• Aucun résultat trouvé

New experimental campaign of NUMEN project

N/A
N/A
Protected

Academic year: 2021

Partager "New experimental campaign of NUMEN project"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: hal-02317303

https://hal.archives-ouvertes.fr/hal-02317303

Submitted on 16 Mar 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

New experimental campaign of NUMEN project

C. Agodi, F. Cappuzzello, L. Acosta, P. Amador-Valenzuela, N. Auerbach, J.

Barea, J.I. Bellone, D. Belmont, R. Bijker, D. Bonanno, et al.

To cite this version:

(2)

AIP Conference Proceedings 2150, 030001 (2019); https://doi.org/10.1063/1.5124590 2150, 030001 © 2019 Author(s).

New experimental campaign of NUMEN

project

Cite as: AIP Conference Proceedings 2150, 030001 (2019); https://doi.org/10.1063/1.5124590

Published Online: 03 September 2019

C. Agodi, F. Cappuzzello, L. Acosta, P. Amador-Valenzuela, N. Auerbach, J. Barea, J. I. Bellone, D. Belmont, R. Bijker, D. Bonanno, T. Borello-Lewin, I. Boztosun, V. Branchina, S. Brasolin, G. Brischetto, O. Brunasso, S. Burrello, S. Calabrese, L. Calabretta, D. Calvo, V. Capirossi, D. Carbone, M. Cavallaro, R. Chen, I. Ciraldo, E. R. Chávez Lomelí, M. Colonna, G. D’Agostino, H. Djapo, G. De Geronimo, F. Delaunay, N. Deshmukh, P. N. De Faria, R. Espejel, C. Ferraresi, J. L. Ferreira, J. Ferretti, P. Finocchiaro, S. Firat, M. Fisichella, A. Flores, A. Foti, G. Gallo, H. Garcia-Tecocoatzi, B. Góngora, A. Hacisalihoglu, S. Hazar, A. Huerta, J. Kotila, Y. Kucuk, F. Iazzi, G. Lanzalone, F. La Via, J. A. Lay, H. Lenske, R. Linares, F. Longhitano, D. Lo Presti, J. Lubian, J. Ma, D. Marín-Lámbarri, S. Martínez, J. Mas, N. H. Medina, D. R. Mendes, P. Mereu, M. Moralles, J. R. B. Oliveira, C. Ordoñez, A. Pakou, L. Pandola, H. Petrascu, N. Pietralla, F. Pinna, S. Reito, G. Reza, P. Ries, D. Rifuggiato, M. R. D. Rodrigues, A. D. Russo, G. Russo, S. Sandoval, E. Santopinto, R. B. B. Santos, O. Sgouros, M. A. G. da Silveira, S. O. Solakci, G. Souliotis, V. Soukeras, A. Spatafora, D. Torresi, S. Tudisco, R. I. M. Vsevolodovna, H. Vargas, G. Vega, J. S. Wang, V. Werner, Y. Y. Yang, A. Yildirin, V. A. B. Zagatto, and for the NUMEN collaboration

ARTICLES YOU MAY BE INTERESTED IN

The NUMEN project @ LNS: Status and perspectives

AIP Conference Proceedings 2150, 030003 (2019); https://doi.org/10.1063/1.5124592

The NUMEN project @ LNS: Status and perspectives

AIP Conference Proceedings 2165, 020003 (2019); https://doi.org/10.1063/1.5130964

Symmetries and regularities in nuclei: Order out of seeming chaos

(3)

New Experimental Campaign of NUMEN Project

C. Agodi

1, a)

F. Cappuzzello

1,2

, L. Acosta

3

, P. Amador-Valenzuela

4

, N. Auerbach

5

,

J. Barea

6

, J. I. Bellone

1,2

, D. Belmont

7

, R. Bijker

7

, D. Bonanno

8

, T. Borello-Lewin

9

,

I. Boztosun

10

, V. Branchina

8

, S. Brasolin

11

, G. Brischetto

1,2

, O. Brunasso

11

, S.

Burrello

1,12

, S. Calabrese

1,2

, L. Calabretta

1

, D. Calvo

11

, V. Capirossi

11,13

, D.

Carbone

1

, M. Cavallaro

1

, R. Chen

14

, I. Ciraldo

1,2

, E.R. Chávez Lomelí

3

, M.

Colonna

1

, G. D'Agostino

1,2

, H. Djapo

10

, G. De Geronimo

15

, F. Delaunay

11,13,16

, N.

Deshmukh

17

, P.N. de Faria

18

, R. Espejel

3

, C. Ferraresi

11,19

, J.L. Ferreira

18

, J.

Ferretti

20,21

, P. Finocchiaro

1

, S. Firat

10

, M. Fisichella

11

, A. Flores

3

, A. Foti

8

, G.

Gallo

1,2

, H. Garcia-Tecocoatzi

20,22

, B. Góngora

3

, A. Hacisalihoglu

23

, S. Hazar

10

, A.

Huerta

3

, J. Kotila

24

, Y. Kucuk

10

, F. Iazzi

11,13

, G. Lanzalone

1,25

, F. La Via

26

, J.A.

Lay

12

, H. Lenske

27

, R. Linares

18

, F. Longhitano

8

, D. Lo Presti

2,8

, J. Lubian

18

, J.

Ma

14

, D. Marín-Lámbarri

3

, S. Martínez

3

, J. Mas

3

, N.H. Medina

9

, D. R. Mendes

18

,

P. Mereu

11

, M. Moralles

28

, J.R.B. Oliveira

9

, C. Ordoñez

3

, A. Pakou

29

, L. Pandola

1

,

H. Petrascu

30

, N. Pietralla

31

, F. Pinna

11,13

, S. Reito

8

, G. Reza

3

, P. Ries

31

, D.

Rifuggiato

1

, M.R.D. Rodrigues

9

, A. D. Russo

1

, G. Russo

2,8

, S. Sandoval

3

, E.

Santopinto

20

, R.B.B. Santos

32

, O. Sgouros

1

, M.A.G. da Silveira

32

, S.O. Solakci

10

,

G. Souliotis

33

, V. Soukeras

1

, A. Spatafora

1,2

, D. Torresi

1

, S. Tudisco

1

, R.I.M.

Vsevolodovna

20,22

, H. Vargas

3

, G. Vega

3

, J.S. Wang

14

, V. Werner

31

, Y.Y. Yang

14

,

A. Yildirin

10

, V.A.B. Zagatto

18

for the NUMEN collaboration

1Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Catania, Italy

2Dipartimento di Fisica e Astronomia “Ettore Majorana", Università di Catania, Catania, Italy

3Instituto de Física, Universidad Nacional Autónoma de México, México 4Instituto Nacional de Investigaciones Nucleares, México 5School of Physics and Astronomy Tel Aviv University, Israel

6Universidad de Conception, Chile

7Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, México 8Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Catania, Italy

9Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil 10Department of Physics, Akdeniz University, Antalya, Turkey 11Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy

12Departamento de FAMN, Universidad de Sevilla, Sevilla, Spain

13DISAT, Politecnico di Torino, Torino, Italy

14Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China 15Stony Brook University, USA

16LPC Caen, Normandie Université ENSICAEN, UNICAEN, CNRS/IN2P3, Caen, France 17Nuclear Physics Division, Saha Institute of Nuclear Physics, India

18Instituto de Fisica, Universidade Federal Fluminense, Niteroi, Brazil

Symmetries and Order: Algebraic Methods in Many Body Systems AIP Conf. Proc. 2150, 030001-1–030001-6; https://doi.org/10.1063/1.5124590

(4)

19DIMEAS, Politecnico di Torino, Torino, Italy

20Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Genova, Italy 21Department of Physics, Yale University, USA

22Dipartimento di Fisica, Università di Genova, Italy 23Institute of Natural Sciences, Karadeniz Teknik University, Turkey

24University of Jyväskylä, Jyväskylä, Finland 25Università degli Studi di Enna "Kore", Enna, Italy

26CNR-IMM, Sezione di Catania, Catania, Italy

27Department of Physics, University of Giessen, Giessen, Germany 28Instituto de Pesquisas Energeticas e Nucleares IPEN/CNEN, Brazil 29Department of Physics and HINP, The University of Ioannina, Ioannina, Greece

30IFIN-HH, Romania

31Institut fur Kernphysik, Technische Universitat Darmstadt, Germany 32Centro Universitario FEI Sao Bernardo do Campo, Brazil

33Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece a)Corresponding author: agodi@lns.infn.it

Abstract. The NUMEN main goal is the extraction from measured cross-sections of “data-driven” information on Nuclear Matrix Elements for all the systems candidate for 0νββ. The idea is to use as experimental tool Heavy Ions –Double Charge Exchange (HI-DCE) reactions. Crucial for the experimental challanges is the INFN Laboratori Nazionali del Sud (LNS) facility, made by the Superconducting Cyclotron (CS) and the MAGNEX magnetic spectrometer. The experimental measurements of HI-DCE reactions present a number of challenging aspects, since they are characterized by very low cross sections. Here it is reported the new experimental campaign of NUMEN Project.

1. INTRODUCTION

The connection between nuclear structure and physics of neutrinoless double beta (0νββ) decay has important implications on particle physics, cosmology and fundamental physics. We still do not know if the neutrino is a Majorana or a Dirac particle, that is if the neutrino is its own antiparticle or not. Also the absolute mass scale of the neutrino is unknown, only the relative scale is known from the neutrino- oscillation experiments. These unknown features of the neutrino can be tackled by experiments trying to detect the neutrinoless double beta (0νββ) decay. The 0νββ half-life can be factorized in three terms, related to different physics scale: the phase-space factor, connected with Atomic physics, the Matrix Element (NME) related with Nuclear physics and a term, related to Particle physics, in which it is supposed there are the answers to the unsolved questions, mentioned above, in the frame of new physics beyond the Standard Model. For evaluation of NME several methods have been used, based on different nuclear models, like the interacting shell model (ISM), the proton-neutron quasiparticle random-phase approximation (pnQRPA), the Interacting Boson Model (IBM-2) and various mean field models among the others [1, 2, 3, 4, 5]. The presence of ambiguities in the models and the lack of strong experimental constraints correspond to significant differences in the obtained values. Using as a tool heavy-ion induced Double Charge Exchange (DCE) reactions, the NUMEN [6, 7, 8] project propose a novel way to address experimentally-driven information on the NMEs of 0νββ. A fundamental relevance for the Project has the INFN facility at Laboratori Nazionali del Sud (LNS) in Catania, made by the Superconducting Cyclotron for the acceleration of the required high resolution and low emittance heavy-ion beams and the MAGNEX large acceptance magnetic spectrometer for the detection of the ejectiles [9]. Thanks to the application of the powerful trajectory reconstruction technique [11] MAGNEX guarantees high energy, mass and angle resolutions, which established its relevance in the heavy- ion physics research [11, 12, 13, 14].

2. Heavy-Ion Double Charge Exchange and 0νββ

(5)

process and follows the Brink’s Kinematical matching conditions [15], and the meson exchange mechanism, that is a second order process.

There are some important similarities between DCE reactions and 0νββ decay, although they are mediated by different interactions. The main ones are:

i) the initial and final state wave functions in the two processes are the same,

ii) the transition operators are similar, in both cases Fermi, Gamow-Teller and rank-two tensor components are present,

iii) a large linear momentum (100 MeV/c) is available in the virtual intermediate channel,

iv) the two processes are non-local and are characterized by two vertices localized in a pair of valence nucleons,

v) they take place in the same nuclear medium,

vi) a relevant off-shell propagation through virtual intermediate channels is present.

The descriptions of NMEs for DCE and 0νββ decay present the same degree of complexity, with the advantage for DCE to be “accessible” in laboratory. 
However, a simple relation between DCE cross sections and 0νββ decay half-lives is not trivial and needs to be explored. 


. In the 80s HI-DCE reactions were performed at energies above the Coulomb barrier in Berkeley, NSCL-MSU, IPN-Orsay and Los Alamos to determine the mass of n-rich isotopes by reaction Q-value measurements. However, due to the lack of zero-degree data and the poor yields in the measured energy spectra these experiments were not conclusive. The limitation was the very low cross sections involved, ranging from about 5-40 nb/sr [16] to 10 µb/sr [17]. Actually, this wide range of observed cross sections has never been deeply discussed. An additional complication in the interpretation of the data arose from possible contributions of multi- nucleon transfer reactions leading to the same final states [18]. Recently, DCE reactions have been explored at RIKEN and RCNP at energies between 80 and 200 MeV/u for the purpose of searching the tetra-neutron (4n) system and the DGT resonance [19, 20]. At the MAGNEX facility of the INFN-LNS we demostrate the feasibility of this kind of DCE cross sections measurements. The 40Ca(18O,18Ne)40Ar reaction was studied at 15 MeV/u, showing that high mass, angular and

energy resolution energy spectra and accurate absolute cross sections are at our reach, even at very forward angles, see ref. [21]. In addition, a schematic analysis of the reaction cross sections demonstrated that relevant quantitative information on DCE matrix elements can be extracted from the data. This result demonstrated that the previous experimental limitations are almost overcome and that high resolution and statistically significant experimental data can be measured for DCE processes.

.

3. NUMEN experimental campaign

. The NUMEN project is conceived in a long-range time perspective, planning to perform a comprehensive study of many candidate systems for 0νββ decay. In this frame the experimental activity consists of two main classes of experiments, corresponding to the exploration of the two directions of isospin transfer τ− τ− and τ+ τ+, characteristic of β−β− and β+β+ decays, respectively. In particular, the β+β+ direction in the target is investigated using an 18O

beam and measuring the (18O,18 Ne) DCE induced transitions, together with the other reaction channels involving the

same beam and target. Similarly, the β−β− direction is explored via the (20Ne,20O) reaction, using a 20Ne beam and

detecting the reaction products of the DCE channel along with other open channels characterized by the same projectile and target. We perform some long run at LNS with MAGNEX, choosing few isotopes, candidates for

0νββ, , already at our reach in terms of energy resolution and availability of thin targets.

. In this picture, we performed for the first time experimental investigations of the (20Ne,20O) DCE reaction on 116Cd,76Ge and 130Te targets. These are the first measurements of such a kind of reaction: no data are available in

literature. A 20Ne10+ cyclotron beam at 15 AMeV was delivered by the CS of INFN-LNS and impinged on 116Cd

rolled target of 1370 µg/cm2 thickness and 76Ge (386 µg/cm2 thickness) and 130Te (247 µg/cm2 thickness) both

evaporated on a C backing of 50 µg/cm2. The thickness of the various targets was carefully chosen in order to obtain

an energy resolution which allows to distinguish the transition to the residual nucleus ground state from its first excited state. Indeed, the selected thickness of 116Cd is much higher than that of 76Ge and 130Te, because the first

excited state in 116Sn case is at 1.293 MeV, to be compared to 0.559 MeV in 76Se and 0.536 MeV in 130Xe. The

MAGNEX spectrometer was placed at forward angles including zero degree in the full acceptance mode ( 50 msr). Despite the experimental limitations, we were able to measure energy spectra and absolute cross sections for the

(6)

DCE reaction channel. Moreover, we measured also other reaction channels: one- and two-proton transfer, one- and two-neutron transfer and Single Charge Exchange, in order to estimate the role of the sequential multi-nucleon transfer routes on the diagonal DCE process. The data reduction [22, 23] and analysis are almost completed and the results will be published soon.

. Systematic exploration, spanning all the variety of 0νββ decay candidate isotopes, is demanded for neutrino physics, and NUMEN is fully committed to pursue this ambitious goal. With this aim the project promotes a major upgrade of the INFN-LNS research facility in the direction of a significant increase of the beam intensity, in view of a series of experimental campaigns at high beam intensities (some pµA) and integrated charge of hundreds of mC up to C, for the experiments in which γ-coincidence measurements are required. This in turn demands challenging R&D in several aspects of the technology involved in heavy-ion collision experiments [24, 25, 26, 27]. Moreover, this project promotes and is strictly connected with a renewal of the INFN-LNS research infrastructure and with a specific R&D activity on detectors, materials and instrumentation. Moreover the acceleration of heavy-ion beams in the regime of kW power and at energies from 15 to 70 MeV/u requires a substantial change in the extraction technologies of the beam of the INFN-LNS Superconducting Cyclotron. In this frame, the development of the different theoretical aspects [28, 29, 30] connected with the nuclear structure and reaction mechanisms involved in heavy ions induced DCE reactions is a key issue for the achievement of the ambitious goals of the project. Both R&D and theoretical development are key aspects of the NUMEN project, that in perspective, aims at giving an innovative contribution in one of the most promising fields of fundamental physics, also indicating a possible growth prospect of heavy-ion physics in synergy with neutrino physics.

REFERENCES

1. J. Engel and J. Menéndez, “Status and future of nuclear matrix elements for neutrinoless double-beta decay: a review,” Reports on Progress in Physics, vol. 80, no. 4, p. 046301, 2017. 



2. J. Suhonen and O. Civitarese, “Double-beta-decay nuclear matrix elements in the qrpa framework,” Journal of Physics G: Nuclear and Particle Physics, vol. 39, no. 8, p. 085105, 2012. 


3. J. Barea, J. Kotila, and F. Iachello, “0 n b b and 2 n b b nuclear matrix elements in the interacting boson model with isospin restoration,” Physical Review C, vol. 91, no. 3, p. 034304, 2015. 


4. F. Šimkovic, V. Rodin, A. Faessler, and P. Vogel, “0 n b b and 2 n b b nuclear matrix elements, quasiparticle random-phase approximation, and isospin symmetry restoration,” Physical Review C, vol. 87, no. 4, p. 045501, 2013. 


5. J. Menendez, A. Poves, E. Caurier, and F. Nowacki, “Disassembling the nuclear matrix elements of the neutrinoless b b decay,” Nuclear Physics A, vol. 818, no. 3-4, pp. 139–151, 2009. 


6. F. Cappuzzello, C. Agodi, M. Bondì, D. Carbone, M. Cavallaro, and A. Foti, “The role of nuclear reactions in the problem of 0nbb decay and the numen project at infn-lns,” in Journal of Physics: Conference Series, vol. 630, p. 012018, IOP Publishing, 2015. 


7. C. Agodi, F. Cappuzzello, M. Cavallaro, M. Bondì, D. Carbone, A. Cunsolo, and A. Foti, “Heavy ions double charge exchange reactions: towards the 0nbb nuclear matrix element determination,” Nuclear and Particle Physics Proceedings, vol. 265, pp. 28–30, 2015. 


8. F. Cappuzzello, C. Agodi, M. Cavallaro, D. Carbone, S. Tudisco, D. L. Presti, J. Oliveira,
P. Finocchiaro, M. Colonna, D. Rifuggiato, et al., “The numen project: Nuclear matrix elements for neutrinoless double beta decay,” The European Physical Journal A, vol. 54, no. 5, p. 72, 2018. 


9. F. Cappuzzello, C. Agodi, D. Carbone, and M. Cavallaro, “The magnex spectrometer: Results and perspectives,” The European Physical Journal A, vol. 52, no. 6, p. 167, 2016. 


10. W. Andrejtscheff, L. Kostov, L. Kostova, P. Petkov, M. Senba, N. Tsoupas, Z. Ding, and C. Tuniz, “A1) some m1 transition strengths in odd-a nuclei away from closed shells,” Nuclear Physics, vol. 445, pp. 515–533, 1985. 


11. F. Cappuzzello, D. Carbone, M. Cavallaro, M. Bondì, C. Agodi, F. Azaiez, A. Bonaccorso,
A. Cunsolo, L. Fortunato, A. Foti, et al., “Signatures of the giant pairing vibration in the 14 c and 15 c atomic nuclei,” Nature

(7)

12. D. Carbone, “D. carbone, j. ferreira, f. cappuzzello, j. lubian, c. agodi, m. cavallaro, a. foti, a. gargano, s. lenzi, r. linares et al., phys. rev. c 95, 034603 (2017).,” Phys. Rev. C, vol. 95, p. 034603, 2017. 


13. M. Cavallaro, C. Agodi, M. Assié, F. Azaiez, F. Cappuzzello, D. Carbone, N. De Séréville, A. Foti, L. Pandola, J. Scarpaci, et al., “Neutron decay of c 15 resonances by measurements of neutron time-of-flight,” Physical Review C, vol. 93, no. 6, p. 064323, 2016. 


14. C. Agodi, G. Giuliani, F. Cappuzzello, A. Bonasera, D. Carbone, M. Cavallaro, A. Foti, R. Linares, and G. Santagati, “Analysis of pairing correlations in neutron transfer reactions and comparison to the constrained molecular dynamics model,” Physical Review C, vol. 97, no. 3, p. 034616, 2018. 


15. D. Brink, “Kinematical effects in heavy-ion reactions,” Physics Letters B, vol. 40, no. 1, pp. 37–40, 1972. 
 16. J. Blomgren, K. Lindh, N. Anantaraman, S. M. Austin, G. Berg, B. Brown, J.-M. Casandjian,
M. Chartier, M.

Cortina-Gil, S. Fortier, et al., “Search for double gamow-teller strength by heavy-ion double charge exchange,”

Physics Letters B, vol. 362, no. 1-4, pp. 34–38, 1995. 


17. D. Drake, J. Moses, J. Peng, N. Stein, and J. Sunier, “Exotic heavy-ion reactions on ca 40:(c 14, o 14) double charge exchange and (c 14, o 15) rearrangement transfer,” Physical Review Letters, vol. 45, no. 22, p. 1765, 1980. 


18. C. Dasso and A. Vitturi, “Mechanism for double-charge exchange in heavy ion reactions,” Physical Review C, vol. 34, no. 2, p. 743, 1986. 


19. K. Kisamori, S. Shimoura, H. Miya, S. Michimasa, S. Ota, M. Assie, H. Baba, T. Baba, D. Beaumel, M. Dozono, et al., “Candidate resonant tetraneutron state populated by the he 4 (he 8, be 8) reaction,” Physical review letters, vol. 116, no. 5, p. 052501, 2016. 


20. H. Sagawa and T. Uesaka, “Sum rule study for double gamow-teller states,” Physical Review C, vol. 94, no. 6, p. 064325, 2016. 


21. F. Cappuzzello, M. Cavallaro, C. Agodi, M. Bondì, D. Carbone, A. Cunsolo, and A. Foti, “Heavy-ion double charge exchange reactions: A tool toward 0 n b b nuclear matrix elements,” The European Physical Journal A, vol. 51, no. 11, p. 145, 2015. 


22. N. Deshmukh, F. Cappuzzello, C. Agodi, D. Carbone, M. Cavallaro, L. Acosta, D. Bonanno,
D. Bongiovanni, I. Boztosun, S. Calabrese, et al., “Heavy–ion particle identification for the transfer reaction channels for the system 18o+ 116sn under the numen project,” in Journal of Physics: Conference Series, vol. 1056, p. 012015, IOP Publishing, 2018. 


23. S. Calabrese, F. Cappuzzello, D. Carbone, M. Cavallaro, C. Agodi, L. Acosta, D. Bonanno,
D. Bongiovanni, T. Borello-Lewin, I. Boztosun, D. Calvo, E. R. C. Lomeli, N. Deshmukh, P. N. De Faria, P. Finocchiaro, M. Fisichella, A. Foti, G. Gallo, A. Hacisalihoglu, F. Iazzi, R. Introzzi, G. Lanzalone, R. Linares, F. Longhitano, D. Lo Presti, N. Medina, A. Muoio, J. R. B. Oliveira, A. Pakou, L. Pandola, F. Pinna, S. Reito, G. Russo, G. Santagati, O. Sgouros, S. O. Solakci,
V. Soukeras, G. Souliotis, A. Spatafora, D. Torresi, S. Tudisco, A. Yildirim, and V. A. B. Zagatto, “First measurement of the 116cd(20ne,20o)116sn reaction at 15 amev,” Acta Physica Polonica B, vol. 49, no. 3, pp. 275–280, 2018. 


24. S. Tudisco, F. La Via, C. Agodi, C. Altana, G. Borghi, M. Boscardin, G. Bussolino, L. Calcagno, M. Camarda, F. Cappuzzello, et al., “SiciliaâA ̆Tˇsilicon carbide detectors for intense luminosity investigations and applications,” Sensors, vol. 18, no. 7, p. 2289, 2018. 


25. D. Carbone, M. Cavallaro, C. Agodi, F. Cappuzzello, L. Cosentino, and P. Finocchiaro, “A mini-phoswich scintillator as a possible stop detector for the numen project,” Results in Physics, vol. 6, pp. 863–865, 2016. 
 26. F. Iazzi, S. Ferrero, R. Introzzi, F. Pinna, L. Scaltrito, D. Calvo, M. Fisichella, C. Agodi,
F. Cappuzzello, D.

Carbone, and M. Cavallaro, “A new cooling technique for targets operating under very intense beams,” in WIT

Transactions on Engineering Sciences, vol. 116, pp. 61–70, 2017. 


27. D. L. Presti, C. Agodi, D. Bonanno, D. Bongiovanni, D. Carbone, F. Cappuzzello, M. Cavallaro,
P. Finocchiaro, G. De Geronimo, G. Gallo, et al., “Challenges for high rate signal processing for the numen experiment,” in Journal of Physics: Conference Series, vol. 1056, p. 012034, IOP Publishing, 2018. 


28. H. Lenske, J. I. Bellone, M. Colonna, J.-A. Lay, N. Collaboration, et al., “Theory of single-charge exchange heavy-ion reactions,” Physical Review C, vol. 98, no. 4, p. 044620, 2018. 


(8)

29. J. Bellone, M. Colonna, H. Lenske, J. Lay, et al., “Probing beta decay matrix elements through heavy ion charge exchange reactions,” in Journal of Physics: Conference Series, vol. 1056, p. 012004, IOP Publishing, 2018. 


Références

Documents relatifs

As discussed in Section 6.5 the present gas tracker of the MAGNEX spectrometer must be upgraded in order to cope with the challenging high rate of heavy ions expected in NUMEN Phase

However, due to the relatively short range of heavy ions compared to other radiations, high energies and therefore large and costly accelerators are needed for a

A target station is being designed which will enable a number of proposed experiments in this field (Fig. Concerning the ICF relevant issues categories of

The vertical solid line indicates the value of the interaction barrier calculated with a Woods- Saxon nuclear potential (see below).. -

We can call it fast fission phenome- formation : the FWHM of the fission mass distribu- non (FFP) because the fragments have properties tion will be given by the

The shapes of the angular distributions were highly suggestive of a direct reaction mechanism but since the data was obtained at a single energy (14.4 MeV in the

- A semiclassical theory of transfer reactions is presented which includes the main recoil effects due to the exchange of energy, mass, and charge.. The equations of

- We have shown that transfer cross sections observed in heavy ion reactions above the Coulomb barrier can be understood by assuming the system of colliding