• Aucun résultat trouvé

Un film biodégradable et respirant pour le conditionnement alimentaire. Un plastique révolutionnaire, entre le caoutchouc et le verre!

N/A
N/A
Protected

Academic year: 2022

Partager "Un film biodégradable et respirant pour le conditionnement alimentaire. Un plastique révolutionnaire, entre le caoutchouc et le verre!"

Copied!
15
0
0

Texte intégral

(1)

Un film biodégradable et respirant pour le conditionnement alimentaire

29 novembre 2011

Des chercheurs tchèques ont mis au point un nouveau film synthétique en biopolymère offrant des perspectives prometteuses pour le conditionnement alimentaire.

L’équipe du centre de recherche sur les polymères de l’université Tomas Bata de Zlin a en effet développé un film d’hydrogel respirant et biodégradable à base de polvinylpyrrolidone (PVP) synthétique et de carboxyméthyl cellulose (CMC). Le nouveau film d’hydrogel en PVP-CMC a d’ores et déjà donné de bons résultats en laboratoire sur des matrices

alimentaires

Ndlr : soluble OK ! mais biodégradable le PVP ???

Un plastique révolutionnaire, entre le caoutchouc et le verre !

Par Jean-Luc Goudet 18/11/11

(ndlr : SERPBIO a déjà fait état de ce matériau dans ses précédentes infos, mais ici le document est plus complet et pour ceux qui désirent une présentation video (32 Mo Un matériau comme il n’en existe nulle part ailleurs, expliqué par Ludwik Leibler et François Tournilhac. « Pour créer des choses complètement nouvelles »… © CNRS/DailyMotion), il suffit de demander…)

Ce plastique ressemble à du verre mais il peut être au choix dur ou mou. Il est étirable, déformable mais aussi façonnable à l’envi. Il est réparable et on peut le souder. Il n’a pas de nom car il n’a pas d’équivalent. De l’électroménager à l’astronautique en passant l’automobile, la marine et l’aviation, ses applications sont infinies. On en parlera sans doute longtemps…

Prendre un morceau de plastique dur, le chauffer puis l’étirer et lui donner une nouvelle forme : c’est impossible alors que ce travail est classique sur le verre et permet de façonner toutes sortes d’objets. Pourquoi ? Parce que le verre passe facilement de l’état solide à l’état liquide sous l’effet de la chaleur et tout aussi aisément dans le sens inverse au refroidissement. Le faire avec un matériau plastique, constitué de polymères organiques (aux molécules à base de carbone), imposerait qu’il ait quelques propriétés communes avec les matières minérales et vitreuses. Au laboratoire Matière molle et chimie, à l’ESPCI (École supérieure de physique et de chimie de la ville de Paris/CNRS), Ludwik Leibler et son équipe l’ont fait.

Ce laboratoire travaille depuis longtemps sur des matériaux organiques (des plastiques) aux propriétés étonnantes. En 2008, Ludwik Leibler (qui a travaillé avec Pierre-Gilles de Gennes, grand spécialiste de la matière molle et de ses mystères encore non résolus) avait déjà

présenté un matériau qui se cicatrise lui-même.

Incassable mais élastique

C’est en explorant cette même voie que les chimistes de l’ESPCI ont mis au point leur plastique – à qui il manque un nom de baptême – aux propriétés complètement inédites.

Comme le montre la vidéo réalisée par le CNRS, ce matériau est déformable et élastique : il

(2)

reprend sa forme quand on le tort. C’est donc une sorte de caoutchouc. Mais si on le chauffe, on peut le déformer de manière définitive : il est façonnable, comme le verre, mais lui est quasiment incassable. On peut même souder deux morceaux l’un sur l’autre. Mieux, ce n’est pas un matériau mais une famille. Selon la composition, il peut être, à température ambiante, plus ou moins dur.

Avec lui, il serait possible, par exemple, de réaliser des objets en plastique impossibles à obtenir par moulage, de réparer facilement une coque de bateau en résine en la chauffant localement ou de sculpter soi-même un dispositif fait de pièces de plastique. L’art des verriers pourrait ainsi, peut-être, être transmis aux spécialistes du plastique ! Les résines

thermodurcissables ont conquis à peu près tous les domaines industriels parce qu’elles sont résistantes et légères. Mais seul le moulage permet de les réaliser et il est impossible de les façonner ensuite, comme on le fait avec les métaux. C’est donc une classe de propriétés nouvelle qui s’ouvre…

Une bande de ce plastique peut être déformée à chaud de multiples manières. Elle conservera ensuite la forme qu'on lui a donnée. © CNRS Photothèque/ESPCI/Cyril Frésillon Innovation technologique mais aussi scientifique

Ce matériau est un mélange. On y trouve une résine époxy, c’est-à-dire un polymère qui durcit – irrémédiablement – sous l’action d’un catalyseur ou de la chaleur. Il y a bien un catalyseur dans la recette du laboratoire mais aussi des acides gras. Ils étaient déjà présents dans le matériau autocicatrisant. Comme un verre, il passe du solide au liquide ou

inversement sans modification de ses liaisons intermoléculaires. Il conserve donc ses propriétés. Le secret réside, comme le matériau autocicatrisant, dans l’exploitation de la chimie des liaisons covalentes réversibles. « Nous utilisons la transestérification pour permettre à nos réseaux les changements topologiques à température élevée » nous explique Ludwik Leibler

Comme le souligne Ludwik Leibler, ce travail a aussi un grand intérêt scientifique car il explore sous un angle nouveau le phénomène de transition vitreuse. Pierre-Gilles de Gennes aurait beaucoup aimé… Nul doute que les industriels de tout bord apprécient aussi et que l’article de Science décrivant ces travaux circule actuellement dans les services de recherche de nombre d’entreprises de l’automobile, de l’aéronautique, du spatial voire de

l’électroménager et des articles de sport.

(3)

Un matériau déformable à volonté, souple ou dur, incassable et même recyclable...

© CNRS Photothèque/ESPCI/Cyril Frésillon

Des substances cancérigènes dans les jouets, dont Sophie la girafe...

01/12/11

L'association UFC-Que choisir dévoile les résultats de ses tests sur les jouets pour les moins de 3 ans. Des substances potentiellement cancérigènes ont été retrouvées sur 13 des 30 jouets testés, et parmi eux des grands classiques comme Sophie la girafe ou le doudou Oui-Oui...

C'est la période des cadeaux de Noël. Pour les jouets des tout-petits, la prudence est de mise.

L’association UFC-Que choisir rend publics ce mercredi 30 novembre les tests qu’elle a menés sur une trentaine de jouets parmi les plus emblématiques. Objectif : vérifier qu’ils ne présentent pas de danger pour les moins de 3 ans. C’est raté : treize d’entre eux ont échoué au test ! Parmi eux, la très emblématique Sophie la girafe et le doudou Oui-Oui…

La sécurité des jouets dédiés aux enfants en bas-âge est en effet, un sujet majeur. La bonne nouvelle qui ressort du travail de l’UFC-Que choisir, c’est l’absence des principaux toxiques visés par la réglementation. Aucun des jouets en question ne renferme de phtalates, de formaldéhyde, ni de colorants azoïques. En revanche, des substituts aux phtalates sont retrouvés sur 20 % des jouets en plastique testés, alors qu’ils n’ont pas encore été évalués sur le plan toxicologique.

Sur les 30 jouets testés, 13 se sont révélés dangereux pour les enfants de moins de 3 ans. © turbotoddi, Flickr CC by nc-nd 2.0

Des substances interdites sur Sophie la girafe

(4)

Des substances potentiellement cancérigènes ont également été retrouvées dans 13 jouets sur 30, soit pratiquement une fois sur deux. Le doudou Oui-Oui de Lansay par exemple, contient du chrysène et du naphtalène. Deux substances considérées comme des cancérigènes

probables ou possibles. Carton rouge aussi pour Sophie la girafe, compagne fétiche des tout- petits. En fait, elle renferme des précurseurs de la nitrosamine. Or son utilisation est interdite dans les objets qui sont appelés à être portés à la bouche. C’est évidemment le cas des tétines, mais les jouets destinés au premier âge devraient y être ajoutés.

C’est le cas en Allemagne, dont les autorités ont étendu la législation concernant les tétines et sucettes aux jouets destinés aux enfants de moins de 3 ans. Ce n’est pas encore le cas en France et la Commission européenne, qui vient de lancer sa propre campagne en faveur de la sécurité des jouets, devra considérer l’harmonisation des règlements comme un impératif.

C’est le sens des demandes formulées par UFC-Que Choisir. En attendant, voici quelques conseils de sécurité pour bien choisir les jouets de vos enfants :

lisez les étiquettes avec attention et attachez-vous à choisir un jouet correspondant à l’âge de l’enfant ;

soyez vigilants quant à la provenance du jouet que vous achetez. Vérifiez

systématiquement qu’il est porteur du label européen (marquage CE). Il certifie en effet que le jouet respecte l’ensemble des règles de sécurité applicables dans les pays de l’Union européenne. ;

enfin, prenez le temps de lire et suivez toujours les instructions d’utilisation.

Dear colleague

The second International Conference on Packaging Materials and Bioproducts interactions (MATBIM2012) will be held on April 22-25, 2012 at the University of Burgundy, in Dijon (France).

Submission and registration are now ON-LINE ! Abstract Deadline is January 15th, 2012.

You will find more details in the attached document and on the website http://www.MATBIM.com

The second meeting will promote the new knowledge, data and techniques involved in mass transfer mechanisms and interactions between packaging materials (particularly new

materials, bio-packaging, active, smart and intelligent) and food / bioproducts and the consequences on the consumer and environment safety.

For more information - Main Contact: frederic.debeaufort@u-bourgogne.fr

Uhde Inventa-Fischer Proves Potential of its PLA Technology for Production of Speciality Polymers

SpecialChem - Dec 5, 2011

(5)

The engineering company Uhde Inventa-Fischer has proven the potential of its self developed, patented polylactic acid (PLA) technology, PLAneo®, at its proprietary pilot plant following an operating phase of several months. The process enables tailored PLA types for a full range of applications to be manufactured as well as enabling the production of different PLA specialities.

The PLA pilot plant built by Uhde Inventa-Fischer in Guben, Germany, in 2010 has a production capacity of 500 tonnes of polymer granules a year.

During the test operation the full functionality of the PLAneo® process was proven and the desired performance parameters were also achieved. The completely continuous process is perfectly suited to large-capacity industrial production plants. For the production of PLA commercially available lactic acid is used. This is converted to granules with a yield in excess of 95%.

The plant enables all common PLA types as well as a multitude of modified specialities to be produced.

The full range of applications of the PLA process includes film and fiber types and masterbatch base polymers as well as specialities, such as PLA copolymers and stereo complex PLA with an increased heat resistance.

As part of ThyssenKrupp Uhde GmbH, Uhde Inventa-Fischer not only supplies its proprietary PLA technology but also the lactic acid technology developed within the group from a single source. Uhde Inventa-Fischer thus covers the entire process from the agricultural feedstock and the lactic acid to the saleable granules. ThyssenKrupp Uhde is currently building a pilot plant for the production of lactic acid from glucose or saccharose in Leuna, Germany. The plant is due to come on-stream in the second quarter of 2012.

About Uhde Inventa-Fischer

Uhde Inventa-Fischer is amongst the leading engineering companies located in Berlin, Germany, and Domat Ems, Switzerland. Uhde Inventa-Fischer's scope of services includes the development, engineering and construction of industrial plants for the production of polyester, polyamides and polylactic acids. The

development of the PLAneo® process has benefited from the experience gained during the construction of more than 400 production plants throughout the world. The company has belonged to ThyssenKrupp Uhde GmbH since 2004 and is thus part of ThyssenKrupp AG.

Researchers Make Biodegradable Plastic Bottles From Olive Skins

December 04 2011 By Julie Butler Uhde Inventa-Fischer's PLA pilot

plant in Guben, Germany

(6)

Soon you may be able to buy olive oil in bioplastic bottles made from a compound found in olive skins, thanks to the work of a Spanish researcher.

Jesús Zorrilla has found a way to extract PHAs (poly-hydroxy-alcanoates) from the residues of olive skins, which in turn can be used to make plastic containers that are non-toxic and 100 percent biodegradable.

According to a press release from Jaen’s Sierra de Segura, an olive oil denomination of origin, Zorrilla used byproducts from one of the D.O.’s olive oil mills to develop the compound.

Not only would the bioplastic containers be suitable for food, they would be ideal for olive oil, “because unlike conventional plastic bottles derived from petroleum, they avoid any risk of carcinogenic polymers migrating into the oil,” the D.O. said. They also have factors that protect oil from oxidation caused by exposure to light.

“Furthermore, this new bioplastic would provide a way to make use of the olive skin residue from olive oil production, which currently has no economic value.”

“An olive oil mill which processes about 10,000 tons of olives a year could obtain 30,000 kilos of bioplastic, which would bring in additional revenue of €200,000 ($268,000).”

Patent development is underway and Zorrilla is keen to hear from any companies involved in packaging or research and development that might be interested in helping finance the remaining phase.

European Bioplastics report: The end of the oil age and rise of bioplastics

By Karen Laird

Published: November 28th, 2011

With 420 attendees, the 6th European Bioplastics conference in Berlin could rightly be termed a major success. This year, more than 80% of the participants came from Europe, 10% from Asia, and the better part of the remaining 10% from North and South America. Established players ranging from BASF, DSM, PolyOne, NatureWorks and Dow to Novamont,

(7)

BioAmber and the World Wide Fund for Nature offered insights and information on new materials, environmental aspects and strategic market development.

'The oil age will end long before we run out of oil' -Maurits van Tol, DSM

Worldwide, numerous industrial sectors are building sustainability into policies, leading some to proclaim that the transition from a fossil-based to a bio-based economy is already

underway. Not only are rapid strides being made in the development of materials based on renewable resources, the market for compostable materials is also set to grow strongly. Major brand owners are moving into the use of bioplastics, with a focus on renewable materials. As Andy Sweet, chairman of the European Bioplastics Association said, "The world wants to do things in a green way. It's a world of opportunity!"

It's also an idea companies are increasingly warming up to.

According to Maurits van Tol, DSM Bio- based Products & Services, the oil age is nothing but a blip on the screen. Summing up a number of key trends and drivers that today are helping to bring bioplastics to scale, he argued that the transition to a bio-based economy will bring multiple benefits in terms of jobs, innovation, energy security and economic growth. He also made the point that

"renewability is not enough as a value proposition". In other words, added value must be provided through demonstrable benefits such as improved performance, cost and better LCAs,

Added Value

A good example of a company that has gotten the value proposition right is Dubai-based Taghleef Industries. This company specifically targeted the end-of-life problems surrounding flexible packaging when launching their biodegradable biaxially oriented polylactic acid (BoPLA) Nativia range of packaging films in 2010. With these films, they have successfully brought multi end-of-life options for flexible packaging within reach. And more is still to come: the company announced in its presentation that it was now working with German barrier film manufacturer Extendo to develop a more sustainable solution for modified atmosphere packaging.

NatureFlex, a company that produces cellulose-based barrier films that have been tested and proven to provide an effective barrier against mineral oil residues. Mineral oils became a concern in food packaging in 2010, when a Swiss team for food control measured the

presence of these oils in various packaging materials, deriving from such sources as recycled fibers in paperboard. Conventional plastic liners in, for example, cereal boxes offer a

temporary barrier (lasting from a few hours to up to one month). NatureFlex films have been found to offer a barrier lasting five years or longer.

Andy Sweet, chairman of the European

Bioplastics Assn. at the 2010 event, which was surpassed in size earlier this month in Berlin by 2011 event.

(8)

Drop-in solutions

Dow presented details about the joint venture with Mitsui & Co. in Brazil to build the world's largest integrated facility for the production of biopolymers made from renewable sugar cane derived ethanol. The annual targeted capacity of the new facility in 400,000 tons. This will give the company access to new, biomass-based feedstock while diversifying the raw material streams from traditional fossil fuels.

BioAmber, a U.S. producer of biosuccinic acid in France discussed this company's

partnership with Mitsui & Co. and the plans to build plants in Ontario and Thailand for the production of 1,4 butanediol (BDO) and biosuccinic acid. It's not the first time BioAmber, a company that believes in open innovation, has gone the partnership route: earlier partners include Cargill, Lanxess, PTTMCC Biochem and Mitsubishi. BioAmber's biosuccinic acid is the first commercialized biobased, cost-competitive chemical to directly substitute its

petrochemical equivalent. Mitsubishi uses BioAmber's biosuccinic acid to produce PBS, a renewable, biodegradable thermoplastic that Babette Pettersen of BioAmber described as a 'drop-in designed for food contact. Semi-durable and durable materials are a future goal.' At Toray, the company's "Green Innovation Products" program implemented in April is starting to show results. The focus of the program is two-pronged: expansion of the bio-based polymer range by means of the production of drop-in polymers made from renewable

resources (integrating biotechnology with chemical conversion technologies), and the use of its proprietary membrane technology to improve the biological and chemical processes - fermentation, biomass conversion, saccharification - involved in the production of biomonomers and biopolymers. The program was instituted as part of the company's

management policy that all business strategies must place priority on the global environment in an effort to help realize a sustainable low-carbon society. Just recently, Toray has achieved an important success in this direction with the production of laboratory-scale samples of the world's first fully renewable biobased PET fiber based on fully renewable biobased PET.

Samples of the fiber were exhibited at the company's stand at the conference.

Durable applications

In a presentation by Rhein Chemie, the company discussed its additive approach to overcoming PLA's inherent hydrolytic weakness and to improve long-term stability for consistent and easier processing. The new product line was launched earlier this year under the trade name BioAdimide and enables the production of renewable, bio-based polymers for durable applications with a lower environmental impact. This constitutes a true innovation for the third generation of bioplastics, and led to Rhein Chemie's recently receiving the Frost &

Sullivan 2011 Global New Product Innovation Award 2011 in the Bioplastic Additives Market for the new additive.

Lactide-producer Purac has developed the technology to produce high-heat PLA, enabling the use of PLA for more demanding applications. By mixing close to 100% pure poly-L-Lactide (PLLA) with 100% poly-D-Lactide (PDLA), Purac and partner Synbra Technology have successfully produced a heat-resistant PLA with exceptional thermal and impact properties far exceeding those of the individual homopolymers. The new material has a Heat Deflection Temperature (HDT) of 123°C - thoroughly outperforming conventional PLA - and an impact strength that is comparable to that of ABS. After being molded, the material is even able to

(9)

withstand boiling water. Purac PLA technology can replace PS, PP and ABS-like materials in applications where heat performance is a key requirement.

06 décembre 2011- Saint Nicolas est de passage dans les infos SERPBIO !

Ouverture du site Polychanvre : www.polychanvre.eu

Le projet de recherche Interreg IV franco-wallon Polychanvre vise à valoriser le chanvre, et en particulier celui de ChanvrEco, comme matière première renouvelable dans un souci de développement durable. L’équipe transfrontalière étudie l’utilisation du chanvre pour l’élaboration de matériaux composites. Ces matériaux trouvent des applications notamment dans l’automobile, le bâtiment, les meubles et le nautisme.

L’équipe transfrontalière est composée de Gembloux Agro-Bio Tech (ULg)/ValBiom (chef de file), du CERTECH, de l’INRA, du CRITT et de ChanvrEco.

Le projet inclut cinq actions de recherche : - une thèse transfrontalière ;

- la caractérisation de la matière chanvre ; - l’étude de l’interface polymère-chanvre ; - la formulation et l’élaboration de composites ; - l’évaluation des propriétés.

Depuis novembre 2011, le projet Polychanvre, qui a démarré en avril 2010, dispose d’un site Internet en version française et anglaise : www.polychanvre.eu

Auteur : Jean-Luc Wertz (ValBiom) 07/12/11

Une étude sur le marché mondial des plastiques biosourcés

Le 7 octobre dernier, NOVA-Institut a annoncé qu’il réaliserait une étude sur le marché mondial des plastiques biosourcés tenant compte des capacités de production, des quantités produites et des différentes applications. L’étude prévoit également de définir les grandes tendances de ce marché à l’horizon 2020.

Cette étude, qui débutera à partir de décembre 2011, a pour objectif de combler le manque actuel de données sur le marché des plastiques biosourcés (notamment pour les marchés asiatiques).

(10)

L’un des résultats attendus de l’étude est la liste de tous les producteurs de plastiques biosourcés dans le monde. Toutes les catégories de polymères et de plastiques seront

couvertes (biodégradables et durables, thermoplastiques, thermodurcissables et élastomères) : amidons, PLA, PHA/PHB, PBS, CA, Bio-PE, Bio-PDO etc…

NOVA-Institut indique qu’il est possible d’être souscripteur de l’étude. Cette souscription permet d’une part d’accéder aux résultats intermédiaires de l’étude et d’autre part de faire partie du conseil consultatif du projet.

Les détails sont disponibles directement auprès du directeur général de NOVA-Institut, Michael Carus, par e-mail : michael.carus @ nova-institut.de.

Auteur : Julie Roïz (ValBiom)

Source : http://www.bio-based.eu/market_study/

PROGRAMME ANAXAGORE

AGRORESSOURCES

POUR UN DEVELOPPEMENT DURABLE DE LA FILIERE CHAMPAGNE

Le programme ANAXAGORE a pour objectif le développement d’alternatives biosourcées aux matériaux et molécules consommés par la filière viti-vinicole.

Les partenaires du programme proposent aux organismes porteurs d’une innovation une aide et un accompagnement dans leur démarche :

Recherche de partenariats industriels ou scientifiques Recherche de financement

Aide au montage de projet (accompagnement de l’idée au projet)

Accompagnement pour le développement des innovations sur le terrain

Suite au lancement du second appel à propositions lors du salon VITeff, vous pouvez télécharger le règlement et le dossier de candidature en bas de la page suivante : http://www.champagne.fr/fr/actualites.aspx?ActualiteID=57&lThemeActu=1 N’hésitez pas à nous contacter pour échanger sur vos projets.

Bien cordialement,

(11)

CIVC : M. Pierre NAVIAUX – tél. 03.26.51.34.16 – pierre.naviaux@civc.fr

CIVC : M. Arnaud DESCOTES – tél. 03.26.51.50.63 – arnaud.descotes@civc.fr

Pôle IAR : Mme Nina QUELENIS - tél. 03.23.24.92.06 - quelenis@iar-pole.com

CARINNA : Mme Ghislaine GRENIER DEMARCH - tél.

03.26.85.84.87 - ghislaine.grenier.demarch@carinna.fr

Les bioplastiques toujours plus demandés

Le 07 décembre 2011 par Tiziano Polito

(Ndlr : Bioplastiques, biosourcés, biodégradable ou comment entretenir la confusion et faire du GreenWashing! Un PE ou un PP restera toujours un PE ou un PP quelque soit sont origine)

Un flacon de lessive Ecover, fabriqué avec du polyéthylène issu à 100% de la canne à sucre.

Le marché pourrait tripler, pour atteindre 1 million de tonnes en 2015, selon une étude de Freedonia. –

La demande de plastiques biosourcés et biodégradables va tripler d'ici 2015 pour atteindre 1 million de tonnes, ce qui représente un marché d'une valeur de 2,9 milliards de dollars (2,3 millions d'euros), selon un rapport de Freedonia. La société d'études américaine estime que la demande de bioplastiques va progresser à cause de quatre raisons principales : la hausse du prix du pétrole, qui renchérit les coûts des plastiques d'origine fossile ; les préférences des consommateurs, qui ont tendance à privilégier ces matériaux au détriment des plastiques conventionnels ; l'amélioration des caractéristiques fonctionnelles des bioplastiques, qui élargit leurs applications ; l'introduction des résines bio-sourcées sur le marché des commodités. D'après Freedonia, les cours des bioplastiques et ceux des plastiques

conventionnels atteindront la parité d'ici 2020. La production de plastiques issus de ressources

(12)

renouvelables, mais non-biodégradables, tels le polyéthylène du brésilien Braskem, fabriqué à partir de canne à sucre, devrait croître considérablement.

Synterra® IM high heat resistant and non-GMO PLA bioplastic wins Blue Tulip award

08/12/11 Bioplastic innovations Blog

By mixing 100% pure PLLA with 100% PDLA, a fast cycle and heat-resistant injection mouldable PLA with very good temperature and impact properties is made that far exceeds the properties of the individual polymers. With a Heat Deflection Temperature (HDT) of 123°C Synterra® IM material performs much better than conventional PLA and the impact strength is comparable to that of ABS. After injection molding the IM material is able to withstand boiling water. With this development Synbra Technology sets a step in developing a new generation of high performance biopolymers.

The polymerization of the optical isomers PLLA and PDLA takes place at Synbra Technology in Etten-Leur, in a plant with a capacity of 5000 t / annum, which was commissioned early 2011.

Synbra Technology expects further growth in its PLA business as many brand-owners and retailers in Western Europe prefer to use bio-based and non-GMO PLA that is also heat- resistant.

Shortly after introducing its Synterra ® IM material, an injection mouldable high heat PLA, Synbra Technology was awarded at the Accenture Blue Tulip Awards at the RAI Elicium, in Amsterdam.

`This Blue Tulip Award in the category ‘Making more out of less’ is the ultimate reward for the entire team that participated in the successful development of our Synterra® IM grade, which is made from Cradle to CradleSM certified PLA,` said Peter Matthijssen, Commercial

Manager of Synbra Technology.

In recognition of the purity of the raw materials used, the PLA of Synbra was Cradle to CradleSM certified by EPEA in Hamburg and is thus the first PLA in the world with this certification. Application of this PLA also improves various properties such as toughness and temperature resistance of several other bio-based recipes, in which PLA is an important constituent.

(13)

NYU Professors' Research on Development of Bioplastics with Desirable Properties Funded by NSF

SpecialChem - Dec 8, 2011

When people complained that new biodegradable Sun Chips bags were too noisy, enough for the snack's maker, Frito Lay, to scrap the bags altogether last year, it sent a signal: most consumers expect earth-friendly products to perform like the traditional products they're used to. Polytechnic Institute of New York University's Richard Gross is at work to create just such a product for the plastics industry.

The professor of chemical and biological science and partners recently received grants from the National Science Foundation (NSF) to develop an improved, bio-based alternative to petroleum-based plastics that could be used in everything from bottles to garment bags. One of the grants is for $590,000 and will fund research between Gross and PolyNew, a small Colorado-based company that produces nanocomposites. NYU-Poly will coordinate and also collaborate on the project, which is funded through the NSF's Partnerships for Innovation program, an effort to commercialize academic research by requiring that grantees collaborate with small businesses. The other is for $150,000 and will fund research by Gross's

SyntheZyme startup company.

Both projects will build on a method Gross created for producing a strong, highly ductile bioplastic using yeast. The Journal of the American Chemical Society published Gross's findings in 2010. His method involves a fairly quick, relatively low-cost way to use engineered yeast to make large quantities of omega-hydroxyfatty acids from fatty acids of plant oils. When strung together, the omega-hydroxyfatty acids form a polymer, or plastic.

"It was a very exciting development in the field, and not just because we created a bioplastic with desirable properties," says Gross. "The process uses no fossil fuels, and every step is biologically friendly, from fatty acids in plant oils through the end product, which is a versatile, 100 percent biodegradable plastic."

The polymer from omega-hydroxyfatty acids Gross created will provide tough and flexible new bioplastics. PolyNew will develop natural fibers from cellulose known as cellulose nanowhiskers that will act as a reinforcing agent increasing SyntheZyme's bioplastic's rigidity.

SyntheZyme has also developed blends of their bioplastics with a commercial bioplastic produced by NatureWorks known as polylactic acid. Various combinations of SyntheZyme's polymer from omega-hydroxyfatty acids with polylactic acid and cellulose nanowhiskers will lead to the development of a suite of new bioplastics for uses in a wide range of applications including disposable gloves, multilayer food packaging films, produce bags, bottles, fibers in clothing and carpets, and molded plastic articles used as casings for electronic products.

The U.S. Defense Advanced Research Projects Agency (DARPA) tapped Gross's laboratory at NYU-Poly to develop his original bioplastics. The further development of that work led in part to the formation of SyntheZyme, which is a member of the New York City Accelerator for a Clean and Renewable Economy (NYC ACRE), a new-business accelerator for clean technology and renewable energy companies. NYU-Poly operates NYC ACRE with funding

(14)

from the New York State Energy Research and Development Authority (NYSERDA) within the Varick Street Incubator, which is a partnership of NYU-Poly, the New York City

Economic Development Corporation and Trinity Real Estate.

Green Matter: Little Green Bags

By Karen Laird

Published: December 7th, 2011

Back in 1969, when a Dutch band recorded 'Little Green Bag', a groovy little number with a very cool bass riff, no one could have anticipated just what a hot issue little 'green' bags would become by 2011.

But as 2011 comes to a close, it's time to look back at a year which worldwide might well be styled the year of reckoning for plastic shopping bags. In Europe, as in the U.S., debate has raged on whether or not the use of non-degradable, non-compostable single-use plastic bags should be banned, and the use of 'green' bags made mandatory. Numerous cities in states like California and Oregon have already banned the use of these thin-walled PE bags; in Europe, the ban in Italy took effect on January 1, 2011. Bans are also in place in Mexico City, Rwanda, Bangladesh, South Africa, Thailand and three states/territories of Australia. Taxes and environmental levies have been imposed on the use of these bags in a host of other countries.

What, exactly is the fuss all about?

Looking at Europe, the average EU citizen consumes approximately 500 plastic carrier bags, every year and most of them are used only once. These bags are perceived as a major and highly visible source of litter. In landfill, they may take up to 1000 years to degrade, and, while incineration is a perfectly good solution, too many bags never make it into the

collection system. As European Commissioner for Environment Janez Potočnik said: "Fifty years ago, the single-use plastic bag was almost unheard of - now we use them for a few minutes and they pollute our environment for decades."

Moreover, the ubiquitous bags are made from a non-renewable fossil-based source: oil.

Predictably, the German association for plastic packaging explains that problem is not the bags themselves, but the consumers who use them. According to this association "a German citizen uses 65 plastic carrier bags annually, weighing an average of 15 grams each. In total, this amounts to a total of 975 grams (a little more than 2 lb) of polyethylene, manufactured from nearly the same amount of oil. This is about as much oil used for the manufacturing of just 1 liter of petrol. With an average fuel consumption of 7.5 liters per 100 kilometers this corresponds to a driven distance of 15 kilometers." What is needed, according to this

association, is for these bags to be clearly labeled, to encourage consumers to use them again and again.

Moreover, earlier this year, a UK Environmental Agency report found that single-use polyethylene grocery bags have a lower carbon footprint than alternative paper or reusable bags in most usage scenarios. "Paper, heavyweight plastic and cotton bags all use more resources and energy in their production. A key issue, however, is how many times bags are reused. The reuse of conventional HDPE and other lightweight carrier bags for shopping

(15)

and/or as bin-liners is pivotal to their environmental performance and reuse as bin liners produces greater benefits than recycling bags".

Processers manufacturing PE plastic bags everywhere throughout the continent - except for Italy - heaved great sighs of relief. Yet are they perhaps not being just a tad shortsighted?

Bring on the green bags

In Italy, they can't understand what the problem is. This country put the legal framework for banning fossil-based plastic shopping bags in place in 2007. A campaign was launched to educate the public before the full-fledged ban took effect. Under the Italian regulations, moreover, organic waste is permitted to include compostable plastic bags, considerably broadening the end-of-life options of these bags. Also, the government demanded guarantees from the raw materials suppliers that the materials needed for producing the new compostable bags would be available. The bioplastics manufacturers in the country were more than

prepared to do so.

Novamont, a leading Italian manufacturer of bioplastics made from renewable agricultural materials, notes that the chemical industry lobbied strongly against the ban even after its implementation, but that it has now come to recognize that the new technology also offers opportunities. Biodegradable plastics are not necessarily more eco-friendly than other plastics.

But for certain applications, they are the best solution. "The shopping bag market is the biggest market for biopolymers", says Stefano Facco, Novamont's New Business Development Director. "Compostable bags are an effective solution for optimizing the

recovery of organic waste with a reduction of impurities. Their use increases the sensitiveness of citizens toward environmentally sustainable models."

Now, almost a year later, surveys have shown that over 83% of Italians would oppose the reintroduction of traditional bags. "What is more", says Facco, "this little ban has had really big effects. In Italy, investments in biobased plastics this year alone have soared. We

announced a joint venture with ENI to restructure a big chemical plant formerly used for oil by-products into a bio-based chemical complex in Porto Torres (Sardinia, Italy. The project consists of seven new plants - an integrated production chain from vegetable oil to bio- plastics - to be completed within the next six years, and a research center devoted to

biochemistry that will be operative in the next quarter.) Cereplast is building a new plant near Perugia. And DSM and Roquette announced plans to open a commercial scale bio-based succinic acid plant in 2012, in Torino."

In Italy, government and industry have cooperated to push through innovations, both in products and in production processes, within a larger framework that views 'green' as an opportunity for the local economy. Today, in the midst of a paralyzing financial and economic crisis, it's a rare sector that can boast this kind of success.

Références

Documents relatifs

- The use of polar molecules as a probe of the charge distribution at the surface of a solid is discussed and illustrated with reference to recent

Water and saline absorption capacity Q (g/g) of (a) SAP_ref as a function of the citric acid concentration and (b) water absorption capacity of all SAPs crosslinked with 10% of

Considering the facts that (i) the concentrations of pesticides in pollen collected in agricultural areas are usually lower than in our experiment and that (ii) only traces of

DMA of plasticized PLA indicates that a decrease in Tg is obtained with increasing plasticizer content, Plasticizing effect was also shown by decrease in the dynamic storage modulus

FIGURE 2: Variation of loss factor (tan δ) with temperature of the treated poly (lactic acid) (PLA) and plasticized PLA with: (A) triethyl citrate (TEC) and (B) acetyl

The next chapter focuses on PVOH:MFC composites with application to water-based barrier coating, investigating the influence of the different MFC grades and different

PDF Compressor Pro... PDF

Nos propos cherchent à mettre en évidence, dans un premier temps, pourquoi l’éducation au développement durable (EDD) se distingue, en partie, d’autres