• Aucun résultat trouvé

Discharge properties of neurons recorded in the parvalbumin-positive (PV1) nucleus of the rat lateral hypothalamus

N/A
N/A
Protected

Academic year: 2021

Partager "Discharge properties of neurons recorded in the parvalbumin-positive (PV1) nucleus of the rat lateral hypothalamus"

Copied!
5
0
0

Texte intégral

(1)

Discharge

properties

of

neurons

recorded

in

the

parvalbumin-positive

(PV1)

nucleus

of

the

rat

lateral

hypothalamus

Alessandra

Lintas

a,b,∗

aDepartmentofMedicine/UnitofAnatomy,UniversityofFribourg,Switzerland bNeuroheuristicResearchGroup,HECLausanne,UniversityofLausanne,Switzerland

h

i

g

h

l

i

g

h

t

s

•Random-likefiringcharacterizedthemajorityofPV1cells.

•OscillationsinthedeltarangewereobservedintheposteriorpartofPV1nucleus. •Theasynchronousactivityproducesanetwork-driveneffectonthePV1-targetarea.

Thisstudyreportsforthefirsttimetheextracellularactivityrecorded,inanesthetizedrats,fromcells locatedinanidentifiedclusterofparvalbumin(PV)-positiveneuronsofthelateralhypothalamusforming thePV1-nucleus.Random-likefiringcharacterizedthemajority(21/30)ofthecells,termedregularcells, withamedianfiringrateof1.7spikes/s,Fanofactorequalto1,andevenlydistributedalongthe rostro-caudalaxis.Fourcellsexhibitinganoscillatoryactivityintherange1.6–2.1Hzwereobservedonlyin theposteriorpartofthePV1-nucleus.TheasynchronousactivityofPV1neuronsislikelytoproducea “network-driven”effectontheirmaintargetwithintheperiaqueductalgraymatter.Thehypothesisis raisedthatbackgroundrandom-likefiringofPV1-nucleusisassociatedwithfunctionalnetworkactivity likelytocontributedynamicinformationrelatedtoconditiontransitionsofawarenessandnon-conscious perception.

1. Introduction

Severaltypesofcellsintermingledwiththeaxonsofthemedial forebrainbundlearelocatedinthelateralhypothalamicarea(LHA). Thesecellgroupshavetendencytobewidelydispersed,ratherthan confinedwithinanatomicallydistinctnuclei,despitethefactthey oftenformgroupsoffunctionallyrelatedneurons[1,2].Onthe con-trarytothistendency,inthelateralhypothalamusofrodentsawell identifiedclusterofparvalbumin(PV)-positiveneuronshasbeen described[3].InrodentsthePV-positiveneuronsrepresentthevast majorityofthecellsbelongingtoaclearlydistinct cytoarchitecton-icallyandneurochemicallydefinedlateralhypothalamicarea,for

∗ Correspondenceto:UniversityofLausanne,Internef138.2,CH-1015Lausanne, Switzerland.Tel.:+41216923587.

E-mailaddresses:Alessandra.Lintas@neuroheuristic.org,

Alessandra.Lintas@unil.ch

theyareconsideredtoformanentitytermedPV1-nucleus[4,5]. Inprimatesthisregionisreferredtoasthelateraltuberalnucleus (LTN)[7].

Three cell types were observed in the rodent PV1-nucleus: smallPV immunoreactiveneurons preferentially locatedin the anteriorpart of thenucleus, largePV immunoreactiveneurons preferentiallylocated in the posterior part of thenucleus, and PV-negativeneurons[4].Accordingtotopographicalmappingof thegene expression and double-labeling for glutamateand for PVitisextremelylikelythatthePV-positiveneuronsofthe PV1-nucleusareglutamatergicprojectingneurons[4,8].Glutamateis anexcitatoryaminoacidassumedtorepresentthemain neuro-transmitterusedfordistributionandtransmissionofinformation in the brain [9]. The recent study of the PV1-nucleus efferent projectionsrevealedthatitsmajortargetisanarrowcolumnof terminalfieldslocatedipsilaterallyattheedgeofthe periaqueduc-talgray(PAG),ventrolateraltotheaqueduct,notcoincidingwith anyknownsubdivisionofthePAG[5].Itisinterestingtonoticethat

Published in 1HXURVFLHQFH/HWWHUV ±

which should be cited to refer to this work.

(2)

elsewhereinthebrainPV-stainedneuronscorrespondto GABAer-gic cells [3] mediating an inhibitory effect through GABA(A) receptors,thusexertingaregulatoryfunction,eitherviaadirect inhibitionoranindirectdisinhibition[10].Hence,GABAergic neu-ronsandPVaregenerallyassociatedandtheirroleincontrolling synapticplasticity,modulatingthefiringpattern,andthe spike-timing-dependentplasticityhasbeenclearlyestablished[11–15]. The factthat thePV1-nucleusis likely tobecomposedby glu-tamatergiccells expressingPVandthatitsmaintargetisawell delimitedcolumnofcellsontheedgeoftheipsilateralPAGraises thequestionwhetheritsfunctionistointegrate,relayandtransmit aninformationorrathertoregulatetheactivityofthetargetcells. TheaimofthisstudyistoinvestigatePV1-nucleusfiringpattern andtosuggestitsfunctionalrole.

2. Materialsandmethods

All experimental procedures were conducted in accordance withethicalprinciplesandguidelinesforexperimentsonanimals mandatedbytheSwissAcademyofMedicalSciencesandSwiss AcademyofSciences(3rded.,2005)undercontrolofthe Veteri-naryCommissionforAnimalResearchoftheCantonofFribourg, Switzerland.

2.1. Subjectsandsurgicalprocedure

AdultWistarratswerehousedinpairsona12h/12hlight/dark cycle,andfoodand wateravailableadlibitum.Therats, weigh-ing 280–350g, were anesthetized with a mixture of ketamine (75mg/kgBW)and xylazine(10mg/kgBW)dilutedinsaline. All surgicalwoundswereinfiltratedsubcutaneouswithScandicaine 0.5%(AstraZeneca)forlocalanesthesia.Theanimalsweremounted in a stereotaxic frame,a hole wasdrilled in theskull and one microelectrodewasadvancedverticallyby5␮mstepsaimedtothe lateralhypothalamicPV1-nucleus[4].Thebodytemperaturewas monitoredandmaintainedintherange38–39◦C.Thepedal with-drawalreflexwasperiodicallycheckedand supplementaldoses ofketaminewereprovidedduringthewholerecordingsessionif necessary.

2.2. Electrophysiologicalrecordings

The recordingswereperformed inthe lefthemisphere with glass-coatedplatinum-platedtungstenmicroelectrodeshavingan impedance in the range 0.5–2M measured at a frequency of 1kHz. Signalsfromthemicroelectrodeswereamplified, filtered (400Hz–20kHz)viewedonanoscilloscope,anddigitallyrecorded in WAV format(44,100Hzsampling rate,16 bitresolution)for computerizedofflineanalysiswithtemplatematchingspike sor-tingalgorithmatatimeresolutionof1ms[16].Thefirstrecording sessionstartedapproximately90minaftertheendofthesurgical preparation.Thedataweregatheredduringspontaneousactivity, i.e.intheabsenceofanyoperator-inducedstimulation,fora con-tinuousintervalof300–600s.Allrecordingsstartedatleast15min afteranysupplementarydoseofanestheticandterminatedatleast 20minbeforeanewinjection,thusassumingtherecording condi-tionscorrespondedtoasteadylevelofanesthesia.

2.3. Histologicalandimmunohistologicalprocedures

Attheendoftherecordingsessions(lasting4–6h)electrolytic lesionswereplacedatspecificdepthsoftheelectrodetrackusing10 currentpulsesof8␮Afor7satregularintervalsof10s.Atthe con-clusionoftheexperiments,animalsweredeeplyanesthetizedand transcardiallyperfusedwithisotonicsalineimmediatelyfollowed by fixative solution (4% paraformaldehydein phosphate buffer

Fig.1. Histologicalanalysis.(A)Microphotographofacoronalsection(atInteraural level6.1stainedwithcresylvioletandPV-immunostainingshowinga represen-tativeelectrodepenetrationaimingthePV1-nucleus.Theentireelectrodetrackis representedbyadottedline.(B)Enlargementofthepreviouspanelemphasizing theelectrolyticlesionwithinthePV1-nucleusatthecenterofthecircle.Scalebaris 1mm.

0.1M,pH7.3).Brainswereremovedandplacedin18%solutionof sucroseinphosphatebufferedcontaining0.1%sodiumazideforone dayat4◦C.Theywerethenfrozeninpulverizeddryice.The speci-menswerecryosectionedinto50␮m-thicksectionsandcollected in 0.1M phosphate buffer (pH 7.3). Immunofluorescence- and immunoperoxidase-stainingtechniqueswereconducted accord-ingtopublishedprotocols[4].Thesectionswerestainedwithcresyl violetforthereconstructionoftheelectrodetracksandlocalization oftheelectrolyticlesions.

2.4. Statisticalanalysis

Spike trains were analyzed by renewal density histograms scaledinrateunits(spikes/s).Foreachhistogram,the99% con-fidencelimitswerecalculated, assumingthat spikeoccurrences followedaPoissondistribution.TheFanofactor(equalto1fordata followingaPoissonprocess)wasusedtocharacterizethe variabil-ityofthespiketrain[17].Statisticalanalyseswereperformedwith theRProjectforStatisticalComputing(http://www.r-project.org/).

3. Results

Animalsfoundtohavetrackswithplacementsoutsideofthe targeted areacorrespondingto thePV1-nucleuswere excluded fromanalysis.Thefinal sampleincludeda totalof 15electrode penetrationsperformedinthelefthemisphereof8 rats.Taking into consideration the tissue retraction during the histological processing, thebacklashof theelectrode advancement and the stereotaxic positioningoftheelectrodes,it is assumedthat the siteofasingleunitrecordingcanbeestimatedwithamarginof 50–80␮mofuncertaintyalongtheverticaltrack.Fig.1illustrates anexampleofarecordingtrackwithanelectrolyticlesionwithin thePV1-nucleus.Atotalof30singleunitswereclearlylocalized intheareaofthePV1-nucleus.Thesecellswerecharacterizedby stablefiringactivity,i.e.samefiringrateduringthefirst100sand thelast100softherecordingsession.Additional25singleunits wererecordedalongthesametracks,buttheirlocationwasclearly notinthePV1-nucleusafterhistologicalcheck.

ThreetypesoffiringpatternsofPV1cellswereidentifiedduring thespontaneousactivitybytheanalysisoftheautocorrelograms. Thefirstpatternistypicalofthoseneuronswithaconstant prob-ability to spike, corresponding to a flat autocorrelogram, thus formingthe“regular”(REG)typeclassofcells(Fig.2A).Thisclass wasthemostfrequentlyobserved(70%,n=21)withamedianfiring rateequalto1.7spikes/s.Cellsshowingatendencytodeviatefrom aconstantprobabilityoffiringwereclassifiedeitherin“bursting cells”(BC,n=5),characterizedbyahumpintheautocorrelogram neartimezero(Fig.2C),orin“oscillatorycells”(OSC,n=4),inthe range1.6–2.1Hz(Fig.2D).

(3)

Fig.2.Firingpatternsduringspontaneousactivity.(A,C,D)Intheupperpartof eachpanelthereisarasterdisplayofthespiketrainandinthelowerpartthereare theoscilloscopetraceoftheextracellularlyrecordedsingleunitandthe autocorrel-ogramsmoothedbyaGaussianbinof25msshowingthefiringrate(spikes/s)asa functionofthelag(ms).(A)Aregularcell(#PA1D02c1).(B)Distribution(in loga-rithmicscale)oftheregularcells’firingratewiththekerneldensityplot(solidline) andtheGaussianfit(dottedline).(C)Aburstingcell(#PA1D01nc3).(D)An oscilla-torycell(#PA6D03c2).(E)DistributionofPV1cellstypes(REG,blackdots;BC,grey dots;OSC,whitedots)alongtherostro-caudalaxis,(Interauralcoordinates5.0–7.0). Abbreviations:3dv:thirdventricule;DMH:dorsomedialhypothalamicnucleus;fx: fornix;IHA1:partoftheintermediatehypothalamicarea;ISM:interstitialnucleusof thestriaterminalis;ot:optictract;sm:medullarystria;TUL:lateraltuberalnucleus; TUMM:tuberomammillarynucleus;VMH:ventromedialhypothalamicnucleus. Modifiedfrom[4].

Table1 shows thevaluesof thefiringrates and Fanofactor forallcellclasses.ThefiringrateswerenotGaussiandistributed (D’Agostino–Pearson normalitytest, omnibusK2=2.97, p<0.01),

but taking the logarithm of the firing rates of all cell groups weobservedanormaldistribution(D’Agostino–Pearson normal-itytest,omnibusK2=1.61,p=0.45).Itisinterestingtonoticethe Table1

Firingrate(median,mean±S.E.M.)andFanofactorofPV1-nucleusspiketrains. Statisticsaredescribedinthetext.

Celltype Total REG BC OSC

N 30 21 5 4 (100%) (70%) (17%) (13%) Firingrate 1.7 1.7 1.5 2.5 (spikes/s) (2.2±0.2) (2.0±0.2) (2.2±0.9) (2.9±0.8) Fanofactor 1.0 1.0 1.6 1.1 (1.1±0.1) (1.0±0.1) (1.6±0.1) (1.1±0.1)

log-normaldistributionofthefiring ratesof classREG neurons (Fig.2B).AFanofactorvaluenear1suggeststhatthedynamics oftheprocessesproducingtheneuronaldischargeisessentially random.TheREGandOSCFanofactorvalueswereGaussian dis-tributed(D’Agostino–Pearson normalitytest, omnibus K2=1.26,

p=0.53).

Thefiringratesofthethreecellgroupswerecomparedwitha one-wayANOVA.Bartlett’stestdidnotshowaviolationof homo-geneityofvariances(K2(2)=1.12,p=0.57)andnosignificanteffect

wasfoundofthecelltypeonthelogarithmicdistributionofthe fir-ingrate((2,27)=0.70,p=0.51).Thecomparisonbetweenthethree groupsusingnonparametricKruskal–Wallistestrevealeda signifi-canteffectofthecelltypeonFanofactor(2=12.34,p<0.01).A

post-hoctest usingMann–WhitneytestswithHolm–Bonferroni correctionshowednodifferencebetweenREGandOSCcellsand significantdifferencesbetweenOSCandBCcells(p<0.05,r=0.66) and betweenREG and BC cells (p<0.01, r=0.82).These results shouldneverthelessbeconsideredwithcautionbecausethesample sizeofBCandOSCgroupsisextremelysmall.ThePV1nucleuswas subdivedonthebasisoftheanatomicalsampling.Thefourmost anteriortracks(intheInterauralrange6.3–6.8)andthefourmost posteriortracks(intheInterauralrange5.4–6.2)weregroupedin twosamples.Fig.2Eshowsthatregularcellswereevenlysampled throughoutthenucleus,whereas theBCcells tendedtoappear intheanteriorpartandOSCcellsintheposteriorpart.The like-lihoodofobtainingtheobserveddistributions offiringpatterns acrossthetwoparts ofPV1-nucleuswasestimatedby comput-ingthelikelihood-ratiostatistics(2=7.39,p<0.05)thatrejected

thehypothesisthatnodifferenceexistedbetweentheanteriorand posteriorpart.

Pairsofcellswererecordedfromthesameelectrodetipin8 sites.Intwoofthesesitesthreecellswererecordedsimultaneously. Overallthirteencrosscorrelogramscouldbecomputedandallwere characterizedbyaflatcurve,thusshowingtheindependanceof firingandnointeractionbetweenpairsofsimultaneouslyrecorded cells.

4. Discussion

Themainfindingofthisstudyisthatregularcells,withamedian firingrateof1.7spikes/sandFanofactorequalto1,representthe typicalclass(70%oftherecordings)ofPV1cellsevenlydistributed alongtherostro-caudalaxis.Theregularcellsfiringpatternis char-acterizedbyarandomspiketrainsothatsuccessivespikeintervals arestatisticallyindependentandgenerateaflatautocorrelogram [18].Pairsofcellsrecordedsimultaneouslydidnotshowanysignof functionalinteractionandfourcellsexhibitinganoscillatory activ-itywithinanarrowrangeoftheı-frequencyband(0.5–4Hz)were observedonlyintheposteriorpartofthePV1-nucleus.

Ifaneuronfiresrandomly,itislikelytohavelittleeffect,ifany, onitstargetunlessitsactivityistime-lockedtoaseriesofother spikesconvergingtothesamecell[19].Asynchronousactivityin anunstructured,sparselyconnectednetworkwithweaksynaptic couplingsfallsinastatesuchthatanexternalinputmayfavor infor-mationtransmissioninthetargetstructure[20,21]andtriggerthe transitionofanactivitypatterninaneuralnetwork[22–24].The randomfiringpropertiesofPV1neuronssuggestthatglutamate isreleasedasynchronously atsynapticterminalsand that “net-workdriven”PV1excitatoryactivitymightcontributetoachieve temporal frequency modulation of selectedpatterns of activity [25–27].Noticethatallcellswererecordedundergeneral anes-thesiainducedbyketamineandxylazineandnotbyurethane,but thisdoesnotdiscardthatquitedifferentactivitycouldoccurduring normalbehavior.

(4)

Spontaneousactivityis determinedbya combination of cir-cuitandcellularelectrophysiologicalproperties.Sourcesofcellular noise include theion channelsof excitablemembranes, synap-tictransmissionandnetworkinteractions.Despitethedominance ofK+currentsthecontributionofCa-activatedKcurrentstothe

resting potential of neurons is widely recognized, particularly in PV-expressing neuronsfiringrandomlyand in burst [14,28]. Large-conductance calcium-activated potassium channels (BK), small-conductance Ca2+-activated potassium channels (SK) and

Ca2+-activatednonselectivecationchannelsregulatespontaneous

firinginacomplementarymanner[29,30].ParvalbuminisaCa2+

buffer proteincharacterized by a slow-onset Ca2+ binding that

generallydoesnotaffecttheinitialamplitudeofCa2+transients,

butthenacceleratestheearlyphaseoftheintracellularCa2+

con-centration,thusaffectingshort-termplasticityandcontrollingthe intracellularCa2+availabletoSKchannels[30].LossofPVleadsto

enhancedsusceptibilitytoepilepticseizure[12]andmodifications ofthefiringpatternsatthethalamocorticallevel[13,15].The ques-tionisraisedwhetherfiringpatternsotherthantheregularfiring correspondtodistinctcellpopulations,maybelyingintheborder ofthenucleus,orwhethertheyaregeneratedbycellsthatareina differentfunctionalstate.

Threecelltypes,namelysmallandlargePV-positiveneurons aswellasPV-negativeones,werereportedinPV1-nucleus[6,4]. Despitethesmallnumbersofoursamplesthefewcells(n=4) char-acterizedbyactivityintheı-frequencyrangewereallrecordedin theposteriorpartofthenucleus.Theexperimentalmethodused heredoesnotallowtoidentifywhich celltype isassociated to whichfiringpattern,butthelargestobservedamplitudesofthe extracellularlyrecordedspikewaveformswerethoseofthe oscil-latorycells.Thespikeamplitudeisroughlyproportionaltothesum ofthecross-sectionalareasofthedendritesconnectedtothecell body[31].Thus,largerneuronsarelikelytogenerate extracellu-larspikeswithlargeramplitudesandthelargePVimmunoreactive neuronswerepreferentiallyreportedintheposteriorpartofthe nucleus[4].

Thefewoscillatorycellswereobservedwithfrequencies asso-ciated withdeep sleep. Interestingly,in thedendrites of other PV-positivecells (located in thethalamicreticularnucleus) the interplayofSKchannels,transientvoltage-gatedcalciumchannels (Tchannels),and sarcoendoplasmicreticulumcalciumtransport ATPasescomprises aspecializedCa2+ signalingtriad toregulate

oscillatorydynamicsrelatedtosleep[32].Thecurrentcontinuous recordingtimeforonecellwasatmost20min,wellbelowthe ultra-dianrhythmof1cycleper100min[33].Thepossibilitythatthe oscillatorycellsarenotpartofaseparatepopulation,butcellsin aparticularstateofsleep,cannotbediscardedapriori,inspiteof thefactthatnocellwasobservedswitchingbetweenregularand oscillatoryfiringmodes.

In Huntington’s disease [34] and Pick’s disease [35] selec-tive neuropathological changes were observed in the human LTN. Despite different etiology both diseases exhibit progres-sive impairementof speechproduction akinof speech apraxia accompaniedbyadecreaseincognitiveabilitiesleadingto demen-tia akin of frontotemporal dementia. No precise functions are known to be associated with the area of the PAG reachedby PV1-nucleus efferent projections. However, it is worth repor-tingthat lesionsof PAGaffectstates of consciousness[36] and thatPAGreceivesafferencesfromtheprefrontalcortex[37]and projectstointralaminarandmidlinethalamicnuclei[38]. More-over, PV is highly expressed in the thalamic reticular nucleus [13]whichplaysakeyrolein‘gating’consciousness[39].These observationstakentogetherwiththepresentfindingsmaysuggest thattheactivityofPV1-nucleusregulatespsychomotorfunctions in the framework of an extended reticular thalamic activating system.

5. Conclusions

Itispossibletospeculatethattheasynchronousactivity char-acteristicofthePV1neuronsisgeneratedintrinsically,subjectto modulationbysynapticinputs,intracellularCa2+concentrations,

and that the “network-driven” effect on their target may pro-ducevariousfiringpatternswithtransitionsinducedthroughsmall changesinPV1neuronalactivity.Thehypothesisisraisedthatthe firingpattern ofPV1-nucleusparticipatestofunctionalnetwork activitycontrollingdynamicinformationrelatedtocondition tran-sitionsassociatedwithawarenessandnon-consciousperception.

Acknowledgments

TheauthorthanksM.R.Celio,A.E.P.Villa,B.SchwallerandR. Kretzfortheirsuggestionsand M.Kaczorowski,C. MartiandS. Eichenbergerfortheirtechnicalassistance.

References

[1]J.C.Sipe,R.Y.Moore,Thelateralhypothalamicarea,CellTissueRes.179(1977)

177–196.

[2]C.Saper,L.Swanson,W.Cowan,Anautoradiographicstudyoftheefferent

con-nectionsofthelateralhypothalamicareaintherat,J.Comp.Neurol.183(1979)

689–706.

[3]M.R.Celio,CalbindinD-28kandParvalbuminintheratnervoussystem,

Neu-roscience35(1990)375–475.

[4]Z. Mészár, F. Girard, C.B. Saper, M.R. Celio, The lateral hypothalamic

parvalbumin-immunoreactive(PV1)nucleusinrodents,J.Comp.Neurol.520

(2012)798–815.

[5]M.R.Celio,A.Babalian,Q.H.Ha,S.Eichenberger,L.Clément,C.Marti,C.B.Saper,

Efferentconnectionsoftheparvalbumin-positive(PV1)nucleusinthelateral

hypothalamusofrodents,J.Comp.Neurol.521(2013)3133–3153.

[6]L.M.Geeraedts,R.Nieuwenhuys,J.G.Veening,Medialforebrainbundleofthe

rat:IV.Cytoarchitectureofthecaudal(lateralhypothalamic)partofthemedial

forebrainbundlebednucleus,J.Comp.Neurol.294(1990)537–568.

[7]R.Bleier,P.Cohn,I.R.Siggelkow,Acytoarchitectonicatlasofthehypothalamus

andhypothalamicthirdventricleoftherat,in:P.J.Morgane,J.Panksepp(Eds.),

HandbookoftheHypothalamus,AnatomyoftheHypothalamus,vol.1,Marcel

Dekker,Inc,NewYork,1979,pp.137–220.

[8]F.Girard,Z.Meszar,C.Marti,F.P.Davis,M.Celio,Geneexpressionanalysisinthe

parvalbumin-immunoreactivePV1nucleusofthemouselateralhypothalamus,

Eur.J.Neurosci.34(2011)1934–1943.

[9]C.G.Parsons,W.Danysz,W.Zieglgänsberger,Excitatoryaminoacid

neurotrans-mission,Handb.Exp.Pharmacol.169(2005)249–303.

[10]J.M.Tepper,C.J.Wilson,T.Koós,Feedforwardandfeedbackinhibitionin

neos-triatalgabaergicspinyneurons,BrainRes.Rev.58(2008)272–281.

[11]O.Caillard,H.Moreno,B.Schwaller,I.Llano,M.R.Celio,A.Marty,Roleofthe

calcium-bindingproteinparvalbumininshort-termsynapticplasticity,Proc.

Natl.Acad.Sci.U.S.A.97(2000)13372–13377.

[12]B.Schwaller,I.V.Tetko,P.Tandon,D.C.Silveira,M.Vreugdenhil,T.Henzi,M.C.

Potier,M.R.Celio,A.E.Villa,Parvalbumindeficiencyaffectsnetworkproperties

resultinginincreasedsusceptibilitytoepilepticseizures,Mol.Cell.Neurosci.

25(2004)650–663.

[13]L.Albéri,A.Lintas,R.Kretz,B.Schwaller,A.E.Villa,Thecalcium-bindingprotein

parvalbuminmodulatesthefiringpropertiesofthereticularthalamicnucleus

burstingneurons,J.Neurophysiol.109(2013)2827–2841.

[14]D.Orduz,D.P.Bischop,B.Schwaller,S.N.Schiffmann,D.Gall,Parvalbumin

tunesspike-timingandefferentshort-termplasticityinstriatalfastspiking

interneurons,J.Physiol.591(2013)3215–3232.

[15]A. Lintas, B. Schwaller, A.E.P. Villa, Visual thalamocortical circuits in

parvalbumin-deficientmice,BrainRes.1536(2013)107–118.

[16]Y.Asai,T.Aksenova,A.E.P.Villa,On-linereal-timeorientedapplicationfor

neu-ronalspikesortingwithunsupervisedlearning,Lect.NotesComput.Sci.3696

(2005)109–114.

[17]L.Sacerdote,A.E.Villa,C.Zucca,Ontheclassificationofexperimentaldata

modeledviaastochasticleakyintegrateandfiremodelthroughboundary

values,Bull.Math.Biol.68(2006)1257–1274.

[18]G.P.Moore,D.H.Perkel,J.P.Segundo,Statisticalanalysisandfunctional

inter-pretationofneuronalspikedata,Annu.Rev.Physiol.28(1966)493–522.

[19]Y.Yarom,J.Hounsgaard,Voltagefluctuationsinneurons:signalornoise?

Physiol.Rev.91(2011)917–929.

[20]A.A.Faisal,L.P.Selen,D.M.Wolpert,Noiseinthenervoussystem,Nat.Rev.

Neurosci.9(2008)292–303.

[21]S.Ostojic,Twotypesofasynchronousactivityinnetworksofexcitatoryand

inhibitoryspikingneurons,Nat.Neurosci.17(2014)594–600.

[22]R.R.Llinás,Theintrinsicelectrophysiologicalpropertiesofmammalian

neu-rons:insights into centralnervous system function, Science 242 (1988)

1654–1664.

(5)

[23]D.J. Amit, A. Treves, Associative memory neural network with low

temporal spiking rates, Proc. Natl. Acad. Sci. U.S.A. 86 (1989) 7871–

7875.

[24]M.Häusser,I.M.Raman,T.Otis,S.L.Smith,A.Nelson,S.duLac,Y.

Loewen-stein,S.Mahon,C.Pennartz,I.Cohen,Y.Yarom,Thebeatgoeson:spontaneous

firinginmammalianneuronalmicrocircuits,J.Neurosci.24(2004)9215–

9219.

[25]J.Iglesias,A.E.P.Villa,Effectofstimulus-drivenpruningonthedetectionof

spatiotemporalpatternsofactivityinlargeneuralnetworks,BioSystems89

(2007)287–293.

[26]J.P.Segundo,Whatcanneuronsdotoserveasintegratingdevices?J.Theor.

Neurobiol.5(1986)1–59.

[27]Y.Chen,H.Zhang,H.Wang,L.Yu,Y.Chen,Theroleofcoincidence-detector

neu-ronsinthereliabilityandprecisionofsubthresholdsignaldetectioninnoise,

PLoSONE8(2013)e56822.

[28]P.Coulon,D.Herr,T.Kanyshkova,P.Meuth,T.Budde,H.C.Pape,Burstdischarges

inneuronsofthethalamicreticularnucleusareshapedbycalcium-induced

calciumrelease,CellCalcium46(2009)333–346.

[29]J.A.Goldberg,C.J.Wilson,Controlofspontaneousfiringpatternsbytheselective

couplingofcalciumcurrentstocalcium-activatedpotassiumcurrentsinstriatal

cholinergicinterneurons,J.Neurosci.25(2005)10230–10238.

[30]B.Schwaller,Thecontinuingdisappearanceof“pure”Ca2+buffers,Cell.Mol.

LifeSci.66(2009)275–300.

[31]K.H.Pettersen,G.T.Einevoll,Amplitudevariabilityandextracellularlow-pass

filteringofneuronalspikes,Biophys.J.94(2008)784–802.

[32]L.Cueni,M.Canepari,R.Lujan,Y.Emmenegger,M.Watanabe,C.T.Bond,P.

Franken,J.P.Adelman,A.Luthi,T-typeCa2+channels,SK2channelsandSERCAs

gatesleep-relatedoscillationsinthalamicdendrites,Nat.Neurosci.11(2008)

683–692.

[33]K.Grass,H.Prast,A.Philippu,Ultradianrhythminthedeltaandthetafrequency

bandsoftheEEGintheposteriorhypothalamusoftherat,Neurosci.Lett.191

(1995)161–164.

[34]H.P.Kremer,R.A.Roos,G.M.Dingjan,G.T.Bots,G.W.Bruyn,M.A.Hofman,The

hypothalamiclateraltuberalnucleusandthecharacteristicsofneuronalloss

inHuntington’sdisease,Neurosci.Lett.132(1991)101–104.

[35]H.Braak,E.Braak,Pick’sdisease:cytoskeletalchangesinthehypothalamic

lateraltuberalnucleus,BrainRes.802(1998)119–124.

[36]E.E.Benarroch,Periaqueductalgray:aninterfaceforbehavioralcontrol,

Neu-rology78(2012)210–217.

[37]S.R.Sesack,A.Y.Deutch,R.H.Roth,B.S.Bunney,Topographicalorganizationof

theefferentprojectionsofthemedialprefrontalcortexintherat:an

antero-gradetract-tracingstudywithPhaseolusvulgarisleucoagglutinin,J.Comp.

Neurol.290(1989)213–242.

[38]A.A.Cameron,I.A.Khan,K.N.Westlund,K.D.Cliffer,W.D.Willis,Theefferent

projections ofthe periaqueductal gray in the rat: a Phaseolus

vulgaris-leucoagglutininstudy.I.Ascendingprojections,J.Comp.Neurol.351(1995)

568–584.

[39]F.Crick,Functionofthethalamicreticularcomplex:thesearchlighthypothesis,

Proc.Natl.Acad.Sci.U.S.A.81(1984)4586–4590.

Figure

Fig. 1. Histological analysis. (A) Microphotograph of a coronal section (at Interaural level 6.1 stained with cresyl violet and PV-immunostaining showing a  represen-tative electrode penetration aiming the PV1-nucleus
Fig. 2. Firing patterns during spontaneous activity. (A, C, D) In the upper part of each panel there is a raster display of the spike train and in the lower part there are the oscilloscope trace of the extracellularly recorded single unit and the  autocorr

Références

Documents relatifs

Le concept de pharmacie totale (Total pharmacy care) proposé par Holland et Nimmo repose sur l’inté- gration de 5 modèles/domaines de la pratique pharma- ceutique, soit la

Eine Dia- gnostik für eine latente TB soll nur bei Personen mit erhöhtem TB-Risiko, er- höhtem beruflichen Risiko und Kontakt- personen mit offener TB vorgenommen werden und sollte

We repeat that our aim was to present bridges between thermodynamic data determined from experimental results and the very varied observations on coexisting mineral composition

Results are computed using the FGD VaR procedure and the BAGV method for a 12-dimensional data set simulated using different individual (squared) volatility functions..

We first analyzed the secretion levels of correctly assembled antibodies in the Fab and IgG format by ELISA (depicted in Fig. To compare the improvements caused by the muta- tions,

Fig n°46 : Modèles saisonniers reliant les débits solides aux débits liquides pour la station d’Ouenza 121 Fig n°47 : Modèles saisonniers reliant les débits solides aux

Les simulations sont effectuées en utilisant la méthode des éléments finis couplée à une méthode d'homogénéisation. L'algorithme de génération de matériel complexe

Panels A and B Prenatal echocardiography showing aorto-left ventricular tunnel adjacent to the left ventricular outflow tract, bypassing the aortic valve.. Panels C and D