).C,D.Modeledgeothermalgradientsinblackwith95%credibleintervalrangeingrey.E,F.Observedandmodeled predictedapatite(U–Th)/He(AHe)andzircon(U–Th)/He(ZHe)uncorrectedagesversuselevation.

(10)

ZHeagesindicatethattheLakorathrustsheetandits immediate footwall of theAxial Zone cover underwent jointexhumationat30–36Ma(LateEocenetoOligocene), whichwemustattributetothrustfaultingundertheAxial Zone.ThiscoolingageiscorrelativewithLateEoceneto Early Oligocene conglomerate pulses in the Jaca basin, which are dominated by clasts derived from Lower to Middle Eocene turbidites (Puigdefa`bregas, 1975; Roige´ etal.,2016).Weattributethiseventtothemotionalong theGavarniethrust(Fig.1B),becauseitisthefirstmajor south-directedthrustthatunderliestheAxialZoneinthe studyarea,producingasignificantduplicationofPaleozoic rocks and creating a marked structural relief. This interpretation is in agreement with the timing of the GavarniethrustproposedbyTeixell(1996),Jolivetetal. (2007), and Labaume et al. (in review)on the basisof structuralrelationshipsandtectonics-sedimentation rela-tionshipsintheJacabasin,anddiffersfromMun˜ ozetal. (2013)attributionofthethrusttotheMiddle Eocene.It couldbe arguedthat the entireprofile of theGavarnie thrustsheetwasemplacedbelowtheZPRZ,andthatallthe exhumationwasdrivenbytheunderlyingGuargathrust (Fig. 1B), from the Late Eocene to the Miocene (e.g., samplesfromBalaitous,PanticosaandEaux-Chaudes).We considerthis unlikely forthestudyareaon thebasisof faultslip magnitudesand cross-sectionbalancingin the Jacabasin(e.g.,Teixell,1996), eveniftheGuargathrust causesacomponentofupliftontheAxialZone.Nodistinct thermochronology signal canbe attributedto theLarra thrust,probablybecausethisthin-skinnedbranchofthe Lakora thrustdid not createsignificant structural relief during its propagation in the Jaca basinfill during the Lutetian–Bartonian.

Followingtheseconsiderations,weattributethesecond ZHeageclusterat20–26MaobservedinthewesternAxial Zoneandthefastcoolingbetween30and20Mamodeled inthegraniticmassifstotheeasttocontinuedupliftofthe AxialZone along theGuargathrust. Thisactivityof the Guargathrustwascorrelatedtothemainemergenceofthe South Pyrenean thrust front of the External Sierras, recordedbytheLateOligocenetoAquitanian conglome-ratesand fluvialsandstonesoftheUncastilloFormation (Milla´netal.,2000;Puigdefa`bregas,1975;Teixell,1996). AHe data show exhumation signals between 6 and 10 Ma in the Eaux-Chaudes and Balaitous–Panticosa plutons,withsampleslocatedonbothsidesofthepresent drainagedivide(Fig.2).IntheBalaitous–Panticosaprofile, samplesonbothsidesofthedividecanbefitinasingle coherentmodel,indicatingthattheyexperiencedasimilar coolinghistory. Therefore, theincisionduring this time couldnotbecausedbythecaptureofthesouth-flowing EbroRiver,asdefendedbyFillonandvanderBeek(2012).

7. Conclusions

A low-temperature thermochronology study of the westernAxial ZoneofthePyrenees andof theadjacent Chaıˆnons Be´arnais (North Pyrenean Zone) provides the followingconstraintsonthetectonicanderosionalhistory ofthissegmentofthechain.

TheuppermostCretaceousforelandbasinsedimentsof theAquitainebasinhavenotbeenburiedenoughfor post-depositionalreset of theZHethermochronologysystem andpreservePermiantoJurassicdetritalsignals.

Within the Chaıˆnons Be´arnais, the ZHe system was resetandrecordcontinuedpop-up-likeexhumationofthe NorthPyreneanZonebetweentheNorthPyreneanFrontal Thrustandthemajorsouth-directedthrustsofLakoraand others further south (Gavarnieand Guarga) from50 to 26Ma(EocenetoOligocene).

TheleadingedgeoftheLakorathrustsheet,whichwas reportedtobringtheNorthPyreneanZoneontopofthe AxialZoneduringLateCretaceoustoMiddleEocenetimes, shows a cooling path at least from Early Eocene to Oligocene times.The Lakora thrust sheettogether with itsimmediatefootwallformingthepost-Variscancoverof the AxialZone wereexhumed throughtheZHe closure temperatureat36–30Ma(LateEocenetoOligocene)along theunderlyingGavarniethrust.Hence,thecoolingpathof theLakorathrustsheetistheresultoftheactivityofthe Lakorathrustitselfand oftheunderlyingGavarnie(and possiblyGuarga)thrusts.

Paleozoic sediments of the westernmost Axial Zone often yield scattered ZHe thermochronology results indicating partial reset. The granite samples from the Eaux-ChaudesandBalaitous–Panticosaplutonsprovidea good ZHe and AFTL Late Paleogene to Miocene signal, clearlyreflectedinmodelsasfastcoolingbetween30and 20 Ma(Late OligocenetoAquitanian).Weattribute this cooling to thrusting on the Guarga thrust, ultimately upliftingtheolderGavarniethrustsheetlyingabove.

AHe results from the Eaux-Chaudes and Balaitous– Panticosa plutons cluster at 9–8 Ma (Late Miocene) attesting for post-orogeniccoolingthat wasdetected in previousstudiesofthesouthernforelandbasin.

Acknowledgements

ThisworkwassupportedbyprojectsCGL2010-15416 and CGL2014-54180-P (MINECO, Spain) and PYRAMID (ANR, France), and by Ge´osciences Montpellier. We acknowledge the constructive reviews by Luis Barbero, Camille Clerc and theco-editor Yves Lagabrielle, which helped to improve the manuscript. Andreu Badia is thankedforfieldassistanceduringsampling.

AppendixA. Supplementarydata

Supplementarydataassociated withthisarticlecanbe found,intheonlineversion, athttp://dx.doi.org/10.1016/j. crte.2016.01.001.

References

Barnolas,A.,Teixell,A.,1994.Platformsedimentationandcollapseina carbonate-dominatedmarginofaforelandbasin(Jacabasin,Eocene, southernPyrenees).Geology22,1107–1110.

Beamud,E.,Mun˜ oz,J.A.,Fitzgerald,P.G.,Baldwin,S.L.,Garce´s,M.,Cabrera, L.,Metcalf,J.R.,2011.Magnetostratigraphyanddetritalapatitefission trackthermochronologyinsyntectonicconglomerates:constraints

(11)

ontheexhumationoftheSouth-CentralPyrenees.BasinRes.23,309– 331.

Biteau,J.-J.,LeMarrec,A.,LeVot,M.,Masset,J.-M.,2006.TheAquitaine Basin.Pet.Geosci.12,247–273.

Boirie,J.-M.,Souquet,P.,1982.LespoudinguesdeMendibelza:de´poˆtsde coˆnessous-marinsduriftAlbiendesPyre´ne´es.Bull.CentresRech. Explor.-Prod.ElfAquitaine6,405–435.

Ca´mara,P.,Klimowitz,J.,1985.Interpretaciongeodina´micadelavertiente centro-occidentalsurpirenaica.EstudiosGeol.41,391–404.

Cane´rot,J.,1985.ThealpinecycleoftheIberides(Spain):exampleof intraplatesedimentaryandtectonicevolution.Arch.Sci.38,37–62.

Choukroune,P.,Roure,F.,Pinet,B.,ECORS-PyreneesTeam,1990.Main resultsoftheECORS-Pyreneesprofile.Tectonophysics173,411–423.

Clerc, C.,Lahfid,A.,Monie´, P., Lagabrielle,Y.,Chopin, C.,Poujol,M., Boulvais,P.,Ringenbach,J.-C.,Masini,E.,deStBlanquat,M.,2015.

High-temperaturemetamorphismduringextremethinningofthe continentalcrust:areappraisaloftheNorthPyreneanpassive paleo-margin.SolidEarth6,643–668.

Farley,K.A.,2002.(U–Th)/Hedating:techniques,calibrations,and appli-cations.In:Porcelli,D.,Ballentine,C.J.,Wieler,R.(Eds.).Noblegasesin geochemistryandcosmochemistry.Rev.Miner.47,819–844.

Farley,K.A.,Wolf,R.,Silver,L.,1996.Theeffectsoflongalpha-stopping distanceson(U–Th)/Heages.Geochim.Cosmochim.Acta60,4223– 4229.

Farley,K.A.,Rusmore,M.E.,Bogue,S.W.,2001.Post-10Maupliftand exhumation ofthe northern CoastMountains, British Columbia. Geology29,99–102.

Fillon,C.,vanderBeek,P.,2012.Post-orogenicevolutionofthesouthern Pyrenees:constraintsfrominversethermo-kinematicmodellingof low-temperaturethermochronologydata.BasinRes.24,418–436.

Fillon,C.,Gautheron,C.,vanderBeek,P.,2013.Oligocene-Mioceneburial andexhumationofthesouthernPyreneanforelandquantifiedby low-temperaturethermochronology.J.Geol.Soc.170,67–77.

Fitzgerald,P.G.,Mun˜ oz,J.A.,Coney,P.J.,Baldwin,S.L.,1999.Asymmetric exhumationacrossthePyreneanorogen:implicationsforthetectonic evolutionofacollisionalorogen.EarthPlanet.Sci.Lett.173,157–170.

Flowers,R.M.,Ketcham,R.A.,Shuster,D.L.,Farley,K.A.,2009.Apatite(U– Th)/Hethermochronometryusingaradiationdamageaccumulation andannealingmodel.Geochim.Cosmochim.Acta73,2347–2365.

Gallagher,K.,2012.Transdimensionalinversethermalhistorymodelling forquantitativethermochronology.J.Geophys.Res.117,B02408, http://dx.doi.org/10.1029/2011JB00882.

Gallagher,K.,Charvin,K.,Nielsen,S.,Sambridge,M.,Stephenson,J.,2009.

MarkovchainMonteCarlo(MCMC)samplingmethodstodetermine optimalmodels,modelresolutionandmodelchoiceforEarthScience problems.Mar.Petrol.Geol.26,525–535.

Gibson,M.,Sinclair,H.D.,Lynn,G.J.,Stuart,F.M.,2007.Late-to post-orogenicexhumationoftheCentralPyreneesrevealedthrough com-binedthermochronologicaldataandmodeling.BasinRes.19,323– 334.

Green,P.F.,1985.Acomparisonofzetacalibrationbaselinesinzircon, spheneandapatite.Chem.Geol.58,1–22.

Guenthner,W.R.,Reiners,P.W.,Ketcham,R.A.,Nasdala,L.,Giester,G., 2013.Heliumdiffusioninnaturalzircon:radiationdamage, anisot-ropy,andtheinterpretationofzircon(U–Th)/Hethermochronology. Am.J.Sci.313,145–198.

Gunnell,Y.,Calvet,M.,Brichau,S.,Carter,A.,Aguilar,J.-P.,Zeyen,H.,2009.

Lowlong-termerosionratesinhigh-energymountainbelts:insights from thermo-and biochronology inthe EasternPyrenees. Earth Planet.Sci.Lett.278,208–218.

Jammes,S.,Manatschal,G.,Lavier,L.,Masini,E.,2009. Tectono-sedimen-taryevolutionrelatedtoextremecrustalthinningaheadofa propa-gatingocean:theexampleofthewesternPyrenees.Tectonics28, TC4012,http://dx.doi.org/10.1029/2008TC002406.

Jolivet,M.,Labaume,P.,Monie´,P.,Brunel,M.,Arnaud,N.,Campani,M., 2007.Thermochronologyconstraintsforthepropagationsequenceof theSouthPyreneanbasementthrustsystem(France–Spain). Tecton-ics26,1–17,http://dx.doi.org/10.1029/2006TC002080.

Ketcham,R.A.,Carter,A.,Donelick,R.A.,Barbarand,J.,Hurford,A.J.,2007.

Improvedmodellingoffissiontrackannealinginapatite.Am.Mineral. 92,789–798.

Labaume,P.,Se´guret,M.,Seyve,C.,1985.Evolutionofaturbiditicforeland basinandanalogywithanaccretionaryprism:exampleoftheEocene SouthPyreneanbasin.Tectonics4,661–685.

Labaume,P.,Meresse,P.,Jolivet,M.,Teixell,A.,Lahfid,A.,inreview. Tectono-thermalhistoryofanexhumedthrust-sheet-topbasin:an examplefromtheSouthPyreneanthrustbelt.Tectonics.(inreview). Lagabrielle,Y.,Bodinier,J.L.,2008.Submarinereworkingofexhumed subcontinentalmantlerocks:fieldevidencefromtheLherz perido-tites,FrenchPyrenees.TerraNova20,11–21.

Lagabrielle,Y.,Labaume,P.,deSaintBlanquat,M.,2010.Mantle exhuma-tion,crustaldenudation,andgravity tectonicsduring Cretaceous riftinginthePyreneanrealm(SWEurope):insightsfromthe geologi-calsettingofthelherzolitebodies.Tectonics29,1–26.

Maurel,O.,Monie´,P.,Pik,R.,Arnaud,N.,Brunel,M.,Jolivet,M.,2008.

TheMeso-Cenozoicthermo-tectonicevolutionoftheEastern Pyre-nees:an40

Ar/39

Arfissiontrackand(U–Th)/He thermochronologi-calstudyoftheCanigouandMont-Louismassifs.Int.J.EarthSci. 97,565–584.

McDowell,F.W.,McIntosh,W.C.,Farley,K.A.,2005.Aprecise40

Ar–39

Ar referenceagefortheDurangoapatite(U–Th)/Heandfissiontrack datingstandard.Chem.Geol.214,249–263.

Meresse,F.,2010.Dynamiqued’unprismeoroge´niqueintracontinental: e´volution thermochronologique(traces de fissionsur apatite) et tectoniquedelaZoneAxialeetdespiedmontsdesPyre´ne´es cen-tro-occidentales (The`se). Universite´ Montpellier II, Montpellier, France(277p.).

Metcalf,J.R.,Fitzgerald,P.G.,Baldwin,S.L.,Mun˜ oz,J.-A.,2009. Thermo-chronologyofaconvergent orogen:constraintsonthetiming of thrustfaultingandsubsequentexhumationoftheMaladetaPluton intheCentralPyreneanAxialZone.EarthPlanet.Sci.Lett.287,488– 503.

Milla´n,H.,Pueyo,E.L.,Aurell,M.,Aguado,A.,Oliva,B.,Martı´nezPen˜ a,M.B., Pocovı´, A., 2000. Actividad tecto´nicaregistrada en los depo´sitos terciariosdelfrentemeridionaldelPirineocentral.Rev.Soc.Geol. Espan˜ a13,279–300.

Morris,R.G.,Sinclair,H.D.,Yelland,A.J.,1998.ExhumationofthePyrenean orogen:implicationsforsedimentdischarge.BasinRes.10,69–85.

Mouthereau,F.,Filleaudeau,P.-Y.,Vacherat,A.,Pik,R.,Lacombe,O.,Fellin, M.G.,Castelltort,S.,Christophoul,F.,Masini,E.,2014.Placinglimitsto shorteningevolutioninthePyrenees:roleofmarginarchitectureand implicationsfortheIberia/Europeconvergence.Tectonics33,1–32, http://dx.doi.org/10.1002/2014TC003663.

Mun˜ oz,J.A.,1992.Evolutionofacontinentalcollisionbelt: ECORS-Pyre-neescrustalbalancedcross-section.In:McClay,K.R.(Ed.), Thrust Tectonics.ChapmanandHall,London,UK, pp.235–246.

Mun˜ oz, J.A.,Beamud,E.,Ferna´ndez, O.,Arbue´s, P.,Dinare`s-Turell, J., Poblet,J.,2013.TheAı´nsafoldandthrustobliquezoneofthecentral Pyrenees:kinematicsofacurvedcontractionalsystemfrom paleo-magneticandstructuraldata.Tectonics32,1142–1175.

Mutti,E.,Se´guret,M.,Sgavetti,M.,1988.Sedimentationanddeformation intheTertiarysequencesofthesouthernPyrenees.FieldTrip Guide-book7.In:AAPGMediterraneanBasinsConference, Nice(169p.).

Poitevin,C.,Labaume,P.,Gay,A.,Teixell,A.,2014.Duriftinga` l’inversion pyre´ne´ennedansle Bassin d’Aquitaine:interpre´tation duprofil sismiqueSt-Pe´ deBigorre-Condom.In:Re´s.24eRe´uniondesSciences

delaTerre,Pau,p.327.

Puigdefa`bregas,C.,1975.Lasedimentacio´nmola´sicaenlacuencadeJaca. Pirineos104,1–188.

Reiners,P.W.,Spell,T.L.,Nicolescu,S.,Zanetti,K.A.,2004.Zircon(U–Th)/ He thermochronometry: He diffusion and comparisons with

40

Ar/39

Ardating.Geochim.Cosmochim.Acta68,1857–1887.

Roige´,M.,Go´mez-Gras,D.,Remacha,E.,Daza,R.,Boya,S.,2016.Tectonic controlonsedimentsourcesintheJacabasin(MiddleandUpper Eocene ofthe SouthernPyrenees). C. R. Geoscience348, http:// dx.doi.org/10.1016/j.crte.2015.10.005(thisissue).

Romagny,A.,Mu¨nch,P.,Corne´e,J.J.,Corsini,M.,Azdimousa,A., Melinte-Dobrinescu,M.C.,Drinia,H.,Bonno,M.,Arnaud,N.,Monie´,P., Quil-le´ve´re´,F.,BenMoussa,A.,2014.LateMiocenetopresent-day exhu-mationandupliftoftheInternalZoneoftheRifchain:insightsfrom low-temperaturethermochronometryandbasinanalysis.J.Geodyn. 77,39–55.

Roure,F.,Choukroune,P.,Bera´stegui,X.,Mun˜ oz,J.A.,Villien,P.,Matheron, P.,Bareyt,M.,Se´guret,M.,Camara,P.,De´ramond,J.,1989.ECORSdeep seismicdataanddataandbalancedcross-sections:geometric cons-traintsontheevolutionofthePyrenees.Tectonics8,41–50.

Rushlow,C.R.,Barnes,J.B.,Ehlers,T.A.,Verge´s,J.,2013.Exhumationofthe southernPyreneanfold-thrustbelt(Spain)fromorogenicgrowthto decay.Tectonics32,843–860.

Sinclair,H.D.,Gibson,M.,Naylor,M.,Morris,R.G., 2005.Asymmetric growthofthePyreneesrevealedthroughmeasurementandmodeling oforogenicfluxes.Am.J.Sci.305,369–406.

Tagami,T.,1987.Determinationofzetacalibrationconstantforfission trackdating.Nucl.TracksRadiat.Meas.13,127–130.

Teixell,A.,1990.Alpinethrustsatthewesternterminationofthe Pyre-neanAxialZone.Bull.Soc.geol.France8,241–249.

Teixell,A.,1996.TheAnso´ transectofthesouthernPyrenees:basement andcoverthrustgeometries.J.Geol.Soc.London153,301–310.

Teixell,A.,1998.Crustalstructureandorogenicmaterialbudgetinthe West-centralPyrenees.Tectonics17,395–406.

(12)

Teixell,A.,Garcı´a-Sansegundo,J.,1995.Estructuradelsectorcentraldela CuencadeJaca(Pirineocentral).Rev.Soc.Geol.Espan˜ a8,207–220.

Teixell,A.,Labaume,P.,Lagabrielle,Y.,2016.Thecrustalevolutionofthe west-centralPyreneesrevisited:inferencesfromanewkinematic scenario.C.R.Geoscience348http://dx.doi.org/10.1016/j.crte.015. 10.010(thisissue).

Ternet,Y.,Majeste´-Menjoula`s,C.,Cane´rot,J.,Baudin,T.,Cocherie,A., Guerrot,C.,Rossi,P.,2004.Noticeexplicative,cartege´ol.France(1/ 50000),feuilleLaruns-Somport(1069).Orle´ans:BRGM.(192p.) Vacherat,A.,Mouthereau,F.,Pik,R.,Bernet,M.,Gautheron,C.,Masini,E.,

Le Pourhiet, L., Tibaric,B., Lahfid,A., 2014. Thermal imprint of

rift-relatedprocessesinorogensasrecordedinthePyrenees.Earth Planet.Sci.Lett.408,296–306.

Whitchurch,A.L.,Carter,A.,Sinclair,H.D.,Duller,R.A.,Whittaker,A.C., Allen,P.A.,2011.Sedimentroutingsystemevolutionwithina dia-chronouslyupliftingorogen:insightsfromdetritalzircon thermo-chronologicalanalysesfromtheSouth-CentralPyrenees.Am.J.Sci. 311,442–482.

Wolfe,M.R.,Stockli,D.F.,2010.Zircon(U–Th)/Hethermochronometryin theKTBdrillhole,Germany,anditsimplicationsforbulkHediffusion kineticsinzircon.EarthPlanet.Sci.Lett.295,69–82.

Figure

Fig. 1. A. Geological sketch of the Pyrenees with previous thermochronology results obtained in the Axial Zone (Fitzgerald et al., 1999; Gibson et al., 2007;
Fig. 2. Map of the western Pyrenean Axial Zone and adjacent Chaıˆnons Be´arnais, showing location of samples and thermochronological results; zircon (U–
Fig. 3. Apatite fission track (AFT) age-elevation plot of the Eaux-Chaudes and Balaitous–Panticosa granodiorites dataset (in red), and of the GPY14 sample from Paleozoic sediments in the westernmost Axial Zone (black).
Fig. 5. A, B. Modeled thermal history of the vertical profile located in the footwall and hanging wall of the Lakora thrust

Références

Documents relatifs

In the Saraille´ massif, we observed the following major features consistent with the model of distal, hot passive margins with exhumed mantle rocks proposed by Clerc and

The objective of this thesis is to improve our understanding of the weathering processes of mafic silicate rocks and element speciation and migration in the boreal environments (White

The various capital asset tables in the database are tied to the visual interface using an ODBC (Open Database Connectivity) driver. This function utilizes SQL

As assisted living facilities become more recognized by the general public and health care professionals, so will the likelihood that municipalities will accept this form

Michel Sivignon montre non seulement les problématiques autour de la multiplication des frontières interétatiques dans les Balkans depuis 1990, mais revient

L’article offre ainsi un point de vue original, à partir des exemples caribéen et subsaharien, puisqu’il n’aborde pas les politiques qui visent à

Le contrôle des organistes sur l’attaque d’une note étant limité, peu d’études se sont intéressée au contrôle des caractéristiques des transitoires d’attaque des

In Table 6 , we list the final model parameters for our joint fit of both seasons of data assuming star spots distributed on the primary component, and in Table 7 we list the