• Aucun résultat trouvé

Analyse fiabiliste d'un mur en béton armé soumis à une avalanche de neige et modélisé par éléments finis et modèle masse-ressort

N/A
N/A
Protected

Academic year: 2022

Partager "Analyse fiabiliste d'un mur en béton armé soumis à une avalanche de neige et modélisé par éléments finis et modèle masse-ressort"

Copied!
18
0
0

Texte intégral

(1)

Analyse fiabiliste d'un mur en béton armé soumis à une avalanche de neige et modélisé par éléments finis

et modèle masse-ressort

Favier, P.

(1,2)

, Bertrand, D. (1) , Eckert, N. (2) , Naaim, N. (2)

(1) Insa Lyon, laboratoire LGCIE (2) Irstea Grenoble, unité ETNA

MAP3 INTERREG

(2)

Summary

1 Introduction Context

Vulnerability assessment extension

2 Methods

RC wall description Mechanical approaches Reliability framework

3 Results

4 Conclusion and Perspectives

(3)

Introduction Methods Results Conclusion and Perspectives

Context

Vulnerability assessment extension

Snow avalanche hazard

threatens mountain community (people, buildings, communication networks, skiers...)

need for long term mitigation measures

Figure: Dense snow avalanche consequence: one building was destroyed (Le Sappey en Chartreuse - VALLA F. - Is`ere)

Figure: February 1999 avalanche of Montroc: 17 destroyed buildings and 12 deaths (Mont-Blanc, French Alps)

=⇒Risk improvement: precise quantification of avalanche hazard andvulnerability of exposed elements

(4)

Introduction Methods Results Conclusion and Perspectives

Context

Vulnerability assessment extension

Literature curves:

Wilhelm, 1998: vulnerability of concrete buildings with reinforcement, piecewise according to damage thresholds Fuchs, 2007: economical approaches

Bertrandet al., 2010: numerical simulation

Barboliniet al., 2004: empirical estimates

Figure: Vulnerability curves from different literature sources (Naaimet al., 2008)

(5)

Introduction Methods Results Conclusion and Perspectives

Context

Vulnerability assessment extension

Reliability based curves:

Definition of several limit states based on moments calculation Easy to compute but rough model using abacus

Collapse pressure using yield line theory

0 50 100 150 200 250

0 0.5 1

x (kPa)

F(x)

100 101 102

0 0.5 1

x (kPa)

F(x)

ULS ALS Elas YLT (b)

(a)

Figure: Vulnerability curves using simple engineering models (Favieret al., 2014)

(6)

Introduction Methods Results Conclusion and Perspectives

RC wall description Mechanical approaches Reliability framework

RC wall features

Wall with two supported edges composed of concrete and steel bars orthogonally disposed.

Concrete and steel parameters: fc28,ft,εuc,fy,εuk Uniformly loaded

Figure: Dwelling house impacted by a snow avalanche (a) - RC wall geometry (b-c)

y

z

x

(b) (c)

y

z steel bar

concrete matrix Avalanche Flow

(a) u v

lx

ly

h q

(7)

Introduction Methods Results Conclusion and Perspectives

RC wall description Mechanical approaches Reliability framework

RC behaviour

m

` w

m 

`

Ž

`

Ž`

Ž` ê

Žw

w

Sm

m

m m

collapse

yielding of the steel

stabilized cracking pattern

tensile crack growth

elastic phase load

deformation

qu

Figure: Concrete, steel and RC behaviour.

RC wall models

FEM model: accurate but time consuming.

Mass-spring model: general description behaviour of the wall but computation time saving.

Yield line theory: only models the collapse of the wall, no intermediate step.

(8)

Introduction Methods Results Conclusion and Perspectives

RC wall description Mechanical approaches Reliability framework

Models implementation

FEM

The finite element model (FEM) is built with Cast3m software. Reinforcing steel is modelled using linear segments. Concrete is modelled with quadrilateral elements with a quadratic approximation function.

Mass-spring

The moment-curvature curve of the system is built by discretizing along the length of the section. Stress distribution is defined, then the corresponding strain diagram is established.

Yield line theory

Under an external loading, cracks will develop to form a pattern of “yield lines” until a mechanism is formed Johansen (1962). The ultimate load is calculated from the equality between the external energy (Wext) and the internal energy (Wint).

(9)

Introduction Methods Results Conclusion and Perspectives

RC wall description Mechanical approaches Reliability framework

Validation of the model

Table: Ultimate displacement and ultimate pressure provided by the three models.

Models Ultimate pressure Ultimate displacement

Mass-spring 7.58kP a 0.0923m

Finite element 7.65kP a 0.1283m

Yield line theory 7.56kP a

Figure: Load-displacement curve obtained with finite element model and mass-spring model.

Pushover test is done on the structure until collapse.

0 0.05 0.1 0.15 0.2

0 1 2 3 4 5 6 7 8 9 10

Displacement (m)

Force (kPa)

Elastic response Finite element response Mass−spring response Calculated MC response

(10)

Introduction Methods Results Conclusion and Perspectives

RC wall description Mechanical approaches Reliability framework

Reliability methods

Statistical distribution: normal distributions with a 5% CoV First set: lx,ly,h,fc,fy,fts

Second set: fc,fy,fts

Third set: fc,fy,ft

Failure probability calculation

Pf =P[r≤s] = Z s

−∞

fR(r)dr. (1)

(r:resistance, s:sollicitation)

Reliability methods to approximate fragility curves N Monte Carlo simulations

Kernel smoothing fitting

Taylor expansion to approximate 1stand 2ndmoments of the outputs’

distribution

(11)

Introduction Methods Results Conclusion and Perspectives

RC wall description Mechanical approaches Reliability framework

Reliability methods

Kernel smoothing

Kernel smoothing enables to approximate ˆp(y) considering a normal kernelK, with Silverman rule (Wandet al., 1995) to evaluate the optimal bandwidthh:

ˆ p(y) = 1

nh

n

X

i=1

K(y−Yi

h ). (2)

Taylor expansion to approximate 1st and 2ndmoments of the outputs distribution

No covariances are considered between input variables:

ˆ

µY =M(µX) +1 2

n

X

i=1

2M

2Xi

X).σXi, (3)

ˆ σY2 =

n

X

i=1

(∂M

∂Xj

X))2Xi. (4)

(12)

Introduction Methods Results Conclusion and Perspectives

Vulnerability curves (fragility curves)

4 6 8 10 12

0 0.2 0.4 0.6 0.8 1

P (kPa) Pf

CDF from Normal kernel (300 data) Empirical CDF Normal CDF (parameters from empirical estimate) Normal CDF

(parameters from Taylor approximation) Lognormal CDF

(parameters from empirical estimate − MLE)

Figure: Vulnerability depending on the reliability methods used.

(13)

Introduction Methods Results Conclusion and Perspectives

Vulnerability curves

4 6 8 10 12 14

0 0.2 0.4 0.6 0.8 1

P (kPa) Pf

CDF from Normal kernel (300 data) Empirical CDF Normal CDF

(parameters from Taylor approximation) Lognormal CDF

(parameters from empirical estimate − MLE)

Figure: Vulnerability depending on the number of input parameters.

4 6 8 10 12

0 0.2 0.4 0.6 0.8 1

P (kPa) Pf

CDF from Normal kernel (300 data) Empirical CDF

Normal CDF (parameters from empirical estimate − MLE) Normal CDF (parameters from Taylor approximation) Lognormal CDF (parameters from empirical estimate − MLE)

Figure: Effect of the steel density on fragility curves.

(14)

Introduction Methods Results Conclusion and Perspectives

Take home message

Systematic methodology approach to assess fragility curves based on: reliability methods and not time-consuming mechanical modeling

Fragility curves set available for risk analysis

Increase of knowledge concerning the vulnerability behavior of RC structures Possibility to link fragility curves of buildings to human vulnerability used in risk (not shown today)

Perspectives

Use more complex mechanical modeling including a strain rate effect Use real avalanche signal

Quantify risk sensibility to fragility curves

(15)

Introduction Methods Results Conclusion and Perspectives

Thank you for your attention. Any questions ?

(16)

Introduction Methods Results Conclusion and Perspectives []

M Barbolini, F Cappabianca, and R Sailer,Empirical estimate of vulnerability relations for use in snow avalanche risk assessment, RISK ANALYSIS IV (Brebbia, CA, ed.), 2004, pp. 533–542.

D. Bertrand, M. Naaim, and M. Brun,Physical vulnerability of reinforced concrete buildings impacted by snow avalanches, NHESS10(2010), no. 7, 1531–1545 (English).

N. Eckert, C.J. Keylock, D. Bertrand, E. Parent, P. Favier, and M. Naaim,Quantitative risk and optimal design approaches in the snow avalanche field: review and extensions, CRST79-80(2012), 1–19.

P. Favier, D. Bertrand, N. Eckert, and M. Naaim,A reliability assessment of physical vulnerability of reinforced concrete walls loaded by snow avalanches, Nat. Hazards Earth Syst. Sci.14(2014), 689–704.

S. Fuchs, M. Thoni, M. C. McAlpin, U. Gruber, and M. Br¨undl,Avalanche hazard mitigation strategies assessed by cost effectiveness analyses and cost benefit analyses evidence from davos, switzerland, Nat Hazards41(2007), 113?129.

K.W. Johansen,Yield line theory, 1962.

M. Naaim, D. Bertrand, T. Faug, S. Fuchs, F. Cappabianca, and M. Br¨undl,Vulnerability to rapid mass movements, Tech. report, Irasmos - WP4 Project no. 018412, 2008.

C. Wilhelm,Quantitative risk analysis for evaluation of avalanche protection projects, Norwegian Geotechnical Institute, Norway, 1998.

M.P. Wand and M.C. Jones,Kernel smoothing, 1995.

(17)

Introduction Methods Results Conclusion and Perspectives

Spring-mass model

b

h As

d

s

c

s

c

(a) (b) (c)

xy

COMPRESSIONTENSION

m ax ,

c

Figure: Mass-spring system and cross-section of the RC beam (a), stress diagram (b), strain diagram (c).

Translational equilibrium equation

bRxy

0 σcdy=σsAs+bRh xyσcdy

(18)

Introduction Methods Results Conclusion and Perspectives

Spring-mass model

Figure: (a) Bilinear moment curvature bending relation of the beam ; (b) corresponding bilinear load-displacement relation of then equivalent SDOF model Carta et Stochino (2013).

Newmark solving scheme to solve:

ME,el

d2vE(t)

dt2 +KE,el(t)vE(t) =PE(t)f or0vEvEy, d2v (t)

Références

Documents relatifs

A striking fact is that all minimum divergence estimators defined through this dual formula coincide with the MLE in exponential families.. They henceforth enjoy strong optimality

Une importante mixotrophie algale a ainsi été démontrée, nous amenant à reconsidérer le rôle des producteurs primaires dans la partie aquatique de la dynamique du

 Si les étapes 2 à 4 ont des résultats positifs, la phrase est extraite, le substantif 1 est considéré comme étant le comparant, le marqueur comme l’outil de la comparaison,

« Mal » traduire Celan en franc¸ais s’explique peut-eˆtre aussi par le fait que la poe´sie franc¸aise au moment de Strette ne disposait pas d’idiolectes particuliers qui auraient

L’approche choisie est à la fois thématique (par objets d’étude de la grammaire) et typologique (par types de textes). La section sur l’adverbe du papyrus Berol. J.-C.)

The mRNA transcription levels of ssol_1707 were equivalent with low and high oxygen concentrations in presence of phenol (Figure 2C, lanes 1-2) and slightly lower when the strain

To explore this idea further, we generated two chimeric constructs: (1) an RNAi-resistant NR2B construct (termed NR2B*–2Atail), in which the entire C-terminal cytoplasmic tail of

The mass flux profiles as obtained from the mechanical snow bags (French and Swiss Traps), the mass flux profile from the six-segments FlowCapt, the mean mass fluxes from