• Aucun résultat trouvé

SURFACE ENERGY AND EQUILIBRIUM SHAPE OF L12-TYPE A3B ORDERING ALLOYS

N/A
N/A
Protected

Academic year: 2021

Partager "SURFACE ENERGY AND EQUILIBRIUM SHAPE OF L12-TYPE A3B ORDERING ALLOYS"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00226858

https://hal.archives-ouvertes.fr/jpa-00226858

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SURFACE ENERGY AND EQUILIBRIUM SHAPE OF L12-TYPE A3B ORDERING ALLOYS

M. Yamamoto, T. Fukuda, S. Nenno

To cite this version:

M. Yamamoto, T. Fukuda, S. Nenno. SURFACE ENERGY AND EQUILIBRIUM SHAPE OF L12- TYPE A3B ORDERING ALLOYS. Journal de Physique Colloques, 1987, 48 (C6), pp.C6-323-C6-328.

�10.1051/jphyscol:1987653�. �jpa-00226858�

(2)

JOURNAL DE PHYSIQUE

Colloque C6, suppldment au n O 1 l , Tome 48, novembre 1987

SURFACE ENERGY AND EQUILIBRIUM SHAPE OF LIZ-TYPE A3B ORDERING ALLOYS

M. Yamarnoto, T. Fukuda and S. Nenno

Department of Materials Science and Engineering, Osaka University, Suita, Osaka 565, Japan

Abstract - Calculation of surface energy of LIZ-type A3B ordering alloy was made on the basis of a broken bond model using Bragg-Williams approximation. Prior to the calculation of surface energy, calculation of broken bond density in the same alloy was made. Numerical results for Cu3Au alloy were presented as functions of surface orientation and degree of order. Applying ~ u l f f ' s theorem to calculated y-plots of the alloy, their external equilibrium shapes for the alloy with various degree of order ( n ) were predicted.

I - INTRODUCTION

Surface energy (y) is an important parameter to understand the nature and character of the surface and the interface in metals and alloys.

The equilibrium shape of isolated metallic solids like emitters and particles is determined by the anisotropy of their specific surface energy. Study o n surface energy and the equilibrium shape is few for ordered alloys and intermetallic compounds.

Recently we have observed the shape of a thermally faceted emitter of a Dla-type ordering alloy by FIM /I ,2/. Moreover, we have calculated theoretically surface energy for the same alloy and have predicted the equilibrium shape 131. Then we have compared the above two each other.

In the present study we selected an L12-type A3B ordering alloy because it is a typical ordering alloy, and calculated surface energy theoretically on the basis of a broken bond model using Bragg-Williams approximation. Prior to the calculation of surface energy, w e made calculation of broken bond density in the same alloy. Numerical results for Cu3Au alloy are presented as functions of surface orientation and degree of order. The change of surface energy is demonstrated in a polar plot of y as a function of orientation (the y- plot). Applying Wulff's theorem to calculated y-plots of the alloy, their external equilibrium shapes for the alloy with various degree of order ( 0 ) are predicted. The Miller indices of the facet planes in the equilibrium shapes are obtained.

I1 - A CALCULATION METHOD

General framework of calculation method is schematically shown in Fig.1 and is explained in the previous paper 131. Here, the method is briefly described below. In the present calculation it is assumed

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987653

(3)

JOURNAL DE PHYSIQUE

Density Surf ace Equilibrium Energy Shape

Bragg- Williams

Fig.1 - S c h e m a t i c r e p r e - s e n t a t i o n of a c a l c u l a - t i o n m e t h o d o f s u r f a c e e n e r g y a n d e q u i l i b r i u m s h a p e .

t h a t c o m p o s i t i o n a n d d e g r e e o f o r d e r a t / n e a r t h e s u r f a c e a r e t h e same a s t h o s e i n t h e b u l k .

S p e c i f i c s u r f a c e e n e r g y c s i s g i v e n by t h e m u l t i p l i c a t i o n o f b r o k e n bond d e n s i t y a n d i n t e r a c t i o n e n e r g y , a n d i s e x p r e s s e d by t h e f o l l o w i n g e q u a t i o n ,

E S = - ( 1 / 2 ) C C C vIJ(') uIJ(') ( 1 )

R I J

w h e r e v ~ ~i s t h e number o f b r o k e n bonds b e t w e e n ( ~ ) I a n d J a t o m s ( I = A o r B a n d J = A o r B ) i n t h e R t h n e a r n e i g h b o r p e r u n i t a r e a o f t h e s u r f a c e f o r t h e s t a t e s w i t h v a r i o u s d e g r e e o f o r d e r a n d uIJ(') ( U A B ( & )

= uBA(R)) i s t h e i n t e r a c t i o n e n e r g y b e t w e e n t h e R t h n e a r n e i g h b o u r I-J atoms.

T h e n u m b e r o f b r o k e n b o n d s V I J ( R ) i s g i v e n , u s i n g B r a g g - W i l l i a m s a p p r o x i m a t i o n , by

w h e r e v i j ( & ) i s t h e n u m b e r o f b r o k e n b o n d s b e t w e e n i a n d j s u b l a t t i c e s i n t h e R t h n e a r n e i g h b o r p e r u n i t a r e a o f t h e s u r f a c e f o r t h e p e r f e c t l y o r d e r e d s t a t e , Pi1(!?.) i s p r o b a b i l i t y t h a t a n I - a t o m o c c u p i e s a n i - s u b l a t t i c e p o i n t , i o r j i s a- o r P - s u b l a t t i c e and q i s d e g r e e o f o r d e r . S o t h e n u m b e r o f b r o k e n b o n d s i s e v a l u a t e d f r o m t h e g e o m e t r i c a l c o n s i d e r a t i o n .

V a l u e s o f t h e i n t e r a c t i o n e n e r g y i J A A ( % ) a n d u ~ ~f o r Cu3Au a r e ( ~ ) o b t a i n e d u s i n g Morse p o t e n t i a l e n e r g y and t h a t o f u ~ ~i s ( o b t a i n e d ~ ) u t i l i z i n g t h e r e l a t i v e v a l u e s b e t w e e n a t o m s i n t h e Rth n e a r n e i q h b o r s g i v e n b y C l a p a n d M o s s 1 4 1 , t h a t i s ~ 2 1 ~ 1 = ( U A A ( ~ ) + U B - B ( ~ ) -

~ u ~ B ( ~ ) ) / ( u ~ ~ ( ) + u B B ( ' ) - 2 u A B ( ' ) ) a n d v3/v1.

I11 - RESULTS AND DISCUSSION

1 . Broken Bond D e n s i t y

The c r y s t a l p l a n e s o f t h e L I Z - t y p e o r d e r e d a l l o y a r e c l a s s i f i e d i n t o t w o t y p e s : f u n d a m e n t a l a n d s u p e r l a t t i c e p l a n e s . I n f u n d a m e n t a l p l a n e ,

(4)

F i g . 2 - Maps o f b r o k e n bond d e n s i t y , [O -1 I ] z o n e , f u n d a m e n t a l p l a n e o n l y .

e a c h s u c c e s s i v e l a y e r i s c r y s t a l l o g r a p h i c a l l y i d e n t i c a l a n d h a s t h e s t o i c h i o m e t r i c c o m p o s i t i o n of 75 a t % A a n d 25 a t % B. I n s u p e r l a t t i c e p l a n e , i t a l t e r n a t e s p e r i o d i c a l l y f r o m 100at%A t o 50at%B-5Oat%A. The s u p e r l a t t i c e p l a n e h a v i n g a 1 0 0 a t % A p l a n e a t t h e t o p p l a n e i s named h e r e t y p e I , a n d t h a t h a v i n g a 50at%A-5Oat%B p l a n e a t t h e t o p p l a n e i s t y p e 11. B r o k e n b o n d d e n s i t y w a s c a l c u l a t e d f o r f u n d a m e n t a l p l a n e o n l y , s u p e r l a t t i c e p l a n e o f t y p e I o n l y , a n d o f t y p e I1 o n l y , s e p a r a t e l y .

F i g u r e 2 i s maps o f b r o k e n b o n d d e n s i t y ~ i j ( ~ ) , a l o n g [O -1 1 I z o n e . E a c h o f t h e s e maps i n c l u d e s o n l y f u n d a m e n t a l p l a n e s . The n u m b e r s a t

F i g . 3 - Maps o f b r o k e n bond d e n s i t y , [O -1 1 1 z o n e , s u p e r l a t t i c e p l a n e o f t y p e I o n l y .

(5)

C6-326 JOURNAL DE PHYSIQUE

t h e r i g h t u p p e r s i d e o f e a c h map mean m a g n i f i c a t i o n o n d r a w i n g . Broken bond d e n s i t y c h a n g e s s m o o t h l y w i t h c h a n g i n g s u r f a c e o r i e n t a t i o n f o r a l l o f t h e I s t , 2nd a n d 3 r d n e a r e s t n e i g h b o r s . F o r t h e 1 s t n.n.

t h e b r o k e n b o n d d e n s i t y i s t h e l o w e s t a t ( 1 1 1 ) p l a n e a n d i s l o w e r a t ( 1 0 0 ) p l a n e t h a n a t o t h e r p l a n e s . F o r t h e 2nd n.n. ( 1 0 0 ) a n d ( 0 1 1 ) p l a n e s a r e l o w e r t h a n t h e o t h e r s , a n d f o r t h e 3 r d n.n. ( 1 11 ) , ( 0 1 1 ) , ( 2 1 0 ) a n d (31 1 ) p l a n e s h a v e l o w e r b r o k e n bond d e n s i t y .

F o r s u p e r l a t t i c e p l a n e o f t y p e I o n l y , F i g . 3 , M i l l e r i n d i c e s o f t h e p l a n e s h a v i n g l o w e r b r o k e n b o n d d e n s i t y a r e s i m i l a r t o t h o s e o f t h e p l a n e s f o r f u n d a m e n t a l p l a n e o n l y . However b r o k e n bond d e n s i t i e s f o r B c i a n d a @ b o n d c h a n g e j a g g e d l y . T h i s i s d u e t o t h e a l t e r n a t i v e s t a c k i n g o f a t o m i c l a y e r i n t h e s u p e r l a t t i c e p l a n e d e s c r i b e d a b o v e . On t h e c o n t r a r y f o r @ @ and cia t h e y c h a n g e s m o o t h l y . F o r s u p e r l a t t i c e p l a n e o f t y p e I1 o n l y , i t h a s t h e s a m e f e a t u r e s a s t h o s e f o r t y p e I d e s c r i b e d a b o v e , a s shown i n Fig.3.

2. S u r f a c e Energy

W h i l e b r o k e n bond d e n s i t y i s d e t e r m i n e d o n l y by g e o m e t r i c a l f a c t o r s , s u r f a c e e n e r g y n e e d s t h e i n t e r a c t i o n e n e r g y on i t s d e t e r m i n a t i o n a n d t h u s a n a l l o y h a s t o b e sampled. H e r e we s e l e c t e d Cu3Au a l l o y b e c a u s e i t i s o n e o f t y p i c a l L I Z - t y p e o r d e r i n g a l l o y a n d i t s i n t e r a c t i o n e n e r g y h a s b e e n a l r e a d y known 141.

F i g u r e s 4 ( a ) , ( b ) a n d ( c ) s h o w t h r e e c a l c u l a t e d y - p l o t s o f a L I Z - t y p e Cu3Au a l l o y , a l o n g [O -1 I ] z o n e f o r f u n d a m e n t a l p l a n e o n l y , s u p e r l a t t i c e p l a n e o f t y p e 1 o n l y a n d s u p e r l a t t i c e p l a n e o f t y p e I1 o n l y , r e s p e c t i v e l y . T h e y a r e f o r t h e c a s e o f q=0.346, w h i c h i s t h e v a l u e a t t h e c r i t i c a l t e m p e r a t u r e i n t h e o r d e r - d i s o r d e r t r a n s f o r m a t i o n of t h i s a l l o y . S u r f a c e e n e r g y c h a n g e s s m o o t h l y w i t h c h a n g i n g s u r f a c e o r i e n t a t i o n b o t h a t f u n d a m e n t a l a n d s u p e r l a t t i c e p l a n e s . I t i s t h e l o w e s t a t ( 1 1 1 ) p l a n e , a n d a t ( l o o ) , ( I I O ) , ( 2 1 0 ) , a n d ( 3 1 1 ) p l a n e s i n o r d e r o f i n c r e a s i n g . S u r f a c e e n e r g y i s e x a c t l y t h e s a m e f o r s u p e r l a t t i c e p l a n e o f t y p e I a n d 11, a n d i s n o t much c h a n g e d b e t w e e n f u n d a m e n t a l a n d s u p e r l a t t i c e p l a n e s .

When y - p l o t s f o r f u n d a m e n t a l p l a n e , F i g . Q ( a ) a n d s u p e r l a t t i c e p l a n e o f t y p e I , F i g . 4 ( b ) ( o r t y p e 11, F i g . 4 ( c ) ) a r e s u p e r p o s e d , F i g . S ( c ) i s o b t a i n e d , w h i c h i s f o r q=0.346. E v e n a f t e r s u p e r p o s i t i o n o f t w o y - p l o t s o f F i g . $ ( a ) a n d 4 ( b ) ( o r F i g . 4 ( a ) a n d 4 ( c ) ) , s u r f a c e e n e r g y c h a n g e s s m o o t h l y , a n d i t i s l o w e r a t ( 1 11 ) , ( 1 O O ) , ( 1 l o ) , ( 2 1 0 ) a n d

( 3 1 1 ) p l a n e s t h a n a t o t h e r s .

01 1

F. Plane S,( I 1 Plane S.( It ) Plane

F i g . 4 - C a l c u l a t e d y - p l o t s o f a L I Z - t y p e Cu3Au a l l o y w i t h q = 0 . 3 4 6 , a l o n g [ 0 -1 1 ] z o n e .

(6)

Figures 5(a)-(f) are calculated y-plots of a LIZ-type Cu3Au alloy with various degree of order: Fig.5(a) and 5(b) for q=1, Fig.5(c) and 5(d) for r)=0.346 and Fig.5(e) and 5(f) for n=0. Figures 5(a), ( c ) and (e) are drawn along [O -1 1 ] zone and Fig.S(b), 5(d) and 5(f) are along

[OOI] zone. Planes having the lowest and lower surface energy are the same as those in Fig.4. The feature of y-plots in Fig.5 does not change much, nevertheless degree of order changes largely.

3. Equilibrium Shape

Applying ~ u l f f ' s theorem to the calculated y-plots of the alloy, equilibrium external shapes for the alloy with various degree of order

Fig.5 - Calculated y-plots and equilFbrium shape of a LIZ-type Cu3Au alloy with various degree of order.

(7)

C6-328 JOURNAL DE PHYSIQUE

w e r e p r e d i c t e d . I n F i g . 5 ( a ) - ( f ) t h e p r e d i c t e d e q u i l i b r i u m s h a p e s a r e s h o w n b y s o l i d l i n e s . ( I l l ) , ( I O O ) , ( I I O ) , ( 2 1 0 ) a n d ( 3 1 1 ) p l a n e s h a v i n g low s u r f a c e e n e r g y a r e f a c e t t e d . The e q u i l i b r i u m s h a p e k e e p s a l m o s t t h e s a m e e v e n w h e n d e g r e e o f o r d e r c h a n g e s f r o m 1 t o 0.

4. Dependence of S u r f a c e E n e r g y o n Degree of O r d e r

F i g u r e 6 shows how s u r f a c e e n e r g y c h a n g e A&, c h a n g e s a g a i n s t d e g r e e o f o r d e r . (751 ) i s a n e x a m p l e o f h i g h i n d e x p l a n e . I n Fig.6, s u r f a c e e n e r g y i n c r e a s e s m o n o t o n i c a l l y w i t h i n c r e a s i n g d e g r e e o f o r d e r (q).

The i n c r e a s i n g r a t e was t h e l o w e s t a t ( 1 0 0 ) p l a n e .

Fig.6 - R e l a t i o n s b e t w e e n s u r f a c e e n e r g y c h a n g e AE, a n d d e g r e e o f o r d e r 11.

0 0.2 0.4 0.6 0.8 1.0

IV - SUMMARY ?

1 ) B r o k e n b o n d d e n s i t y i s l o w e r a t ( 1 11 ) , ( 1 0 0 ) a n d ( 1 1 0 ) p l a n e s t h a n a t o t h e r p l a n e s f o r t h e 1 s t n e a r e s t n e i g h b o r . F o r 2nd n.n. ( 1 0 0 ) a n d ( 1 1 0 ) p l a n e s a r e l o w . ( I I O ) , ( I l l ) , ( 2 1 0 ) a n d ( 3 1 1 ) p l a n e s h a v e low b r o k e n bond d e n s i t y f o r 3 r d n.n.

2 ) s u r f a c e e n e r g y i s t h e l o w e s t a t ( I 11 ) p l a n e , and a t ( l o o ) , ( 1 l o ) , ( 2 1 0 ) a n d ( 3 1 1 ) p l a n e s i n o r d e r o f i n c r e a s i n g . T h i s f e a t u r e i s s t r o n g l y i n f l u e n c e d b y t h e b r o k e n bond d e n s i t y .

3 ) E q u i l i b r i u m e x t e r n a l s h a p e i s d e t e r m i n e d by t h e a b o v e p l a n e s h a v i n g low s u r f a c e e n e r g y .

4 ) S u r f a c e e n e r g y i n c r e a s e s w i t h i n c r e a s i n g d e g r e e o f o r d e r Q b u t t h e i n c r e a s e o f 17 d o e s n o t g i v e a n y s i g n i f i c a n t i n f l u e n c e o n e q u i l i b - r i u m shape.

REFERENCES

/ I / K i n g e t s u , T., Yamamoto ,M. and Nenno, S., S u r f a c e S c i . 103 ( 1 981 )

13.

/ 2 / K i n g e t s u , T . , Yamamoto,M. a n d Nenno,S., J p n . J. ~ p p l . P h y s . 20

( 1 9 8 1 ) 2037.

/ 3 / K i n g e t s u , T., Yamamoto,M. and Nenno, S., S u r f a c e S c i . 144 (1 984) 402.

/ 4 / Moss,S.C. a n d Clapp,P.C., P h y s . Rev. 3 ( 1 9 6 8 ) 764.

Références

Documents relatifs

In order to investigate the magnetic interactions between the rare earth metals and silicon in alloys the equiatomic compounds R-Si (R = rare earth atom)2. and

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Abstract—From the analysis of optical properties of noncrystalline (nc) and the corresponding crystalline solids with predominantly covalent bonds a bonding order parameter, F,

we investigate the equilibrium atomic arrangement as a function of temperature and composition and the order-disorder critical temperature. Section 4 is devoted to the

On the other hand, the usual additivity rule will be considered valid to calculate the localized contribution to the hyperfine field, which is supposed to be influenc- ed by

The changes in size of the ordered domains and degree of order inside the domains obtained were analyzed with thermodynamics where the effects of strain energy and

The aim of the present work is to investigate the ordering process which occurs during heating up to the Curie point by means of magnetomechanical damping, shear modulus and

Progressives involving physical forces, on any account, predicate a single occurrence of the event, ongoing at the local evaluation time, while habituals involving physical forces