• Aucun résultat trouvé

On the controllability of linear parabolic equations with an arbitrary control location for stratified media

N/A
N/A
Protected

Academic year: 2021

Partager "On the controllability of linear parabolic equations with an arbitrary control location for stratified media"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: hal-00132289

https://hal.archives-ouvertes.fr/hal-00132289

Submitted on 20 Feb 2007

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On the controllability of linear parabolic equations with an arbitrary control location for stratified media

Assia Benabdallah, Yves Dermenjian, Jérôme Le Rousseau

To cite this version:

Assia Benabdallah, Yves Dermenjian, Jérôme Le Rousseau. On the controllability of linear parabolic equations with an arbitrary control location for stratified media. Comptes rendus heb- domadaires des séances de l’Académie des sciences, Gauthier-Villars, 2007, 344 (6), pp.357-362.

�10.1016/j.crma.2007.01.012�. �hal-00132289�

(2)

On the controllability of linear parabolic equations with an arbitrary control location for stratified media

Assia Benabdallah, Yves Dermenjian, J´erˆome Le Rousseau

1,2

Laboratoire d’Analyse Topologie Probabilit´es, CNRS UMR 6632, Universit´e d’Aix-Marseille I

Abstract

We prove a null controllability result with an arbitrary control location in dimension greater than or equal to two for a class of linear parabolic operators with non-smooth coefficients. The coefficients are assumed to be smooth in all but one directions.

R´esum´e

De la contrˆolabilit´e des ´equations paraboliques lin´eaires avec une localisation arbitraire du contrˆole pour des milieux stratifi´es.Nous prouvons un r´esultat de contrˆolabilit´e `a z´ero avec une localisation arbitraire de la zone de contrˆole en dimen- sion plus grande que deux pour une classe d’op´erateurs paraboliques avec des coefficients non r´eguliers. Les coefficients sont suppos´es singuliers dans une seule direction.

Version franc¸aise abr´eg´ee

La question de la contrˆolabilit´e `a z´ero des ´equations paraboliques `a coefficients r´eguliers a ´et´e r´esolue dans les ann´ees 1990 [1,2]. Le cas de coefficients discontinus dans la partie principale de l’op´erateur a ´et´e abord´e dans [3], pour des coefficientsC1 par morceaux, au moyen d’unein´egalit´e de Carlemanen imposant `a la zone d’observation d’ˆetre situ´ee dans la r´egion o`u le coefficient est le plus petit. R´ecemment, une in´egalit´e de Carleman sans restriction sur la zone d’observation a ´et´e d´emontr´ee en dimension 1 d’espace pour des coefficientsC1par morceaux [4,5], puis pour des coefficients `a variations born´ees (BV) [6]. De telles in´egalit´es conduisent `a des r´esultats de contrˆolabilit´e pour des ´equations paraboliques semilin´eaires et `a des r´esultats de stabilit´e pour des probl`emes inverses. La question de l’existence d’une in´egalit´e de Carleman en dimensionn≥2, sans contrainte sur la zone d’observation reste ouverte. Ici, nous r´esolvons le probl`eme plus restreint de la contrˆolabilit´e d’une classe particuli`ere d’op´erateurs. L’hypoth`ese principale est que les coefficients soient r´eguliers relativement `a (n−1) des variables d’espace, ce qui inclut les milieux stratifi´es. La d´emonstration se fonde `a la fois sur les estimations de Carleman en dimension 1 de [5,6] et la m´ethode de [1]. On ne traite donc que le cas lin´eaire.

SoitΩun ouvert born´e deRn, avecΩ = Ω×(0,H), o`uest un ouvert non vide deRn1

de fronti`ereC2. On pose x=(x,xn)∈ Ω×(0,H). SoitB(x), une matricen×nqui poss`ede la forme diagonale par blocs suivante :

Email addresses:assia@cmi.univ-mrs.fr(Assia Benabdallah),dermenji@cmi.univ-mrs.fr(Yves Dermenjian), jlerous@cmi.univ-mrs.fr(J´erˆome Le Rousseau).

1 Corresponding author.

2 Currently on a leave at Laboratoire POems, CNRS/ENSTA/INRIA.

(3)

B(x,xn)=diag(c1(xn)C1(x),c2(xn)) o`uc1L(0,H),c2BV(0,H) etC1∈C1(Ω,Mn1(R)). La matriceC1(x) est sym´etrique. On suppose 0 <cminci(xn)≤cmax,xn ∈ (0,H),i=1,2, et 0 <cminIn1C1(x)≤cmaxIn1, x∈Ω, o`uIkest la matrice identit´e d’ordrek, ce qui implique une ellipticit´e uniforme. Soit l’op´erateur autoadjoint A=−∇x·(B∇x) dansL2(Ω) de domaineD(A)={uH10(Ω);∇x·(B∇xu)L2(Ω)}. SoitT >0 etQT =(0,T)×Ω.

On consid`ere le syst`eme (2) o`uq0L2(Ω) etωest un ouvert non vide deΩtel queω⋐Ω. On choisitωun ouvert non vide deΩetωnun ouvert non vide de (0,H) tels queω×ωn ⊂ω. On suppose de plus que le coefficientc2

est de classeC1dans un ouvert non vide deωn. Notre r´esultat principal de contrˆolabilit´e `a z´ero est le suivant.

Th´eor`eme 1 Sous les hypoth`eses pr´ec´edentes, pour tout T >0et tout q0L2(Ω), il existe u∈L2((0,T)×Ω)tel que la solution associ´ee, q, du syst`eme (2) v´erifie q(T)=0p.p. dansΩ.

Un cons´equence imm´ediate est l’observabilit´e pour le syst`eme homog`ene adjoint du syst`eme (2). Nous donnons maintenant un esquisse de la d´emonstration du Th´eor`eme 1.

On introduit les espacesHk =vect{ϕk,p;p≥1}={φkf; fL2(0,H)}o`u lesφk,k∈ N, sont les fonctions propres de l’op´erateurA=−∇x·(C1x), de domaineD(A)={uH01(Ω);∇x·(C1xu)L2(Ω)}, associ´ees aux valeurs propresµ1≤µ2≤. . ., que l’on choisit formant une base orthonorm´ee deL2(Ω). On d´efinit les espaces Ej=⊕k2jHkpour j∈N, et on v´erifie que∪jNEj=⊕kNHk=L2(Ω).

On d´ecompose l’intervalle de temps (0,T), (0,T)=∪jN[aj,aj+1],aj+1aj =2Tj, avecTj =jρj =2j, avecKchoisi tel que 2P

j=0Tj =T etρ∈(0,3(n21)). Comme dans [1], on construit une suite de contrˆolesujde L2((aj,aj+Tj)×Ω), jj0pour un certainj0 ∈N, charg´es de ramener `a 0 la composante suivantEjde la solution de (2) au tempsaj+Tj. Le contrˆole est en revanche nul dans l’intervalle de temps [aj+Tj,aj+1], afin de profiter de la d´ecroissance exponentielle en temps de la solution (qui se trouve dansEj `a l’instantt=aj+Tj).

L’in´egalit´e de Carleman pour l’op´erateur∂t+Ak, o`uAk=−∂xn(c2(xn)∂xn)+c1(xnkde domaineD(Ak)={uH01(0,H);c2xnuH1(0,H)}, prouv´ee dans [6] permet d’estimer en fonction deµσj le coˆut d’un contrˆole agissant surΩ×ωnpendant l’intervalle de temps [aj,aj+Tj]. Puis, en utilisant l’in´egalit´e (8) relative aux fonctions propres de l’op´erateurA[1], on d´eduit une estimation du coˆut d’un contrˆole,uj, agissant surω×ωnpendant l’intervalle de temps [aj,aj+Tj]. Ce coˆut est de la forme :

kujkL2((aj,aj+Tj)×Ω)Ce2/3σjkqjkL2(Ω), (1) pour jsuffisamment grand, o`uqjest la valeur de la solution de (2) au tempst=aj. On peut alors conclure comme dans [1].

Remarque 1On peut aussi consid´erer d’autres situations, comme par exemple le cas d’op´erateurs elliptiques en coordonn´ees cylindriques. Dans ce cas, les interfaces (pour des coefficients continues par morceaux)ne rencontrent pasle bord du domaineΩ. Les coefficients peuvent ˆetreBVdans la direction radiale. On peut aussi consid´erer le cas deM ×(0,H) o`uMest une vari´et´e riemannienneCcompacte (avec ou sans bord) de dimensionn−1 et l’op´erateurAest donn´e parA=c1(xn)A−∂xnc2(xn)∂xn avecc1L(0,H),c2BV(0,H) (v´erifiant les mˆemes hypoth`eses que celles donn´ees plus haut), et par exempleA=−∆, avec∆le Laplacien surM.

Remarque 2Comme dans [2], le r´esultat obtenu pour un contrˆole distribu´e permet d’obtenir un r´esultat pour un contrˆole fronti`ere (ici sur une partie de la fronti`ereΩ× {0}ouΩ× {H}).

1. Introduction

The question of the null controllability of linear parabolic partial differential equations with smooth coefficients was solved in the 1990’s [1,2]. In the case of discontinuous coefficients in the principal part of the parabolic opera- tor, the controllability issue and its dual counterpart, observability, are not fully solved yet. A result of controllabil- ity for a semilinear parabolic equation with a discontinuous coefficient was proven in [3] by means of a Carleman observability estimate. Roughly speaking, as in the case of hyperbolic systems (see e.g. [7, page 357]), the authors of [3] proved their controllability result in the case where the control is supported in the region where the diffusion coefficient is the ‘lowest’. In both cases, however, the approximate controllability, and its dual counterpart, unique-

2

(4)

ness, are true without any restriction on the monotonicity of the coefficients. It is then natural to question whether or not an observability estimate holds in the case of non-smooth coefficients and arbitrary observation location.

Recently, in the one-dimensional case, the controllability result for parabolic equations was proven for general piecewiseC1coefficients in [5], and for coefficients with bounded variations (BV) in [6]. The proof relies on global Carleman estimates, which moreover allows to treat semilinear equations. Such global Carleman estimates are also of interest to prove stability results for some inverse problems. A controllability result for parabolic equations with general bounded coefficients was independently proven in [8]. The method used there to achieve null controllability is that of [1], which limits the field of applications to linear equations.

In then−dimensional case,n≥2, the controllability with an arbitrary control location is still open. In particular, an extension based on the proof of the Carleman estimate in the one dimensional case, leads to uncontrolled tangential terms at the interfaces of discontinuities of the coefficient. This work provides a positive answer to the controllability question for a class of discontinuous coefficients: the main assumption we make is that the coefficients are smooth w.r.t. to all but one variables, which includes the case of stratified media. The proof relies both on the Carleman estimates of [5,6] in the one-dimensional case and the method of [1]. We thus only treat linear equations.

We letΩbe an open subset inRn, withΩ = Ω×(0,H), whereis an nonempty regular bounded open subset ofRn1withC2 boundary. We shall use the notationx=(x,xn)∈ Ω×(0,H). For a real Hilbert spaceX,k · kX (resp. (., .)X) will denote the norm (resp. the real scalar product) inX. LetB(x),x∈Ω, be with values inMn(R), the space of square matrices with real coefficients of ordern. We make the following assumption.

Assumption 1.1 The matrix diffusion coefficient B(x,xn)has the following block-diagonal form

B(x,xn)=





c1(xn)C1(x) 0 0 c2(xn)



,

where c1L(0,H), c2BV(0,H)and C1 ∈ C1(Ω,Mn1(R)). The matrix C1(x) is symmetric. We further assume0<cminci(xn)≤cmax, xn ∈(0,H), i=1,2, and0 <cminIn1C1(x)≤cmaxIn1, x∈Ω, where Ikis the identity matrix of order k, which implies uniform ellipticity.

We consider the selfadjoint operatorA=−∇x·(B∇x) inL2(Ω) with domainD(A)={uH01(Ω);∇x·(B∇xu)L2(Ω)}. LetT >0. We shall use the notationQT =(0,T)×Ω. We consider the following parabolic system







tq− ∇x·(B∇xq)=1ωu inQT,

q(t,x)=0 on (0,T)×∂Ω, q(0,x)=q0(x) inΩ,

(2)

(coefficients and solutions are real valued) whereq0L2(Ω) andωis a nonempty open subset ofΩsuch thatω⋐Ω.

We chooseωa nonempty open subset ofΩandωna nonempty open subset of (0,H) such thatω×ωn⊂ω.

Assumption 1.2 The coefficient c2is of classC1in some nonempty open subset ofωn.

We analyze the null controllability of System (2), or equivalently its exact controllability to the trajectories, when a distributed controluL2((0,T)×Ω) acts on the system. The main result is the following theorem.

Theorem 1.3 Under Assumption 1.1, for arbitrary time T > 0 and initial condition q0L2(Ω), there exists uL2((0,T)×Ω)such that the corresponding solution q of System (2) satisfies q(T)=0a.e. inΩ.

Corollary 1.4 There exists an observability inequality for the homogeneous adjoint system of System (2).

The proof makes use of the technique introduced by G. Lebeau and L. Robbiano [1], as well as the one- dimensional Carleman estimates of [5,6].

In this article, when the constantsCorC, etc, are used, their values may change from one line to the other. If

(5)

we want to keep track of the value of a constant we shall use another letter.

2. Spectral properties

Similarly toA, we define the selfadjoint operatorA = −∇x·(C1x), in L2(Ω), with domain D(A) = {uH01(Ω);∇x ·(C1xu)L2(Ω)}. With orthonormal eigenfunctions (φk)k1, associated to the eigenvalues, with finite multiplicities,µ1≤µ2≤...≤µk≤µk+1≤..., we construct a Hilbert basis ofL2(Ω).

We also define the selfadjoint operatorsAk,k∈N, onL2(0,H) byAk=−∂xn(c2(xn)∂xn)+c1(xnkwith domain D(Ak) = {uH01(0,H);c2xnuH1(0,H)}. We denote byψk,p(xn), p ∈ N, orthonormal eigenfunctions with associated eigenvaluesλk,1≤λk,2≤ · · · ≤λk,p≤λk,p+1≤. . .. Note that we haveλk,p>cminµk.

From the separation of variables in the coefficients of the matrixB, we have the following proposition.

Proposition 2.1 The eigenfunctions of the operator A given byϕk,p(x,xn) =(φk⊗ψk,p)(x,xn)=φk(xk,p(xn) with associated eigenvalueλk,p, k,p∈N, form a Hilbert basis of L2(Ω).

Let us denote byHkthe following closed infinite dimensional subspace ofL2(Ω):

Hk=span{ϕk,p;p≥1}={φkf; fL2(0,H)}

and let us setEj =⊕k2jHkfor j∈N. In the sequel we shall denote byΠEj the orthogonal projection ontoEjin L2(Ω). We have the following proposition.

Proposition 2.2 The following properties hold:

(i) EjEj+1, j∈N, andjNEj=⊕kNHk=L2(Ω);

(ii) The operator(−A,D(A))generates aC0-semigroup of contraction, S(t) =etAfor t ≥ 0, and for all f ∈ L2(Ω)we have S(t)f =P

k,p1ek,p(f, ϕk,pk,p; (iii) For all k≥1, S(t)is reduced by the space Hk. See for instance [9] or [10].

3. Existence and estimation of a control acting onEj

Following [1], forρ∈(0,3(n21)), we setTj =jρ, withσj=2j, for all j∈N. The constantKis adjusted so that 2P

j=0Tj=T. Then, we seta0 =0,aj+1=aj+2Tj, for j≥0.

We show that for allqjL2(Ω), jj0, for some j0 ∈N, there existsujL2(aj,aj+Tj;L2(Ω)) such that the

solutionqto 





tq− ∇x·(B∇xq)=1ωuj in (aj,aj+Tj)×Ω, q(t,x)=0 on (aj,aj+Tj)×∂Ω, q(aj,x)=qj(x) inΩ,

(3)

satisfiesΠEjq(aj+Tj,x)=0. SinceS(t) andΠEj commute, this is equivalent to the observability inequality [11]

ky(aj, .)k2L2(Ω)C2T

j

Zaj+Tj

aj

Z

ω|y(t)|2dt dx, (4)

for the solutiony∈C([aj,aj+Tj];Ej) of the adjoint system

−∂ty− ∇x·(B∇xy)=0 in (aj,aj+Tj)×Ω, and y(aj+Tj)=y0inΩ, y0Ej, (5) which moreover yields the existence of a controlujL2((aj,aj+Tj);L2(Ω)) such that

kujkL2((aj,aj+Tj)×Ω)CTjEjqjkEjCTjkqjkL2(Ω). (6) We now prove (4). We first recall a Carleman estimate for a parabolic operator with aBV diffusion coefficient proven in [6]. For a positive functioneβ, we introduceβ =eβ+K withK = mkeβkandm > 1. Forλ > 0 and t∈(aj,aj+Tj), we define the following weight functions [2]

ϕ(t,x)= eλβ(x)

(t−aj)(aj+Tjt), η(t,x)= eλβeλβ(x)

(t−aj)(aj+Tjt), withβ=2mkeβk. 4

(6)

Theorem 3.1 LetO⋐(0,H)be a nonempty open set andγ∈BV(0,H)with0<cmin≤γ≤cmaxandγof classC1 inO. There exist a positive continuous functioneβ, andλ00(H,O,cmin,cmax)>0, s0 =s˜0(H,O,cmin,cmax)(Tj+ T2j)>0and a positive constant C=C(H,O,cmin,cmax)so that

s1 Zaj+Tj

aj

ZH

0

e2sηϕ1(|∂tz|2+|∂x(γ∂xz)|2)dxdt+2 Zaj+Tj

aj

ZH

0

e2sηϕ|∂xz|2dxdt +s3λ4

Zaj+Tj

aj

ZH

0

e2sηϕ3|z|2dxdtC

"

s3λ4 Zaj+Tj

aj

Z

O

e2sηϕ3|z|2dxdt+ Zaj+Tj

aj

ZH

0

e2sη|f|2dxdt

# , for ss0,λ≥λ0and for all z (weak) solution oftz+∂x(γ∂xz)= f in(aj,aj+Tj)×(0,H), z(t,0)=z(t,H)=0, and z(aj+Tj,x)=z0(x)in(0,H), with z0L2(0,H)and fL2((aj,aj+Tj)×(0,H)).

With the previous Carleman estimate we can prove an observability inequality for the parabolic operator−∂t+Ak. Proposition 3.2 There exist positive constants C=C(H, ωn,cmin,cmax), and C=C(H, ωn,cmin,cmax)such that, for all k∈Nand for sk=max(CT2jµ2/3k ,s˜0(Tj+T2j)), the solutions to



−∂tz+Akz=0 in(aj,aj+Tj)×Ω,

z(t)=0 on(aj,aj+Tj)×∂Ω, (7)

satisfykz(aj,·)k2L2(0,H)T1jCeC skT−2j Raaj+Tj

j

R

ωn|z(t,x)|2dx dt.

Proof.We apply Theorem 3.1, withf =−c1µkz,γ=c2,λ=λ0andss˜0(Tj+TJ2), and obtain Zaj+Tj

aj

ZH

0

e2sηϕ3(s33µ2k)|z|2dxndtC′′s3 Zaj+Tj

aj

Z

ωn

e2sηϕ3|z|2dxndt.

Noting that ϕ1CT2j, the coefficient s33µ2k will be positive for sCT2jµ2/3k . Setting s = sk = max(CT2jµ2/3k ,s˜0(Tj +T2j)), we obtain Raaj+3Tj/4

j+Tj/4

RH

0 |z|2dxndtCeC skT−2j Raajj+TjRωn|z|2dxndt. Making use of the parabolic “dissipation effect”, i.e.dtd|z(t)|2≥0 here, we obtain the desired inequality.

We can now obtain the observability in the spaceEj.

Proposition 3.3 Letωbe a nonempty open subset ofwithω ⋐Ω. There exists j0 ∈ Nsuch that, if jj0, solutions of (5) satisfy (4) with CTj =Ce2/3σj.

To prove Proposition 3.3, we shall need the following result which was first proven in [1].

Theorem 3.4 There exists C=C(Ω, ω,cmin,cmax)>0such that for all l∈N, X

kl

|bk|2CeCµl Z

ω

X

kl

bkφk(x)2dx, (b1, ...,bl)∈Rl. (8) Proof of Proposition 3.3.The definition ofEjimplies thaty(t,x,xn) = P

kσjφk(x)yk(t,xn) and one sees thaty is solution inC([aj,aj+Tj];Ej) of (5), if and only if each functionyk, 1 ≤ k ≤ σj, is solution in C([aj,aj+ Tj];L2(0,H)) of (7) andyk(aj+Tj) =y0,k, wherey0(x,xn) = P

kσjφk(x)y0,k(xn). We then haveky(t, .)k2L2(Ω) = P

kσjkyk(t, .)k2L2(0,H) and similarly ky(t, .)k2L2(Ω×ωn) = P

kσjkyk(t, .)k2L2n) for t ∈ [aj,aj+T]. According to the Weyl formula [12, Theorem 14.6, p. 250],µσjC(Ω)(σj)n−12 , we see that, for jsufficiently large, we have sσj = CT2jµ2/3σj. We then haveTj2max1kσjsk=Tj2sσj =2/3σj. From Proposition 3.2 we obtain

ky(aj, .)k2L2(Ω)Ce2/3σj Zaj+Tj

aj

Z

ωn

X

kσj

|yk(t,xn)|2dtdxn. (9)

(7)

If we useyk(t,xn) in place ofbkin (8), we deduce ky(aj, .)k2L2(Ω)Ce2/3σj

Zaj+Tj

aj

Z

ωn

CeCµσ

j

Z

ω

X

kσj

φk(x)yk(t,xn)

2dxdxndt. (10)

Following the method of [1], with the value ofCTj we have obtained and the choice made forTj, the result of Theorem 1.3 follows.

Remark 1For the sake of presentation, we chose to take the open setΩof the formΩ×(0,H) witha bounded open subset ofRn1. There are other situations that can be handled by the method we have presented. We could for instance consider an uniformly elliptic operator in cylindrical coordinates and address the case of a ring with variations of the medium in the radial direction. In this case, the interfaces that locate the jumps of the coefficients of the diffusion matrix (in the case of piecewise continuous coefficients)do not reachthe boundary of the domain Ω. As before we can address the case of aBV-type regularity in the radial direction.

One other natural extension would be the case of a domain of the form M ×(0,H) where M is a smooth (n−1)-dimensional Riemannian compact manifold with or without a boundary. The parabolic operators under consideration would then be of the form ∂t +A, whereA = c1(xn)A−∂xnc2(xn)∂xn withc1L(0,H),c2BV(0,H) (satisfying the same assumptions as those given above), and sayA=−∆, with∆the Laplace operator onM. In such a case, estimate (8) can be found in [1].

Remark 2As usual, as in [2], the result obtained on distributed controls yields a boundary control result. Here the control function could act in a nonempty open region ofΩ× {0}orΩ× {H}as a boundary condition for the parabolic system under consideration. This is of particular interest for geometrical situations like that described in the previous remark.

References

[1] G. Lebeau, L. Robbiano, Contrˆole exact de l’´equation de la chaleur, Comm. Part. Diff. Eqs. 20 (1995) 335–356.

[2] A. Fursikov, O. Yu. Imanuvilov, Controllability of evolution equations, Lecture notes 34, Seoul National University, Korea, 1996 [3] A. Doubova, A. Osses, J.-P. Puel, Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion

coefficients, ESAIM: Control Optim. Calc. Var. 8 (2002) 621–661.

[4] A. Benabdallah, Y. Dermenjian, J. Le Rousseau, Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications, Comptes Rendus M´ecanique 334 (2006) 582–586.

[5] A. Benabdallah, Y. Dermenjian, J. Le Rousseau, Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem, J. Math. Anal. Appl., accepted for publication.

[6] J. Le Rousseau, Carleman estimates and controllability results for the one-dimensional heat equation withBVcoefficients, J. Differential.

Equations. 233 (2007), 417-447.

[7] J.-L. Lions, Contrˆolabilit´e exacte Perturbations et Stabilisation de syst`emes distribu´es, volume 1, Masson, Paris, 1988.

[8] G. Alessandrini, L. Escauriaza, Null-controllability of one-dimensional parabolic equations, preprint.

[9] R. Dautray, J.-L. Lions, Analyse math´ematique et calcul num´erique pour les sciences et les techniques, volume 5, Masson, Paris, 1988.

[10] R. Reed, B. Simon, Methods of modern Mathematical Physics, volume 1, Academic Press, San Diego, 1980.

[11] E. Fern´andez-Cara, S. Guerrero, Global Carleman inequalities for parabolic systems and application to controllability, SIAM J. Control Optim. 45 (2006) 1395–1446.

[12] S. Agmon, Lectures on elliptic boundary values problems, Van Nostrand,1965.

6

Références

Documents relatifs

tors corresponding to an eigenvalue will be one-dimensional, close to the original eigenspace and invariant under rotations through ’03C0. Hence Ao perturbs to a

One basic problem of boundary control theory is that of null-controllability: given initial data in D at t = 0, can this data be supplemented with appropriate

[Oli14] Guillaume Olive, Boundary approximate controllability of some linear parabolic systems , Evolution Equations and Control Theory 3 (2014), no. Seidman, How violent are

Carleman estimate for elliptic operators with coefficients with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic

The Carleman estimate proven in Section 3 allows to give observability estimates that yield null controllability results for classes of semilinear heat equations... We have

The second class of equations is the class of accretive non-selfadjoint quadratic operators with zero singular spaces for which some sufficient geometric conditions on the

In this paper, we have given some easily check- able necessary and sufficient conditions for the approximate controllability of some 1D coupled parabolic systems with

The Carleman estimate (5) proven in the previous section allows to give observability estimates that yield results of controllability to the trajectories for classes of semilinear