• Aucun résultat trouvé

Optimal control

N/A
N/A
Protected

Academic year: 2022

Partager "Optimal control"

Copied!
24
0
0

Texte intégral

(1)

Optimal control

University of Strasbourg

Telecom Physique Strasbourg, ISAV option Master IRIV, AR track

Part 2 – Predictive control

(2)

Outline

1.  Introduction

2.  System modelling

3.  Cost function

4.  Prediction equation

5.  Optimal control

6.  Examples

7.  Tuning of the GPC

8.  Nonlinear predictive control

9.  References

(3)

1. Introduction

1.1. Definition of MPC

—  Model Predictive Control (MPC)

–  Use of a model to predict the behaviour of the system.

–  Compute a sequence of future control inputs that minimize the quadratic error over a receding

horizon of time.

–  Only the first sample of the sequence is applied to the system. The whole sequence is re-evaluated at each sampling time.

(4)

1. Introduction

1.2. Principle of MPC

r t +1( )

! r t + N( 2)

!

"

##

#

$

%

&

&

&

+!

Prediction

y t +1( )

! y t + N( 2)

!

"

##

#

$

%

&

&

&

Optimization

u t( )

!

u t + N( u !1)

"

#

$$

$

%

&

'' '

u t( )

System

y t( )

N2 future references

N2 predicted outputs

Nu future control signals

(5)

1. Introduction

1.2. Principle of MPC

t + N1 t + N2 t

Receding Horizon

r

y

Goal of the optimization : minimizing

(6)

1. Introduction

1.3. Various flavours of MPC

—  DMC (Dynamic Matrix Control)

–  Uses the system’s step response.

–  The system must be stable and without integrator.

—  MAC (Model Algorithmic Control)

–  Uses the system’s impulse response.

—  PFC (Predictive Functional Control)

–  Uses a state space representation of the system.

–  Can apply to nonlinear systems.

—  GPC (Generalized Predictive Control)

–  Uses a CARMA model of the system.

–  The most commonly used.

(7)

1. Introduction

1.4. Advantages / drawbacks of MPC

—  Advantages

–  Simple principle, easy and quick tuning.

–  Applies to every kind of systems (non minimum phase, instable, MIMO, nonlinear, variant).

–  If the reference of the disturbance is known in advance, it can drastically improve the reference tracking accuracy.

–  Numerically stable.

—  Drawback

–  Good knowledge of the system model.

(8)

2. Modelling

2.1. Example of MAC

—  Input-output relationship :

—  Truncation of the response :

—  Drawbacks :

–  Model is not in its minimal form.

–  Computationally demanding.

y t( )= hiu t( )!i

i=1

"

#

y t + k |tˆ( )= hiu t + k( !i |t)

i=1

"N

(9)

2. Modelling

2.2. The case of the GPC

—  CARMA modelling (Controller Auto- Regressive Moving Average) :

—  With :

—  Usually :

A q( )-1 y t( )= q-dB q( )-1 u t( )!1 + C q( )-1

D q( )-1 e t( )

A q( )-1 =1+ a1q-1+ a2q-2+…+ anaq-na

B q( )-1 = b0+ b1q-1+ b2q-2+…+ bnbq-nb

C q( )-1 =1+ c1q-1+ c2q-2++ cncq-nc

!

"

##

$

##

D q( )-1 = !( )q-1 =1"q-1

(10)

3. GPC cost function

—  For the GPC :

—  Tuning parameters : N1 N2 Nu λ

J = "#y tˆ

(

+ j |t

)

! r t

( )

+ j $%2

j!N1 N2

&

+ ' ("# u t

(

+ j !1

)

$%2

j=1 Nu

&

Quadratic error Energy of the control signal

(11)

4. GPC prediction equations

—  First Diophantine equation :

—  With C=1 :

—  Let :

C = Ej!A+ q-jFj

1= Ej!A+ q-jFj with deg

( )

Ej = j "1 deg

( )

Fj = na

#

$%

&%

Ay t

( )

= Bq-du t

( )

!1 + e t

( )

"

#

$%

%

&

'(

( ) "Ejq j

( ) ( ) ( )

(12)

4. GPC prediction equations

—  Using the Diophantine equation :

—  Which yields :

—  Thus, the best prediction is :

1! q-jFj

( )

y t + j

( )

= EjB"u t + j

(

! d !1

)

+ Eje t + j

( )

y t + j

( )

= Fjy t

( )

+ EjB!u t + j

(

" d "1

)

+ Eje t + j

( )

y t + j |tˆ

( )

= EjB!u t + j

(

" d "1

)

+ Fj y t

( )

(13)

4. GPC prediction equations

—  Second Diophantine equation :

—  Separation of control inputs :

—  Prediction equation :

—  With :

EjB = Gj + q-j! j

y t + j |tˆ

( )

= Gj!u t + j

(

" d "1

)

Forced response

!###"###$+# j!u t

(

" d "1

)

+ Fjy t

( )

Free response

!####"####$

y = Gˆ u +! fˆ

y =ˆ !"y t +ˆ( 1+ d |t)y t + Nˆ( 2+ d |t)#$T

!

u = !"%u t |t( )…%u t + N( u &1|t)#$T

' ( )) )

(14)

4. GPC prediction equations

—  And :

—  With g0 … gN2-1 the samples of the system’s step response.

GN

2!Nu =

g0 0 ! 0

g1 g0 ! 0

" " # "

gN

2"1 gN

2"2 ! g0

" " " "

gN

2"1 gN

2"2 ! gN

2"Nu

#

$

%%

%%

%%

%%

%

&

' (( (( (( (( (

(15)

5. Optimal control

—  Cost function :

—  Let :

—  With :

—  Only the first optimal control sample is applied to the system.

J =

( )

yˆ ! r T

( )

yˆ ! r +"u!Tu!

!

uopt s.t. dJ

du! = 0

! u!opt = G

(

TG +"I

)

-1 GT

( )

r # fˆ

r = r t +1!"

( )

r t + N

(

2

)

#$T

Future references

(16)

6. Examples

6.1. First order system

—  A system in the CARMA form has the following parameters :

—  Compute the system’s prediction equations 3 steps ahead.

A = 1! 0.7q-1 B = 0.9 !0.6q-1 C =1

"

#$

%$

(17)

6. Examples

6.1. First order system

—  Using three times the CARMA model :

(18)

6. Examples

6.1. First order system

—  Putting everything in matrix form :

(19)

6. Examples

6.1. First order system

—  Optimal control (differential) :

—  Optimal control (absolute) :

(20)

6. Examples

6.2. Simulation results

(21)

6. Examples

6.2. Simulation results

(22)

7. Tuning the GPC

—  Parameter λ :

–  Increase : response slow down.

–  Decrease : more energy in the control signal, thus faster response.

—  Parameter N2 :

–  At least the size of the step response of the system.

—  Parameter N1 :

–  Greater than the system’s delay.

—  Parameter Nu :

–  Tends toward dead-beat control when Nu tends toward zero.

(23)

8. Nonlinear predictive control

—  The system can be nonlinear.

—  The optimal solution is computed using an iterative optimization algorithm.

—  The optimization is performed at each sampling time.

—  Additional constraints can be added.

—  The cost function can be more complex.

—  Main drawback : very computationally intensive.

(24)

9. References

—  R. Bitmead, M. Gevers et V. Wertz,

« Adaptive Optimal control – The thinking man's GPC », Prentice Hall International, 1990.

—  E. F. Camacho et C. Bordons, « Model Predictive Control », Springer Verlag, 1999.

—  J.-M. Dion et D. Popescu, « Commande optimale, conception optimisée des systèmes », Diderot, 1996.

—  P. Boucher et D. Dumur, « La commande prédictive », Technip, 1996.

Références

Documents relatifs

The goal is to prove the feasibility of such a real-time optimization-based control design and to demon- strate its tracking capabilities for the nonlinear dynamics with respect to

A sampling time of T = 5 s is chosen, as the time response of the open loop is about 50 s. This configuration highlights the influence of the control law parameters. The

Receding horizon control, model predictive control, value function, optimality systems, Riccati equation, turnpike property.. AMS

In a nutshell, receding horizon control (also called model predictive control) consists in replacing the infinite- horizon control problem (1) by a sequence of finite-horizon

Section 3 contains a notion of a local quadratic growth condition of the Hamiltonian at the presence of control constraints and a formulation of generalized strengthened

In this paper, we study a class of stochastic optimal control problems, where the drift term of the equation has a linear growth on the control variable, the cost functional has

properties: For the corrosion pit area and volume populations, a multi-covariate Weibull distribution was selected, where the scale parameter (of the Weibull equation) is a function

The simplified model considers one thread at a time (and so ig- nores evictions caused by migrations to a core with no free guest contexts), ignores local memory access delays