• Aucun résultat trouvé

erirg Engine

N/A
N/A
Protected

Academic year: 2021

Partager "erirg Engine"

Copied!
9
0
0

Texte intégral

(1)

ISSN 1827-6660 VoL,8

N.

5 Septeober

-

October 2013

Ele

ctric al

Engine

erirg

(rREE)

Contents:

a

Novel

conttolling

Pulses

Disttibution Algorithn fot pDM

rnverrer

b

Z.l.

Zbazgk p.

Feng

Compadsoa of Fuzry

aad

FpGA

Based

Fault Tolerant

Schemes

for Four

Switch Space

Yector

pWM InvêrteË

fo

M

lyakbltnan,

V.

Matikardat

f{ryti9n

of

cogging

Torque

ia claw

pole Machioes

usiag

soft M4gaetic composites

fu S. A$awôgcr, D. Atdermsr,

L

Koblcr, J. pasenbnaan, W.

a.*ào

f'

lo1tot

System

to

Reduce

Torque Pulsatioo

Dudng §tart-up

of

Âc

Electtical Machines

fuJ. §tar4ak,

R

l*dwiaek

ÿ3unte$-etctrcmagnetic

and

rhemal

Desiga of

Miniatuized

permaneat Magnet

Liaear Motors for Sliding

Doorsplications

fo Jory€ Jiaencç tose

A

Mahtabæs, Ibin Eltsegui, Miguet

MartkeTltwaldt

loye

Snnutatioa

ani_Aylrsis

of

single-phase capacitor-start

Inductioa

Motors

U"iog

Finite

ElemeatMethod

at

Brokei

Bars

Coadiàoas

fu Hanafr H. Hanafi,

Taar

M. Abdo, Arrrr

A.

Adù

T*

y}g{s-cipliaary

Design

of

Rotot

Geometry

in

a Permaaear Magaet

Ttaction Motot

fu P. Uzdlt, J. HeiÉ,kiaea, E.

Ienitn,

J.

\rùiinn,

V. Nataaæa

?ü9q

Mode

speed

C,oatol for

Inductioa

Motor

Drives

with

sate-Dependent

Gain

Method

fur

Mairyz

Silainaa,

FiryntAini

pataAor, Zutkiflia lbmbin

synthesis of

Eleetricar.euaatitiee Âpplied to

squirtel

cage

laductioa Motor

Bearing

Faults

Deæctioo

fur Mobaaacd Fera$, Notæddiæ Bcaouqa,

Aryüae

Benüabdethb, Berytowru

Maryri

Â

Low'cost

Device for

contactless Deteetion

of

pacemaket

pulses

b

P. Bifslco,M. Gsaælli, M.

D,Aptço,G.

D.

Garyiilo,a.

Urrr*,Niàqrirr,M.

Roaruno,

L

§cbiatoLoMoieth

wide-Band

aad

Natrow-Baad characterizatioa

of the

Propagation

Channel

in

Trains

fotA

Marisntti,

A.

Matzse,

N,

pasqrino, p. Bfubo,

A.

Liccardo,

x

sînioro

ù

Moricno

9gpb

Àpproach

to

Preüct

Near Field

Electrcnagnetic

Interference

io sMps

U"irS

tàe

Induced

EMF Method

$t Leonardo

Soümlit|

Ugr P§ggiarri

fntefirational

Revieur

of

1389 1395 1403 1410 t41,6 1427 1437 1446 1454 1461 1467 1473 1tl'à

W

lrr[;r{+I

?rnâ.ta

fnzu

(2)

I*terr*stisnst

fr

wi*ç

af

Electricul

Engineertng

(REE)

Eütot-in-chw

Ssntolû Meo

Department of Electrical Enginecring

ar:d Information

Technoiogi

(DIETI)

FEDERTCO

II

UniversitY

21 Claudio - 180125 NaPles, ItalY

santolo@unina-it

Editorial Board:

Jorge Luis Aguero

Drago

Ban

Barbi lvo

M.

El

Hachemi Benbouzid

Frede

Blaabjerg

Bimal

I(

Bose

Isaak

Braslavsl«Y Piet

M.T.

Broersen

Hulusi Biilent Ertan

Carlo

Cecati

Leszek §.

Czarnecki

Dominique

Dallet

Massimo

D'APuzzo

Serge

Demùlenko

Ahmed

M.

EI-SeraIi

Ali

Emadi

Enric

Fogsas Giuscppe

Gentile

Jacek F.

Gieras

F'erdinand

Gubina

Thierry Marie

Guerre

Peter

Hanggi

.

Narain

Hingoranl

David Howe

Merie

Imecs

Vitlorio

Isastia

Cimino

(Argentina) (Croatia)

tBrazil)

(France) (Denmark)

(u.s.A.)

(Russiai (The Netherlands)

(Turkey)

(ltaly)

(u.s.A.)

(France) (I1âly)

(Malapia)

(Canada)

(u.s.A.)

(Spain)

(ltaly)

(u.s.A.)

(Slovenia) (France) (Germany)

(u.s.A.)

(u.K.)

(Romania) (ItalY)

Theodore Laopoulos

Gerard

Ledwich

Emil

Lævi Leo

Lorenz

Junya

Matsuki

Linus

Michaeli

Mart

Min

James

E.

Morris

Istvan

NegY

§hukh

Padma

Kant

Po

Gyu

Park

Michtl

Polouiadoff

Jan-Henn

C.

Pretorius

Francesco

Profumo

ZhaomiugQian

Kaushik Rajashekara

Muhammad H. Rashid

Àlfred Rufer

Athânasios N. §afacas

Yong-Hua

Song

Alfredo

Testa

Julio

Ussola NeviIIe

WaBon

Cui

Xilng

Irmaculada Tamora

Ahmed

Faheem Z,obaa

(Greece) {Australia)

(u.K.)

(Germany) (Japan) (Slovak RePubliki (Estonia)

(u.s.A.)

(Hungary) (Germany) (Korea) (France) (§outh

Africa)

(ltaly)

(China)

(u.s.A.)

(u.s.A.)

(Swieerland)

(Greece)

(u.K.)

(ltaly)

(Spain)

§ew

Zealand) (China) (Spain)

ü.r.1

The

lnternafionat

R*tcw

of

Elecfiîcal

Englneerbg (IREE) isa;ublication ofthe

Praise

rilorthy

Prize

s.r.l--,in.

n"ri.*

is

publishjlffirht;

;pp"*t-g

on

tË.

l*t

day of Febmary,

April"

June, August,

october'

December' Fublished and Prinæd in

ltaly

by Praise

Worthy

Prize §.r.t.,

Naples, October 31, 2013'

Copyright @ 2013 Praise Worthy Prtze

§'r'L

-

All

tlghts

resetted'

Thisjournal

and the individuat contributions contained

in

it

are protected under copyright

by

Pratse

\uorthy

Prize

s'r'l'

a

following terms and conditions apply to their use:

li;$;

dd;pies

of sintle artieles may be made for pcrsonal-use as allowed by national

copyriglt

laws' permission

of

the publislïei

p"vr""it

"r

a fce is

ràuir"a

for

all

other

photocopying including multiple or systcmatic cc

copying for advertising or promoîional purposes, resale and all forms of document delivery. Permission may be sought directl pra-ise

Wo*ny

Prize

§nl.

at lhe e-mail address:

a dmla

istretion(ônreiscwor{àv9r&acom

permission of the publisher is required to storÊ or use electronically

ury

material contained in this joumal, including any ar part of an

uticle.

Except as

o$lined

above, no part of this publication may bc reproduced, §tored in a rctrieval sy§iem or trsn:

in any form or by any

*Àr,

ri."trooic,

mectranicat, photocopying recording or othenrise, without prior written permissior Publishcr. E-mail address pcnnission rÊquest:

edministrrfi

on

@prïlstworthvor{zacom

Responsibitity'for thc contents rcsts uPon ür9 arrthors and not upon the Praise

lÿortüy

Prize

S'r'I"

statemênt and opinions

effioà

in

üri *ticles

and communiàtions are those of the individual contributors and not the

stal

and opinions

of praisc

it;r{ày

prlze

§nL.

rrarse

wortuy

Prize

s.r.L

assumes no responsibilir.e or

liabilify for

any dar injury to p€rson, o,

p.purty

#.ing

gut 9f tfrq use of any maierials, instructions, methods or ideas contained herein'

praise

lvorthy

?rizes.r.l.

expressly disclaims-any implied

*".r*ti.*

of

merchantability

or

fîurEss

for

a particular

pur

"*p"*

*.irt""t

is require4

ttti

(3)

Internatîonal Revian' of

Electical

Ergineering

(['RE.E.),

Vol-

I'

N' 5

ISSN 1827-6660 September - October 2013

?yeâla

?riz*

thesis of

Etectrical

Quantities

Àpptied to

§quirrel

Cage

Induction

Motor

Bearing Faults Detection

Mohammed Ferradj, Noureddine

Benouzza,

Azzedine BendiaMellah, Benyounes Mazari

Abstract

-

Etectric

tîrc)tors

play a

very

imryrtafr

role

for

s$e

and

eficienl

ruming

o"y.

irAuiiot

or

pa,ver

ptant

dàrti

&teuion

o{

abnornatïties

in

the

motor

will

help

ad

ouoid unensive failures. Bearin7 îauits

create

asymrætries

ord rewlt in

abnormal amplitude

of

l-le

tr;;;;;";;;ia

tn"

in\â*ena

supply irequency

and

its harmonics-

tt las

been shown that

triiri

Wtu

ian

be'dekaed

ty

sEviràt

,rvinAs. frequerq,

estimation techniques

luve

been

-à;:i;i;;

*d

uied ro detea

teârtngfaulæ.

tn

this paper an

overtiw

of the Concordia vectors

;"i;ü;r;

fuorrty tta

a and

fi

eompànerrtsl is applied to the detection ol bearingfaults' Our main obiect'ive

i, t,

i*ntiyot" *nirn'of

tlte

two'ia*ponentt

is

most_sensitive

to

beartngfaults-"Aiiit^ria

wt

prTrr*rA

on

à

number

of

fautty

beari1ss show

tlut

the

p'

qaaùaure

îrïi)iint

it

*rp

ir,;a;ittoe to

tlase

types

offoults.

Copyrtght @ 2013

Prake

Worthy hÛze

S'nL'

Afi rlghr

rese*ed-Keywords:

Bewing

Fayhs,

Concordia yectors,

Diagnosis,

Spectral

Analysis,

Squirrel

Cage

Motor

SM

N"4

§yn

Nomenclature

D"

Cage diameter

Db

Ball daimeter

.lans,*

FrequencY of the outer ring

îrns,n

FrequencY

ofthe

inner ring

.fn*

FrequencY

ofthe

cage

î,oa,

FrequencY of the ball ring

f

Power suPPlY frequency

fr

Rot*ing

*equencY

frn

Rotor slots harmonics frequencies i", , i*6,

i.r..

Thre+phase currênts.

Maximum value

ofthe

Phase current

Direct and quadrature Concordia components

Positive integers Number of rotor bars Number of ball ring

Number of pole pairs

§lip

Time order harmonics Contact angle

L

Introduction

Elcctriæt

machines

rcal'time monitoring

is

well recommended

for

faults

and

overloads

detection,

especially in power generation and high power drives'

Manuscrlpt received and 'r;vised September 2013, accepud Ocaber 2013

The

measured

signals

that

contain

significant

information

on

faults are

generally voltage'

cunent,

speed,

-

vibration and noise

fil-[3].

The

devetopment

of

modem diagnosis methods has

widely

increasod due

to

advances

in

miorc-electronics

and signal pnocessing

t4l-t?1.

Bearings are among the

most

important

and

sensitive

elernpnts

in

elestrical machines. They in fact play the role of electr§mechanical

interface betwecn staior and

rotor.

It

should

be

noted

that, most

of

the bearing faults

will

affect

directly

the

bearing geomctrical shape

by

eithen

rolling

elements surface comrgsions, inncr and outer rings cracks or cage damage. This last

fault

is found to be the most common in bcaring

farlts [8]-fl01.

There

are

various types

of

faults u/hich can

bc

classified as

follows

[],

[11]-[13]:

Wear/ Fingerprints

deformatiorÿ Seizure/ Fissure surfaceÿ

Corrosiotÿ

Scalinÿ

Cracks. There

are also

several

diagnosis techniques for bearing faults detection

[29]'[31]:

r

Diagnosis by vibration meâsurcmênt;

.

Diagnosis by chemical analysis;

r

Diagnosis by temperature mea§ur€ment;

o

Diagnosis by acoustic emission;

r

Diagnostic by sound prcssulç;

.

Diagnosis by laser displacernent mÊasuËment;

o

Diagnosis by stator currents anatysis.

The

technique used

in

this

paper

for

squirrel

cage

induction machines online faults detection and location is based

on the

spectral analysis

of

currents Concordia

vcstor§.

This

technique

is

based

on the

deæction

of

harmonic frequency componcnts gefl€rated

on thc

a-$ componeflts curr€nt §Pectrum.

Coyyrigfu @ 2Al3 Pmise Worthy Prize Sr.l. ' All rtghts resened

lm

io,ip

k n6

Ài

p

§

ÿ

§t 1454 ,.]*§i

(4)

Mohamned Fenadi,

Noweüiræ BenouzT

Azsedine Bendiab&llah, Benyouttes

Mæwi

These hârmonic fiequencies

result

from

imbaiarrca produced

by

fault

prcsence

in

different

part§

of

the machine

tl4l-Ü61.

--Otf,"tit.âànü

@uencics

produced duc to machine

eæmetrv

art

known as §pa§e

or

rdor

slo6

harmonics

ina

tfr.i

appear

both

in

thc

current Concordia vectol§

ap*ru;

anb

aho in

thc LI§§AJOU form

of

cutrcnts Concordia vestors.

U.

Spô§tral

Content

of

Electri§al

Quantitie§

with

and

ïÿithout

Faults

Thc Ball typc

bearings are

widely

used

in

electrical

*"ot

in.ty. rfiày

"*

ooàposed

mai{y

of the outer

ring'

fi; ir#

Ang

ttre balls

and

the

cage

providing equiaistance

ütlr*n

the

balls.

Fig'

I

shows

the

eéomotry of the beuing mdial

ball'

-

Inrcr ringfottlt:

r =h'*(*br*a\

(3)

rttts'tà 2"l\- D" ")

-

Cagefaalt:

r-*=f;rl'-f;'*u)

(4)

-

Balls

bearingfault:

tanx=*ol'-ff.'*'â)

(5) Setrocn

and

co'authors

[ll]

have shown

that

thc

U*lng

faults oan manifest thernselves as

faula in

the

;m#.t[

robr.

These

are

gencrally slassifiÊd

as

f,-ail;;il

characterizing

the

eccentricity

faults

on

*tJion,

which leads

to

periodic changry

of

indu'cànoes

i;lh;'

tn

"tint.

ftÉ

should produce

additional

àrquinci.s

in the stator

ouîent

and thercfore on the

c'p

componÊnts

cunut

sPcctrum'

il.1,

Withwt

Faults

For a healthy ftrnctioning of the cage induction mot'or'

i"

Jdid*

to the fundamenal frcquency, appears

in

the

;uà;i

tpttttt

*,

the rotor slots hannonic§ ât fuquen§ie§

(f,1

) given by the following expræsion:

f,t

=f

lgt'-o*,]

with/as

the power supply frequencÿ, s as.the. slip'

p

as

*,"

nutU"t oi

pote

putË,-,

as the time order harmonics

iirr**irt

e"netatà by

the

power supply), nb a§ thÊ

àumber of roior bors and k

=

1,2 .

' . positive integers'

Fig; t. G€ornctry ofthc ball bcaring

The charactcristic frequencies of the bearing faults aæ

obtaincd experimentally using vibration monitoring and

analysis

fl

U, [17].

fituv

it

-Oæ.4 both on the

geome§ of

the

bcaring

and the rotation frequenuY.

ln

general, to describc dre operation

ofa

squinel cage

,otoi

tht

twodimensional

rcpresentation

is

used' One

of these representations is the cunent§ Concordia

vectolt

given as

fl81-[21]:

=

rgt -*',,,

-ft

t

=

*'^

sin(zr

rt\

.6.

=n

t,istn

orjttr§qg

Db

bâ11

ç,ir6,Ç

: Thrce'Phase curents;

ir:

Ma,rimum value of the phase ounent;

/

: Power

supflÿ

frequencY.

The harmonic &oquencics

of

the different faults

in

a bearing are given

by,[l

l]'

122],'QaT

-

Outer

rirgfault:

fn,s,*,=*r{'-**u)

(6)

i'

1,,

(l)

1i.2.

With Bearing Fauhs

The prcscnce

of

bearing

faults

is

manifested

by

the ceneration

of

harmonice

in

the

stator

curcnt

§pectrum

Ëi"t i;

üre production

of

harmonic componene

of

cuncnts Concordia

t-Th;

vdor§

in the spcctrum'

fault

in

the

bering

outer

ring

affects

the componcnt§

ofthe

Concordia vectors by producing new harmonics et the foqucnoy [3],

[25]-[24:

Znn+L\

"

2)

=ào-#t

,fæon,,s

=lî

*

*'

.f n*,*,1

(7)

where

/

= 50

Hz

Replacing the geomeüical data cited

in

equation

(2)

(Appcndix

B),

gives

thc

frequency

of

thc

câge as follows:

1455

CopyrtgVA 20t3 Prtse Voahy Prize S'nl" Âll righa æse»ed

(2)

(5)

Molwnmed Ferr@j, \Ëoureddine Benouzzq Azzedine Bendiabdellah, Benyutnes

Mæwi

1''6'*'

=

89'27-89'2?'s

(8)

whert s is thc slip.

By

cons, the

fault

in

ttre inner

ring

of

the bearing is manifested by the production of harmonic in the cu$eilts

Concordia vectors sPectrum:

ît*nog =lS

*x'fn*,*l

(9)

Replaoing

the

geometricsl

data ciæd

in

Eq.

(3) (Appendix

Èi,

we obtain the ûequcncy

of

the outer ring

as:

(e) {b} (ei (d)

Figs. 2. Faülts cr€atêd in the bearings used in ow experiments (g) oüter ring fault, (b) inrpr ring faul! (c) côge fault (d) ball fault

The mæsurement equipmen§ consists

of two

cuntnt

Hall

Effect s€nsors and an acquisition card connected æ

a

computer

for

viewing

the

processing

of

the

signals picked up as shown in Fig. 3.

Iùrs,,,

=135-135's

(10)

By cons, fault in the bearing cage is manifested by the production of harmonic in the currents Concordia vcctors spectrum:

.\æ*,ns =17 *'

*'

f*srl

tt

t

I

Replacing

the

geomctical data cited

in

Eq"

(4) (Appendix B), we obtain the frequ€ncy of the cage as:

af*rsrftttaqD Po§lR§ulf&t.

PC "-" DC @§EnilroE

f"*,

=

l0-10's

(12)

urd

the fault

of

the

ball

bearing

is

manifesæd

by

the production of harmonic in the currents Concordia vectons spectrum:

fi'*;'e =11*'k'ft'r'l

Replacing

the

geometric data

cied in

equation

(Appendix

B),

we

obtain

the fuquency

of

the bearing as:

.fb*nos =11

*

k'

lr,ti

(t3)

ilL

Experimental

Result§

of

Faul§

Diaglosis

of

Bearings

The main experimental tests

illustated

in

this

article

are

performed

by

"the

diagnosis

gtoup"

in

the

Laboratory

of

the

Development

of

Electrical

Drives

(LDEE) USTO university.

The motor used in these tests is a three'phase squirrel cage induction motor coupled

to a DC

generator' The motor parameters are

giver

in Appendix

A'

Our motor bearings are of ball type, with the reference

6206-Zz(coupling

side) and with the reference

6205'22

(opposite coupling side), whose geometrical parameters

are given in Appendix B.

The faults dealt with in tlris paper are listed below:

o

Fault of the beæing outer ring,

r

Fault of the bcaring inner ring,

.

Fault

ofthe

bearing cage,

o

Faultoftheball

bearing.

These

faule

are produced

artificially

by

drilling

in the bearing in order to create the same situation as real faults,

(see Figs. 2).

Copjngfu

*

2013 Pratse l{orrty Prize S.r.l. ',411 righu rcserted

Fig 3. Motor experimcntal setuP

The different

exporimental

tests

focused

on

the

following operating cases:

r

Operalion of the healthy motor,

r

Operation of the motor with outer ring

fault'

r

Operation of the motor with inner ring

fault

o

Operation of the motor

with

ball fault,

r

Operdion of the moûor with cage

fallt.

The

non-sinusoidal

stator windings

distribution

generates space harmonics. These harmonics manifest themselves as ripples

in

the time domain

of

the current harmonics and high frequency harmonics also known as

slot rctor

harmonics

in

the

stator current

frequency

sp€cüum. These harmoniss

occur

in

pairs

at

regular

intervals. Harmonic

fuquencies

of

the rctor

§lots are given by

Eq.(6).The

procedure adopted in this paper

for

the

baring

faults diagnosis is presented by various stcps

as follows [28J:

-

Estimating

of

slip by

deærmining the

first

rotor slot

harmonic,

-

Predicting

of

harmonic

frequencies characterizing

bearing

faulg

deduced

from the

various thÊoretical formulas given above,

-

Checking

of

the presence

of

the predicted harmonic frequencies

with

those

occuning

(captured)

in

the real stator cunEnt spectrum.

For the

study

of

each

bearing

fault,

the

analysis

of

the following

electrical quantitiÊs considercd:

-

The statorcurrent,

-

The a Concordia componeflt,

-

The p Concordia component.

(5) ball (14) spectral

will

be I456

(6)

-Mohamned Ferradj, ù{uredditæ

Benuzz|

Azzediw

ùenüab&ttah,

Benywnes Mazæi

The

objective

of

the

anatysis

is

o

{ind the

mo§t

r.n.itir.

it

rl""t

quantity (among the thrce quantities

iirt"a

*o*)

when

-carrying

the

various bearing faults diagrrosis.

Figs.4(a),4O)

and 4(c) reprcænt thc spætra

of

-the

stator cunent,

ih. o

component

and

the

$

**pon*t

in the case of a motor operating

"it

an outer

rinc'fault.

It

oan be notcd

*rat

in ttrc spectra of drc

th:tc

ffi;'""t

luantities,

thc

prcscnce

of

üre.

h-armonic

.fr"oræritti.

of the ouær ring fault frequcncy is-37H2'

-"

ffri

oAaio"a

rcsults validsæ

the

theorctical relation reo.

iioll

which predic'ts the &equercy of the outer ring

à:üilT#

amplituïe of the harmonio chara§teristic of the

outer

ring faült for

thÇ ststor cumÊnt' the

a

component

*J

*i}c"ncordia

comPon€nt is rtspectively 0'0 I 96E'

0.01968 and 0.02022.

It

can bc sccn that, among the threc quentities' the

p

Coneordia componcnt

is

more sensitive

to

thê præen§€

of

-';ü;(tt,

the outcr ring

fault

3Ol

*a

5(c)

represcnt

trryIY"tv

th'

,o"&

of

the stator

cun

nt, thé

c

urd thc p

Concordia

é*p"""r"

*

the case

of

tlte

motor operating

with

an inner ring fauh.

ffi

be

noticed

ûrc

appearance

of

the

harmonic

"hÀ#ttù

oi

ttre inner

riïg

fault

in

the-spectrum

of

iË.

trrË it."t"cal

quantities

at

fi'cqucnc.y.

TTHz

lt

æn

;Ë-bt

noticcd

thl

signifioant sènsitivity

of

the

f

ôàncordia somponent

oithis

tyPe

of

fault

comparcd to the othcr ones.

z

ë

o

6.-i- at cl.s 38

38.5

39 Freqærçy(llz) (b) n.5 Frcqxrcy {a} (llz)

--

Hcaltttÿ FreqtmY(Hz) (c)

Figs. 5, CasÊ of opcrating thc moto witr the inrrcr ring boaring Ëuls'

'

ÏàiiÉ

«utot.'r*m spetuum,-(ul specttutn ojrhe-c Concordia

'-'

ô*po*rrç

tc) æèctrum ottne p Coræordia component

lntarnatioral Rllttatt of Electtcat Engtnccrttg" lrol' 8' N' 5

+2.

àF o ÊL" 9i

s

r) E! a e

Fiqs. 4. C8ê of operatrng the motor with the outcr ring bearing faulu'

'

'i;iËü;;'"*ra

ip*t**,

(b)

ÿîtrum

of the a Concordia

'-'

-

à*po*rrt

.: speêtrrsrr of thc p Concordia compolænt

Cop1mght § 2Ot3 Pmise Wonlry Prlze Snl' 'All rlghu resemed

0.015 0.01

--ffi]

-FaultY

I

I i i

,'l

0.(25 ' il

t

37

llz

lr

o.æi

V I èi ,l

;

0,0151 Ei

§ o.orl

'

,

€ i

,ir

o.oosi

,, I

ll'

I .

t

.

,

-,

,r.

lli.!l,

I

t

3 1457

(7)

Molwrwed

Fera4i'

Noureddlre Benouzza'

A*ediw

Bendiab&ttah'

Benyottnes

Mæari

*ffi

l':ôPËiffli*ffi

LtÏjffii#i

ômponents in the casc o

i,"ill

it

can be

fl.Hin1ffilffl-iil,ffiig

characæristic of the ball

IiËfr

âi'"*ffi

'rqrî*H%ftr"i:fli,ï§.1i

iiilïiJffi

ef

iffi

;,x;;;'*::

Fies.

7(aI

zol

ano'Ttcit"pt*itt y-ryivelv

tne

sDecm

of

the

stator

t'*nt'

th"

o

*tnpo"ent

and É

?ffininâ

î"

,rtît*"

oittt"'*ott

operating

yA:Y,:

fauh.

It

can b€

seen

*re

p1cs9nï

of

ttre harmontc

characteristic

or

æ

*Ë-a['ri

il,t"

spectnrm

of

the

"iloi"â

qr*ttties

attuquency 30Hz

30 tE.

ÿ

Fiss. 7. A case of opsîating th€ motor wltr-caæ

qtt'

!{thc- stator

'

'Ë"*iitîJ,*r",

Ol +àctrum of oe cconcordiacomponenL

-*'-"' -'t-.ifi,i.fo

'of

ttæ B concordia componcnt

It

can

be

noted

the

scnsiüvity

of

the.p

Concordia comDonent

of

this

t

Oo

fault

Lompared

to

the othcr

îr.'fi,iJ;:T;bti

;t'd

rituà*tti'"

t'he obtained rtsults

Ï;;-ü;"rs

faulls deak with in this paper'

AMPL*TDE lMrLrrvvÿ.r.rF.'-r-- AND

r-*,*i!ffi

ry*.31i'gYg'

tcFoRTHETHRSEELECTtrICÀL ÔF THE OI'TER AND INNER RIN

crnrcnt spccttum Spectrum ofthc c Concordia component Spectrum ofthe P Concordia 0.00259t 0.00450? Fies. 6. Case of operdiûg tha motor wilh ball bc*ring àultq'

a: the

#Süii-.i;-ff

'b:-spcctnÀof

dreacoocordjacornporrnt'c:

rum of ttre P Concordia cunponont

Coyyrtght @ 20t 3 Ptsise Wæthy Priæ S'r'l' ' All

rigfits reserted

compon€fit

.

hternatonal Reriat of Etecttcal Enginecring' ltol' 8' N' 5

(8)

Mahanmed Ferradj, lloureddine Benouæq Azzediw Bendiabdellah, Berryounes

Mæari

sp€cEum Spectrum ofthc o Cornordia compon€nt §pc*rum ofthc P Concodie @mPonont

0.00748

30

0,01242

0.0t242

30

0.03722

The

results

show that

the

tÊchnique

of

specæl

analysis

of

the É Concordia somponent is

b*t

suited

for

fault diagnosis ofbearing faults.

IV.

Conclusion

In this work we have shorryn the usefulness and merits

of

the

Concordia vectors

diagrostic

technique

for

the detostion and localization

of

bearing faulB in thc squinel

cage machine.

For this, we have presented

in

this papcr the spectral

analysis

of

three

elec*ical

quütitiss

namely

the

stator cunlsttt, the a Concordia oomponcnt and

thef

Concordia component.

The experimcntal rçsults canied out

ir

our laboratory have shown on the one hand the corespondence between

the

theoreical

frequencies and those

occuning

in

the spectra

ofthe

three electrical quantities and

o*

the other hand the sensitivity ofthe

f

Concordia

compnent

forthe

case ofbearing faults.

Appendix

A

o

Diametçrofthe outerring52

mm,

r

Diameter of the inner ring 25mm,

o

Cage diameter 38.5 mm,

.

Approximate ball diameter 7.938 mm,

r

Number of ball beadngs Nà = 9.

Thc contact angle

Bt

is assumsd to be cqual üo zero.

References

tll

Nandi, S. ard H.A.

loliyx.

Cotditton monttortng

od

faalt

d@losit

at

electrtcal næhitws-o

reviar.

in

lüxtty

âpdtcattarrs Co4feærce, 1999. ThtrtyFowth ù45 Annual

t&et*ç. Cwfercæe Rccord ottlæ 1999 IEEE. 1994.

t2l

Viænte, P., et al . A gaæral scl*æetor ttùtctlon wtor cotülüon

,nonlt@tng.

in

Dtagtosttcs

lor

Electic

l,hchlnçs, Pwer

Electronics

atd

Drives. 2AA5. §DEMPED 2005. Sth IEEE

I n tcnatiowl Syxtposiua on. 2N 5.

l3l

lilei, 2., T.G. Habctler, âtd RG. Hxlcy. §taw Cwredt'Based Beartag Fault D€tscrlaû Techniqws:

Â

Gerural Àerian. in

Diqwstics

/or

Electric lhchtnes, Power Electranict ard Drtv*, 2007. EDEMPED 2A07. IEEE lntcrretiornl ÿnpostun

on.20o7.

t4]

Bcdiag&

t.,

et

al.,

&alt

bearing

da,rry.

detectton using

traditiotul stgwl processtng algarlthna. InstrufitGntÊtion &, Mcasurement Magnzirq IEEE,2013.

t(2):

p. 2û'25.

t5l

El Bouchikti, E"H., et al. ltrdtttlon nschlne btaritg {atlwes

detectlon l*rlrry srdlor anew fiequency qecml subtætlon. in

Indtstrial

El€ctrcrrics

(IS$),

2012

IEEE

Interrutlorul

§ynpostwn on.2012.

[6]

Jee-Hoon, J., J.J, Lec, and K. Bong-Hwa& Onltne Dtagrasis of

Indtætion Moars Usitrg MC.tl.

ldu$rial

ÊlÊc§oilics, IEËE

Transacüons on, 2006. §3(6): p. I 842-lt52.

[7]

Bordhr,4.H., Berdiabdcilah,4., Bcttttottzâ" N., Boughnnni, N., ThÉê Pkse lrdrrtion M«or lncipient Rotor'§ FsulB Detection

Ba*d on lmprwd Root-MU§lC Approech, (200?) lztanætiuul

Re*tæ ofËlectrtcal f;lgtneedq \RËE),2 (3), pp, 4061113.

I8l

lbrahim, A.,

ct

al. lechniqws

ta

estlûrole thc lnsantancous

îrz$§llcy vtth an aim of diagants itùt*tioa machtnes faulu. in

Indwrial

Electonlcs, 2AA8,

ECON

2008. 34th

Amwl

C onfertnce af I E E §. 21t08.

i91

Lirdh, T., d, al. Beailng danrage deuatot based on satlstical dtscrimltutton of

tuw

cwtent.

in

Dlqnostlcs

for

Electric !.tachines, Pover Elccwnict and Drlves, 2003, SDEMPED 2ffi3. 4rh I ËEE liltetwttotul Syntpostm on. 2N3.

[l0l

Maysa, H. Ênd

K.

Mohamad. Beaùg

foul,

detectlot uslnt

aewal networ*s.

in

Advanæs

in Catryatowl

Toott Ëagineertng Applicariorrs (ACTEA), 2012

lntenational

Cot{ercnce on,2012.

I

t]

§choen, RR." et al,, Morr beartng danage deuctton usiüg stator

currz'//. morrltortrrg. lndusty Applications, IEEE Transrctions on, 1995. 3t(6): p. 127+1279.

[12] Obaid, R.R., T.G. Habetlcr, ard J.R. Slæk. §tator cwrent

analysis

for

bearing danaga deuction ln lnductlod motors. in

Diryattttcs

for

Elcctric l,laehiæs, Powcr Electtpnlcs and

Drtves, 2003. SDËMPED 2003,

4th

IEEE Inntratlonal

.§)lapadtmt or. 2003.

[3J

Orji, U.4., et al. Fauh detectian atd diqaasticstor non+:,ttt?slrç nnnitorfug wir6 tsotar ,ûn rofilcs. in Applied Power Eleceantcs Cotdercncc std Expsttioü (APEC), 2010 T\entyFtfih ânawl tEEE.20t0.

[4J

§ack, J.R, T.G. Habetler, and R.G. H*ley. Fault classÿlcation and faalt stgrûwe prdrcüon {or rolling element bearings in electric ilachines. in Dtqnastics

/or

Electrtc Machines Pat+'er

Ëlectronics and Drlws. 2003. SDEWED 2(N3. 4th IEEE la te mati oru t §ympost wt on. 2@3.

flSJ §un, L. ând B. )(r. An Inprawuent of

Saw

Cwrent Based

hrectlon of &earing Fati,

tn

hduction Motors, in IMwtry

Apltcations Cæderence, 2A07.

l2ttd

lÀ8

Annwl

L{oettng. Co4fcænce Recordaf ttte 2047 IEEE.2$7.

116l VitÊk, O,, ot al. Detecriù qeccentrict,l aad bcaringslauk using

strq

fiw

monltoring.

in

Diagnosttcs

lor

Elecfic fdachtnes,

Rated Power

§upply frequency Rated voltage Rated

curent

Rotor speod

Number of rotor bars Number of staor slots Power

ftctor

Number of pair of poles

3kw

50 Hz 380

V

7A 1440 revlmin 28 36 0.83 2

Appendix

B

Our motor beæirgs are

of

ball

type referencc:

6206-7-Z 62A5-7J, the data for thesc bearings are:

Cwpliryg side reference

620622:

r

Diameter of the outer ring 62 mm,

r

Diameter of the inner ring 30mm,

.

Cage diameter46 mm,

.

Apprcximâtqball diameter9.5 mm,

r

Numberofball

bearingsÀ'ô

=9.

The conbct angle p1 is assumed to be equal to zêro. Opposite coupling side reference 6205-22:

Coyyright

û

2013 Pmise lltonhy Prl* 3.r.1. -

lll

rights æwmed

(Hz)

(nz)

§htorcument

10

0.01223

30

0.01235

1459

(9)

:

i Motannmed

Ferradi,

Noureddine Benouzza, Azzediw Bendiab&llalz, Benywnes

Mæari

iI

Power Elecrantcs

&,

Drues (SDEMPED)'

20ll

IEEE

lnte nuttowl SYmPosiwt o,,. 201

l'

Il?1

§â!d;ri,

w.'anâ

r.

Jelassi hdrædor

mort

bearlng funage dcnctiut

$ing

starar cwæn! anaÿsls'

n

P9w-1 Ettgtneering'

îi6 rà

fï"n

i*t

Driÿ€s P1\YERENGI

20ll

lntenattanal

Cor{ercnce on.Z0ll.

lf

. '

gl §ilvi

l.L.H. and A.J'M. Cardoso' Bearbg tailutcs diagrcsts ùr

,1orrr-piase tnductlon notors

hy

eronded--Parh's ÿeclor

-G,Çi.'A

hdwtrial Electronics Society' 2N5' IEC0N 2005'

i

i

st Annw t Ccrltfe rence o! t EE E' 20Æ'5'

tl91 Zart;;

,.

.ttd-t. -Postran

,lr

Advarced Park's Yectors Aryooch

' '

1o, i"artns Fault Detection. in ladnr*riat Techaologt' 2M6' lClT

"iou. ÆtÉ tnk

*tiowl

Conlennce

oa'200É-t201 Oflei,

ÿ.

*a

U.g.ff. -Bcnbouzi{ lnàtction libtorc Bearing

' '

'nii-i

Failçes Detection aad Diognosis Using

a

RBF ,ANN Park

*t"a

lielibd.

Intern*ional Rqview

of

Elcctricâl

Ensineering (IREE)' 2008 3(l): p' E'

I2ll

dË,-i.ÿ:ina

ü.

et

Haitldi

Bcnbouzid' Indætiæt Motor

"''

B;;;rg

Faiure Deteetton

od

Diagaatis:^F'!

"ÿ-

Concordia

î;,;;ô;-

iiproactet

Conparune- §rrdÿ-

-Mecharonics'

ieeeiesrvre iàrsætions on, 2008.

r{2):

p' 257'262'.

t22l Elfckÿ. 4.A., M.l. Mæord, and l F' El-Arabauy

'

Fault Sigruatre

''-' î;;t;iorit

-iiÀ*ioitio

Roltir Elenent Eeartng§ tn-ltdwtiott Motor'

n

u

r*i"

Electrcnics. 2N7' c?E'07' 2N7'

rær nàslni. r,.

üa

e. Bassi, Sra,or Curent

Mow Eoficiency as

'-''

i*d;;;;r; 1ù

Difierent Tvpes oî Beotry Fattlls in lttduction

i?rlor" rnartriJ

rbffi'ôàb§,

leeg

rransactions on' 2010'

ÿ(l):

P.244'251.

l24l

i;;;i i.,

et at. use

of

the

.staw

ctarcnr

{or

co'|dition

' '

,*nitriaru

of

bearirtgs

in

irducttort rao'ors'

in

Electrical

i*eainei

zoos. I1EM 2a08. tEth lnter"ationql Cor{ennce on'

2008.

f25t eyingoû C.§.,

ct d.

Recent casc §trldi*s

n

beartng

&!ÿ

'--' iiiîri*'o*a

pragrotis. ia Aeruspoce Coqferuee' 20d6 IEEE'

2@6.

[26] Del vescovo, G.' et al. f,lulu'fault diognosis ol rolling'eÿAen1

* '

üa*gs la

elsc'tric tochines-.

in

Electrical t'bchines (ICEM)' 20i0

ilx

tnterrdiomt Confcrerce on'2010'

fZZt iralln, B., J. Regnier, and J. Farætrr' Eearigîaun i'üicaror in

'-'' iiàiiin',*"tin *'*g

stator d'nent specîral anolysis' in

iier

Electroaics' Machines anit Daves' 2a08' PEMD 2N)8' 4th t§T Caçference on -

2(fr8-tett

ilnCi*frcUqh

4.,

N. Bcnouzza' and D' Toumi' Cage aorar

ldutrs detection bv soeed estin:rallian atd spectml ctüTëftt analysis'

'n-iÀri

itnàniit,

Àitachines atd Mves,20N' PEMD 2006' The 3rd IET tntenwtiotpt Conference

on'2ffi'

t29l Villalobos-Pina F.J.' Alvartz-Salas'

R.

Visairo' N', Cardenas'

'--'V.,

R

new iniuction motor model for fault analysis, (2011)

Inienuttoaat Review an Modetting atd Simulatlons (lRElÿtOS)' 4

{5), PP.2145'2152.

r30l

èü;;h-

4..

Bendiabdellatr,

A.'

Mixcd eæmtrhity fault

'- '

dia$tosis

in

satwated squirrel cage induction motor' (2012)

Inrînaüotal Revian on Mdelling and Simulatlons (IREMOS} 5

(3)' PP' I2 l6-12?3'

13ll

hqiàperea O.,

Msinigs'sotelq

.D''

Percz-Alütso'

M,

'-''

orËtion

of b*ken bars in railway induction moors fed by freqtroncy convertcr using spcctral analysis of line cuncnl (2012)

tninntiorul

Revian on Modelling and Slmulatioru (lRE!fiS)' 5

(2)' PP. 959-966'

FlrrrdJ Mohamud {1961) rcccivcd the §ttê

cnginecr degree in clectrical engirering.in I 986

Êdn the Univcrsity of§cicnces ard Technolory

of Oran USTO Algcria,

ttr

Magister degrE

û'orr tho Superior netiorul school

of

thc tcchnical teaching ofÔran. §ince 199Û hc was a

teachcr

of

electrical sciefioe§

at

the sÛîc univcnity. His area of rcsearch inchdcs nois

and diagnæis of dectrical mochincs'

ffiid,tr#"*trï,§;H.*§ll

-Alseria. His rescrch inærtsts include: Electricalmachinæ and Drivcs

Cormrol. as well as Electrical machincs Faults Diagnosis'

reffi,ffi

Engineering at the University of Scicncos md Techrælogr of Oran'

tÙ§fO) nigeriu. His resoarctr intcres§ includc: Eleclrical machincs

iXsigr'anO-»rives Control ard Converte$: for Field Calculations' as

well as Rectricat machines Farüs Diagnosis.

Authors' information

Beoyouuts Mezeri (1953) received thc §tatc

engineer degree

in

Electrical Engineering in

l9r8

Èom thc Uaivers§

of

§ciences and

Tcctmology

of

Oran (USTO) AlgÊria, the M'S' deeree

fiôm

&e

Univesity

of

Colorado Boulder U.S.À. in l98l and the doctorat degree

ftom tlle tnstilut

Ndiond

Polyæchnique de

Lon"ür (INPL) Narrcy France

ifl

1992, §incc

1982, hç nas at the USTOOTan snd Èom 1987-1992 tp was on lcsve

À

a

-tæcarcfpt

d

INPL (Francs). Since 1992 hc r*as a Pmfessor of Electrical §ciences 8t tlE §arne university. His arco ofrescarch includes power olectronics, trâction drives, and harmonics in powu systrmt

Copytght§ 2013 Pmise Warrhy Prtze Sr'l' - All rtgl* nsemed

1460

Figure

Fig  3.  Motor  experimcntal  setuP

Références

Documents relatifs

Moreover, the bearing fault is used in order to prove the effectiveness of the proposed approaches in chapter 2 for fault detection in induction machine through the stator

Kliman, “An adaptive statistical time-frequency method for detection of broken bars and bearing faults in motors using stator current,” IEEE Transactions on Industry Applications,

Blödt, Condition monitoring of mechanical faults in variable speed induction motor drives, applications of stator current time- frequency analysis and parameter estimation,

Section II presents demodulation techniques used for stator currents processing and section III focuses on the performance of these techniques on simulated data

In this paper, we propose a method for the eccentricity diagnosis fault based on the stator current analysis during the start-up using this wavelet method enables faults

Furthermore, analysis of the stator current was conducted in healthy cases and in the presence of defects, the second method of fault detection in this work,is based on

On the other hand, growing attention has been paid to fractional calculus for many industrial an on-line diagnostic procedure for stator and rotor faults in

Figure 9 shows instantaneous amplitude of two stator currents; one healthy (discontinued line) and one with fault (solid line). It is clear that the