• Aucun résultat trouvé

Передача данных в сетях с динамической рандомизацией адресного пространства (Data Transmission in Networks with Address Space Dynamic Randomization)

N/A
N/A
Protected

Academic year: 2022

Partager "Передача данных в сетях с динамической рандомизацией адресного пространства (Data Transmission in Networks with Address Space Dynamic Randomization)"

Copied!
5
0
0

Texte intégral

(1)

© ..

. .. ,

kirill@kravtsov.biz

! "# ! #

$ « » $ . % (convoluted multiaddress networks). &

"

" $

$

". ' " IP , " $ , #

# , $ . *

", #+ "

, + . * " $ .

"# , TCP/IP, , , « » (DoS), IP $ , !

$ ( $ " [3]). * - , # + « » ! $ . /, "

+ , #+ # "

$ + ( ) ".

« » # ,

"

. &

#, "

" ." "

"

#+ , "

. % [6],

" $ : (semantic) +#+

(flood, brute-force). * , - # "

, "#+ #

"

$ , , .. "!

#+

. '"

" , " "

, , " # .

* + DDoS . % , - "

#+ : # ( , -, $ [9]);

$ " $ [8], $ " [4] [1].

/, # ", "! "

+#+ ! # ! $ " $ . &

"# # #:

+ $ , " DDoS , , $ "

" . 0"

XVII

DAMDID/RCDL’2015 « !

" », #!, 13-16

! 2015

(2)

" $ , -, " $ - , , $ "

+ . & ,

! - # $ . * - ,

" , ##+ , "

+ +"#

" , !"

$ .

", !

«» IP- (IP hopping), DDoS - IP- "

(# DNS ). * ,

DDoS " #

, .

& ,

"

( ). ,

" [7] IP- , "

. , # , + , " DDoS "

"!

( 5 ).

1 " [2] , IP- " IP- - # + + .

& , " $ DHCP , " "

.

1 "

/

$ ܣ௢௨௧ሺݐሻ ՜ ܣ௜௡ሺݐሻ x y :

݅݊ሺݔǡ ݅ሻ + $

, $ m(n,R), , n

, R - $ ݋ݑݐሺ݆ǡ ݕሻ +

$ . 1"#

" # ,

. 2 " . 1.

2 ܽሺݐǡ ݅ǡ ݆ሻ

# $ , i j.

' - ݎ݋ݑݐሺ݊ሻǣ ܣ௜௡ሺݐሻ ൌ

ܣ௢௨௧ ሺݐ െ ݊ሻ # #

$ x y n .

/ ݅݊ሺݔǡ ݅ሻ i

x :

݅݊ሺݔǡ ݅ሻǣ ܽሺݐǡ ݅ǡ ݆ሻ ൌ ܣ௢௨௧ሺݐሻ

/ ݋ݑݐሺ݆ǡ ݕሻ ,

# y j:

݋ݑݐሺ݆ǡ ݕሻǣ ܣ௜௡ሺݐሻ ൌ ܽሺݐǡ ݅ǡ ݆ሻ

/ ($ ) m(n,R)

ሺ݅ǡ ݆ሻ ՚

ܴሺ݅ǡ ݆ሻ, ..

݉ሺ݊ǡ ܴሻǣܽሺݐǡ ݅ǡ ݆ሻ ൌ ܽሺݐ െ ݊ǡ ܴሺ݅ǡ ݆ሻሻ ', R

.

& " ! # :

ܴሺ݅ǡ ݆ሻ ൌ ሺ݅ǡ ݆ሻ

% ݅݊ሺݔǡ ݅ሻ

݋ݑݐሺ݆ǡ ݕሻ# #+

݅݊ሺݔǡ ݅ሻǣ ܽሺݐǡ ݔǡ ݕሻ

ൌ ܣ௜௡ሺݐሻǢ ݋ݑݐሺ݆ǡ ݕሻǣܣ௢௨௧ ሺݐሻ ൌ ܽሺݐǡ ݔǡ ݕሻ / , " ! . , ", $ f(j):

ܴሺ݅ǡ ݆ሻ ൌ ൫ ݅ǡ ݂ሺ݆ሻ൯Ǣ ݋ݑݐሺ݆ǡ ݕሻǣ ݕ ൌ ݂ሺ݆ሻ

2 ! (NAT).

+ ! "

$ ݄݅ሺݐǡ ݆ሻ, + t:

ܴሺ݅ǡ ݆ሻ ൌ ൫ ݅ǡ ݄݅ሺݐǡ ݆ሻ൯Ǣ ݋ݑݐሺ݆ǡ ݕሻǣ ݕ

ൌ ݄݋ሺݐǡ ݆ሻǢ ݄݅ሺǤ ǡ Ǥ ሻ

ൌ ݄݋ሺǤ ǡ Ǥ ሻ

3 " - . 0" $ – ݄݅ሺݐǡ ݆ሻ

݄݋ሺݐǡ ݆ሻ. - $ , "

.

, "

, #+ ",

out( ) A tx

( , ) in x i

rout n( ) A tiny( ) ( , ) out j y

( , ) m n R

( , , )

a t i j

a t i j( , , )

. 1. 1" $

(3)

! - .

" "

. –

" (x, y), ", "

$ y "

xX "

:

ܣ௢௨௧ሺݐሻ ൌ σ௫௑ݎ݋ݑݐሺ݊ሻܣ௜௡.

4 ", , , " #, "

! #+ : " $ ( ) x1 "#

# y,

xX, x x1, #+ -

#, " $ .

', ! +"#

#+ :

݅݊ሺݔǡ ݅ሻǣ ܽሺݐǡ ݅ǡ ݆ሻ ൌ ܣ௜௡ሺݐሻǢ ܴሺ݅ǡ ݆ሻ ൌ ሺ݅ǡ ݄݅ሺݐǡ ݅ሻǢ

݋ݑݐሺ݆ǡ ݕሻǣ ݕ ൌ ݄݋ሺݐǡ ݆ሻǡ

݄݅ሺݐǡ ݇ሻ ൌ ݄݋ሺݐǡ ݇ሻ׊ሺݐǡ ݇ሻ݂݅ݔ ൌ ݔ݈݁ݏ݄݁݅ሺݐǡ ݇ሻ

് ݄݋ሺݐǡ ݇ሻ

4 ", $ x1 "#

. 4 x

$ " "

, $ ݄݅ሺݐǡ ݆ሻ

݄݋ሺݐǡ ݆ሻ. & ,

+ , -

$ #, " $

#+ y #.

$ , - $ # y.

/ $ "

#+ ! :

ܭ ൌȁ்௠ȁȁ்௛ȁ, |Tm| - +"

+ , |Th| –

+" , #

$ .

2

$ , " "

[10] [5]. * " , ! "#

« » $ . 4 , , !, IP Fast Hopping.

. 2.

% + « » $ , #+ ,

# , " IP

+ + (IPR) $ ( , DNS , IP IPA).6 "

S, K # , - . !, + IP IPr= {IP1, IP2,…, IPn} # "

+ #+

( $ ) R. & - +# - " - , - # + ( ,

# ). & - - « "» IP

+ + IP0, "

! +#+ !+

. 7#

K

M1

Mk

...

...

S

. 2. % DDoS "

(4)

# - , # + , ! + +

" - "

$ -. * ! + + "

, +# + .

' " +

« "» IP-. ' - #+

" -!-$ , IP tn $ + ! + + R n IPr:

݊ ൌ ݂ሺݐǡ ܴሻ

& , + IP , , $

« "» ", .

', IP IPr , + + . 2

$ , " "

! Mk . ' ! + + ,

! Mk + $ , " ! . ' ! K, -!-$ ݂ሺݐǡ ܴሻ,

#+ $ - R, tn. IP , - " . * . / # , , .

* , , !

# IP ( +

" IP , + – ). 0 IP + +

. ' IP #+

( $

" ) " , "

+ + ". * , "

" + + , ! $

" , - # - , "!

.

3 $ IP

* ! IP- # GNU/Linux. * - , "

! , GNU/Linux ( ), " .

9 Linux - (-) – Netfilter, + $ " # , "

+ iptables.

4 - 5 : "

(PREROUTING), + (INPUT),

(FORWARD), + (OUTPUT) "

+ POSTROUTING.

/ " # #+:

! + + , netfilter PREROUTING

! , #+

#+ . 2 + , " IP . - #, $ + + , !.

4 - +" IP "

- .

(5)

%&

% + DDoS

! $ # . * - , - # " . /, # - ,

( $ , #+

!). * , +

«» + ( -) / + + - ( + $ " "

$ ). * -, "#

«» #+ ().

/ , - + "

$ , , ( ).

/

# , - . 1 ", , , "

- +. ' # $ # "

(« »), # ". * "

,

" +#+ "

, $ " .

'

[1] Patel Ankita and Fenil Khatiwala, "Survey on DDoS Attack Detection and Prevention in Cloud,"

International Journal of Engineering Technology, Management and Applied Sciences, vol. 3, no. 2, pp. 43-47, 2015.

[2] S. Antonatos, P. Akritidis, E. P. Markatos, and K.

G. Anagnostakis, "Defending Against Hitlist Worms Using Network Address Space Randomization," in Proceedings of the 2005 ACM Workshop on Rapid Malcode, Fairfax, VA, USA, 2005, pp. 30-40.

[3] Rajra Blessy and A J Deepa, "A Survey on Network Security Attacks and Prevention Mechanism," Journal of Current Computer Science and Technology, vol. 5, no. 2, pp. 1-5, 2015.

[4] B. B. Gupta, R. C. Joshi, and Manoj Misra,

"Distributed Denial of Service Prevention Techniques," International Journal of Computer and Electrical Engineering, vol. 2, no. 2, pp. 268- 276, 2010.

[5] Vladimir Krylov and Kirill Kravtsov, "DDoS attack and interception resistance IP fast hopping based protocol," in 23rd International Conference on Software Engineering and Data Engineering, SEDE 2014, New Orleans, 2014, pp. 43-48.

[6] Jelena Mirkovic and Peter Reiher, "A taxonomy of DDoS attack and DDoS defense mechanisms,"

ACM SIGCOMM Computer Communication Review, no. Volume 34 Issue 2, pp. 39 - 53, 2004.

[7] Prateek Mittal, Dongho Kim, Yih-Chun Hu, and Matthew Caesar, "Mirage: Towards Deployable DDoS Defense for Web Applications," 2012.

[8] K. Munivara Prasad, A. Rama Mohan Reddy, and K. Venugopal Rao, "DoS and DDoS Attacks:

Defense, Detection and Traceback Mechanisms - A Survey," Global Journal of Computer Science and Technology, vol. 14, no. 7-E, pp. 15-32, 2014.

[9] Saman Taghavi Zargar, James Joshi, and David Tipper, "A Survey of Defense Mechanisms Against Distributed Denial of Service (DDoS) Flooding Attacks," Communications Surveys & Tutorials, IEEE, vol. 15, no. 4, pp. 2046 - 2069, 2013.

[10] * * and

, "0+ IP- DDoS- ," * 0+ =$ , no. 3, pp. 24-31, 2014.

Data Transmission in Networks with Address Space Dynamic Randomization

Kirill N. Kravtsov

The method ensuring increased DDoS and traffic eavesdropping resistance of data transmission sessions is demonstrated in this article. The technique is based on the suggested model of convoluted multiaddress networks. This approach provides a way to isolate network nodes from malicious traffic by hiding of physical node address from all unauthorized clients.

Under the suggested method, server’s IP address is not a unique identification, but a pseudorandom value which is calculated dynamically for each network packet from each traffic stream initiated by legitimate clients. In the result, malefactor is unable to acquire access to the server because the current network address and schedule of its change is unavailable. The model of traffic transmission in such networks and example of initial implementation is demonstrated in this paper.

Références

Documents relatifs

Whenever a new applica- tion such as a communications controller (see embedded system ) was developed, it typically had its own special- ized programming language.

Some of the most important issues are related to extracting useful, reliable and timely information from the deployed sensor network, and include distributed information

The main purpose of virtualization technology is to run multiple operating systems on a single physical computer. As multiple OS use the same hardware, it makes possible to

The more information technology becomes sophisticated, the more complex methods and tools are used to fight with criminal activities, especially with computer terrorism [23]..

The strategies include passwords, antivirus, firewalls, encryption, intrusion detection systems and intrusion prevention systems, and it was mentioned that the

Achieving this goal is possible by solving the problem of the development of generalized metrics, which details the links between devices in the network, and the problem

In particular, if a router advertises a binding of Explicit NULL, and if that router has an upstream LDP peer that will not transmit a packet that has multiple label stack

In the IVI design, subsets of the ISP’s IPv4 addresses are embedded in the ISP’s IPv6 addresses, and the hosts using these IPv6 addresses can therefore communicate with the