• Aucun résultat trouvé

Presence of mycotoxins in sugar beet pulp silage collected in France

N/A
N/A
Protected

Academic year: 2021

Partager "Presence of mycotoxins in sugar beet pulp silage collected in France"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: hal-01901484

https://hal.archives-ouvertes.fr/hal-01901484

Submitted on 22 Oct 2018

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Presence of mycotoxins in sugar beet pulp silage

collected in France

Hamid Boudra, Benoît Rouillé, Bernard Lyan, Diego Morgavi

To cite this version:

Hamid Boudra, Benoît Rouillé, Bernard Lyan, Diego Morgavi. Presence of mycotoxins in sugar beet

pulp silage collected in France. Animal Feed Science and Technology, Elsevier Masson, 2015, 205,

pp.131-135. �10.1016/j.anifeedsci.2015.04.010�. �hal-01901484�

(2)

ContentslistsavailableatScienceDirect

Animal

Feed

Science

and

Technology

journalhomepage:www.elsevier.com/locate/anifeedsci

Short

communication

Presence

of

mycotoxins

in

sugar

beet

pulp

silage

collected

in

France

H.

Boudra

a,∗

,

B.

Rouillé

b

,

B.

Lyan

c

,

D.P.

Morgavi

a

aINRA,UMR1213Herbivores,F-63122,Saint-Genès-ChampanelleandClermontUniversité,VetAgroSup,UMRHerbivores,BP10448,

F-63000Clermont-Ferrand,France

bInstitutdel’Elevage,Monvoisin,BP85225,F-35652LeRheuCedex,France

cINRA,UMR1019,Plateformed’ExplorationduMétabolisme,NutritionHumaine,F-63122Clermont-Ferrand,

Saint-Genès-Champanelle,France

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received14November2014 Receivedinrevisedform1April2015 Accepted9April2015

Keywords:

Sugarbeetpulpsilage Mycotoxins LC–ESI–MS/MS QuEChERS,Feedsafety

a

b

s

t

r

a

c

t

Sugarbeetpulp,amajorby-productofthesugarindustry,isacommonfeedcomponent incattledietsthatispreservedon-farmassilage.Thisstudywasdesignedtoinvestigateif sugarbeetpulpsilagecouldbeavehicleofcommonmycotoxinsfoundinsilagesandother regulatedmycotoxins.Samples(n=40)favouringmouldyspots,ifpresent,onthefront faceofopensilageswerecollectedin2011from5regionsrepresentingthemainFrench sugarbeetproducingareas.MycotoxinswereextractedbyQuEChERSprocedurewithout anyfurtherclean-upandanalyzedbyliquidchromatographycoupledwithelectrospray ionizationtandemmassspectrometry(LC–ESI–MS/MS).Themycotoxinsmonitoredwere: aflatoxinB1,deoxynivalenol,gliotoxin,ochratoxinA,mycophenolicacid,patulin, penicil-licacid,roquefortineCandzearalenone.Matrix-matchedcalibrationswereused,yielding acceptablelevelsofrecoveryrangingfrom64to168%,exceptforgliotoxinand roquefor-tineCforwhichrecoverywaslower(21and34%,respectively).Eightsamplesoutof40 (20%)werefoundtobepositive.Mycophenolicacidandzearalenonewerethemost pre-dominantofthemycotoxinsstudied.Mycophenolicacidwasfoundinfiveof40samples atlevelsrangingfromtracesupto1436␮g/kg.Zearalenonewasfoundinthreesamplesat concentrationsof1023,4862and6916␮g/kg.Thelast2sampleswereatconcentrations abovetherecommendedlimitof2000␮g/kg.OchratoxinAwasdetectedinonesample at15␮g/kg,whichisbelowtherecommendedEUlimitof250␮g/kg.RoquefortineCwas alsodetectedbutatlowlevels.Toourknowledge,thisstudyisthefirsttoreportonthe presenceofmycotoxinsinsugarbeetpulpsilage.Contaminationforthetestedmycotoxins waslowanddidnotseemtopresentahealthriskforanimalsorconsumersforthetested mycotoxins.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Sugarbeet(BetavulgarisL.)isanimportantindustrialcropintemperateregionsthatprovidesaboutathirdofallsugar consumedintheworld.FranceisoneofthemainproducersofsugarbeetinEurope,with34milliontonnesharvested

in2009(http://www.labetterave.com).Duetoitsnutritionalvalueandavailability,thesugarbeetpulpby-productofthe

∗ Correspondingauthor.Tel.:+33473624104;fax:+33473624659. E-mailaddress:abdelhamid.boudra@clermont.inra.fr(H.Boudra). http://dx.doi.org/10.1016/j.anifeedsci.2015.04.010

(3)

132 H.Boudraetal./AnimalFeedScienceandTechnology205(2015)131–135

sugarindustryiswidelyusedbyfarmersinproductionareas.Thesugarbeetpulpisensiledonthefarmandincorporated intocattlediets.Onecommonriskaffectingsilageconservationandqualityisthedevelopmentoffungiwhichreducesthe nutritivevalueoffeedsandanimalperformances(Morgavietal.,2008;Boudra,2009).Inaddition,fungaldevelopmentcan beaccompaniedbyproductionofmycotoxinsthatcanaffectanimalhealth.Themostcommoninfestationofsugarbeetin thefieldiscausedbyFusaria,andsomespeciesarecapableofproducingmycotoxinsinthefield(Hanson,2006;Nitschke

etal.,2009;Hilletal.,2011)andinvitro(BoschandMirocha,1992;Burlakotietal.,2008;Christetal.,2011).Inaddition

toFusariumspp.thatcauselossesinthefield,AspergillusandPenicilliumspeciescangrowwhensilageisnotappropriately conserved(Binderetal.,2007;Boudra,2009).Informationonsugarbeetcontaminationwithmycotoxinsissparse.Bosch

andMirocha(1992)reportedthat6outof25moldysugarbeetsamplescollectedinthefieldcontainedzearalenone(ZEA)in

concentrationsrangingbetween12and391␮g/kg.Zearalenonewasalsodetectedin31outof75sugarbeetfibersamples (13to47␮g/kg)(BoschandMirocha,1992).Toourknowledge,thereisjustasinglereportonfungalcontaminationofstored sugarbeetpulpsilage(Noutetal.,1993),butthepresenceofcorrespondingmycotoxinswasnotinvestigated.Theaimof thestudyreportedherewastoassesstheriskofmycotoxincontaminationinsugarbeetpulpsilagesamplescollectedfrom the5mainareasofsugarbeetproductioninFrance.Themethoddevelopedinthisstudytargetedmycotoxinsthatwere frequentlyfoundinsilages:patulin(PAT),penicillicacid(PENI),gliotoxin(GLIO),roquefortineC(ROQC),andmycophenolic acid(MYCO)(Auerbachetal.,1998;Richardetal.,2007;Mansfieldetal.,2008;Rasmussenetal.,2010;VanPameletal.,2011), inadditiontoaflatoxinB1(AFB1),ochratoxinA(OTA),deoxynivalenol(DON),andzearalenone(ZEA)thatareregulatedin feedsintheEuropeanUnion(EuropeanCommission,2006).

2. Materialsandmethods

2.1. Samplecollection

Sugarbeetpulpsilagesampleswerecollectedfrom5regions:Haute-Normandie(n=11),Ile-de-France(n=9),Picardie (n=7), Nord-Pas-de-Calais (n=8), and Centre (n=5), representing themain areas of sugar beet production in France

(http://agreste.agriculture.gouv.fr/).Silagesfromeachregionwerefromonesugarproductionplant.Allproductionplants

usedhighpressuretechnologytoextractsugarfrombeetrootandthepulpwastransported immediatelytofarmsfor ensilingwithinthesameday.Samplesweretakenfromsilosthatwereincurrentuseatfiveplacesonthefrontface,ona diagonallinefromoneuppercornertotheoppositebottomcorner.Whilerespectingthissamplingprocedure,operators wereinstructedtofavourmoldyspotsifpresentonthefrontface.Thiswasdoneastheobjectivewastoassesstheriskof mycotoxinscontaminationfromthisfeedresource.Sampleswerethenpooledandasubsampleof150gwassenttothe laboratorywithin24hformycologicalandmycotoxinanalysis.Farmsincludedinthisstudyhadbunkersiloswithcapacities ofbetween100and750m3anddidnotusepreservativesforsilagemaking.Thedrymatter(DM)ofsugarbeetsilagewas

determinedintriplicatebydryingat105◦Cfor24h,andrangedfrom19to28%. 2.2. Mycologicalanalysis

Tengramsoffreshsampleweretransferredintoasterileplasticbag,suspendedin90mlofsterile0.05%Tween80,and homogenizedfor5mininalaboratoryStomacherblender(BayMixer400,Interscience,SaintNomlaBreteche,France).Serial dilutionsfrom10−2to10−5weremadeand0.1mlofeachwasinoculatedinduplicateintwodifferentculturemedia:2% Maltextractwithandwithoutsodiumchloride.Theplateswereincubatedat25◦Cinthedark,andmoldsandyeastswere countedafterthreedaysofincubation.Theresultswereexpressedascolony-formingunits(CFU)/gDM.Theremainderof thesamplewasdriedinaforceddraftovenat50◦Cfortwodays,groundthrougha1mmsieveandstoredat+4◦Cuntil mycotoxinanalysis.

2.3. Mycotoxinanalysis

ExtractionofselectedmycotoxinswasperformedbytheQuEChERS(Quick,Easy,Cheap,Effective,Rugged,andSafe) methodaccordingtotheoriginalWatersprocedurebasedontheAOACmethodintwodifferentsteps.Briefly,sixgramsof silagewereplacedina50ml-DisQuETMtube(186004837,Waters)containingtrisodiumcitratedihydrate(1g),disodium

hydrogencitratesesquihydrate(0.5g),NaCl(1g)andMgSO4(4g).Fivemilliliterofdistilledwatercontaining1%ofacetic

acidwereadded.Aftercompleteabsorptionofwater,10mlof1%ofaceticacidinacetonitrilewereaddedandtubeswere shakenvigorouslyfor1min,andthencentrifuged(2000g,5min).Onemlaliquotoftheupperphase(correspondingto0.4g ofsilage)wastransferredtoasecond2-ml-DisQuETMtube(186004837,Waters)containing0.15gMgSO4and0.025gPSA

(primarysecondaryamine).Weadded7.5mgofGraphitizedCarbonBlack(DisQuETM,186004837,Waters)toeachtubein

ordertoremovepigmentssuchascarotenoidsandchlorophyllfromthesamples.Sampleswereshakenvigorouslyfor1min andthencentrifuged(2000g,5min).Theupperphasewasfilteredthrougha0.45␮mfilter,and10␮lwereinjectedinto theLCsystem.ThechromatographicsystemwasanAlliance2695module(WatersCorporation,St-Quentin-en-Yvelines, France).SeparationwasperformedatroomtemperatureonaC18RPcolumn(Luna,50×2mm,3␮m,Phenomenex,Paris,

France)usingagradientsolventsystem(solventA=0.1%formicacid–ammoniumacetate0.5mMadjustedtopH3.5,and solventB=Acetonitrile–0.1%formicacid).Thegradientconditionswereasfollows:theinitialpercentageofsolventBwas

(4)

Table1

TransitionreactionsmonitoredbyLC–ESI–MS/MS,coneandcollisionvoltages.

Metabolites Tr Ionisationmode Precursorion Daughterion Conevoltage(V) Collisionenergy(eV)

Patulin 11.08 ESI− 153.0 81 15 13

109 15 9

Deoxynivalenol 2.28 ESI− 341.0 265 15 11

295.0 15 9

Penicillicacid 6.08 ESI− 169.0 93 20 19

110.0 20 9 Gliotoxin 9.55 ESI+ 327.1 245.29 15 17 263.241 15 9 AflatoxinB1 11.41 ESI+ 313.0 128 45 60 285.1 45 21 RoquefortineC 10.26 ESI+ 390.2 193.29 35 27 322.228 35 19

Mycophenolicacid 11.91 ESI+ 321.2 207 20 19

303.211 29 9

Zearalenone 13.23 ESI+ 319.2 97 20 17

301.294 20 9

OchratoxinA 13.43 ESI+ 404.1 239.19 25 23

358.19 25 13

Transitioninboldusedforquantification.

Table2

Parametersofthemethodtestedforsugarbeetsamples.

Mycotoxins Parametersofmethod

SSE Rangeofcalibration

(%) (ngml−1) Recovery(%) AflatoxinB1 78 1.25–6.25 73±3 OchratoxinA 89 64±5 Zearalenone 187 137±43 Mycophenolicacid 96 168±21 Deoxynivalenol 4 45±18 RoquefortineC 62 50–250 34±2 Gliotoxin 77 21±3 Patulin 102 131±4 Penicillicacid 45 102±3

SSE,specificsignalsuppressionandenhancementwascalculatedaccordingtothefollowingequation:(Slopeofextract/Slopepurestandard)×100.

2%,heldat2%for4min,increasedto80%over12minandmaintainedfor8min.Itwasthenloweredtotheinitialpercentage in0.1min,andmaintainedfor6mintore-equilibratethecolumnpriortothenextinjection.Theflowratewas0.2mlmin−1. Undersuchconditions,allmycotoxinsandtheinternalstandard(IS)werewellseparated.Electrospraymassspectrometric (ESI–MS/MS)analyseswereperformedonaQuattroMicrotriplequadrupolemassspectrometer(WatersCorporation, St-Quentin-en-Yvelines,France)equippedwithanelectrospraysourceoperatinginpositiveandnegativeionmodes.Capillary voltagewassetat4kV,sourcetemperatureat120◦C,anddesolvatationtemperatureat450◦C.Theconeandnebulizationgas flows(bothnitrogen)weresetat50and500lh−1,respectively.Datawereacquiredusingthemultiplereactionmonitoring (MRM)scanningmode.Thevaluesofthetuneparameterswereseparatelyoptimizedbyinfusingasolutionofeachanalyte at10␮gml−1inmobilephaseataflowrateof10␮lmin−1.AllmycotoxinsselectedshowedgreatersensitivityinESI+, withtheexceptionofDON,PENIandPATwhichshowedgreatersensitivityinESI−.Runswerethereforeperformedin bothpositiveandnegativemodes.TheMRMtransitionsandconevoltagesandcollisionenergiesappliedaresummarized

inTable1.Themostintensetransitionreactionwasusedforquantificationpurposesandthesecondwasusedforanalyte

confirmation.Thematrixeffect,evaluatedbydeterminationofenhancementofionsuppression,showedwidevariability. ThemassspectrometrysignalwasreducedforDONandPENI,andstronglyenhancedforZEA(Table2).Matrix-matched calibrationswerethereforeused,givingacceptableratesofrecoveryrangingfrom64to168,exceptforGLIOandROQ forwhichrecoverywaslower(21and34%,respectively).Theconcentrationofeachmycotoxinwascalculatedusingthe followingformula:Concentration (g/kg)=Mg/Ms,whereMgisthemassofmycotoxins(␮g),andMs themassofthe

sugarbeetpulpsilageinjected(kg)intotheLC–MS/MSsystem.

3. Resultsanddiscussion

FortyFrenchfarmsweresurveyedin2011forthepresenceofmoldsandmycotoxinsinsugarbeetpulpsilage.Asexpected fromthesamplingprotocol,mycologicalanalysisrevealedahighproportionofsampleswithcountsexceedingthestandard limitofhygienicqualityof5×104CFU/g(34/40,85%)accordingtoLeBars(1989)(Table3).Thishighlevelofcontaminationis

(5)

134 H.Boudraetal./AnimalFeedScienceandTechnology205(2015)131–135

Table3

Occurrenceofmolds,yeastsandmycotoxinsinsugarbeetsilagecollectedfromFrenchfarmsin2011.

Origin Samples analyzed

Mycotoxinaconcentration(␮g/kg)

Positive Molds Yeasts Mycotoxins OchratoxinA Zearalenone Mycophenolic acid

RoquefortineC

Ile-deFrance 9 7 3 4 1 1(15) trace

Haute-Normandie 11 11 7 9 5 1(1023) 4(trace,116, 224,1436) 2(23,264) Picardie 7 6 2 5 2 2(4862,6916) Nord-Pas-de-Calais 8 5 1 5 0 Centre 5 5 1 4 0 All 40 34 14 27 8

aMycotoxinsthatweretestedwithnopositivesamples:deoxynivalenol,gliotoxin,patulin,penicillicacidandaflatoxin.

certainlyduetosamplingofvisiblymoldysamples.In7samplestherewasco-occurrenceofyeastsandmolds.Theincidence ofyeastcontamination(68%)wasgreaterthanthatofmolds(35%)probablybecausesampledsilageshadarelativelylow DM(<28%).Aconditionthatfavorsyeastdevelopmentasreportedforothertypeofsilages(DriehuisandOudeElferink, 2000).Althoughyeastsdonotproducemycotoxins,theyindicatethequalityofsilage,includingtheriskofmycotoxin contamination.

ThepresenceofmycotoxinsisshowninTable3.Eightoutof40samples(20%)werecontaminatedwithfourmycotoxins (OTA,ZEA,MYCOandROQC).MYCOandZEAwerethemostpredominant;MYCOwasfoundinfiveout40samplesatlevels rangingfromtracesupto1436␮gkg−1whileZEAwasfoundinthreesamples,twoofthemexceedingtherecommendedlevel of2000␮gkg−1setbyEuropeanregulations(EuropeanCommission,2006).Thisdifferenceinmycotoxincontaminationwas probablyduetofarmmanagementpractices,especiallytheensilingprocessandtherateofsilageutilisation,bothofwhich wereundercontrolofthefarmer.OTAwasdetectedinonlyonesampleat15␮gkg−1,whichisbelowtherecommendedlimit of250␮gkg−1.ZEAisproducedbyFusariumsppthatmainlycontaminatescropplantsinthefieldbeforeharvest.Several reportshaveshownthatFusariumspparethemaingenerainfestingsugarbeetinthefield(BoschandMirocha,1992;Nout

etal.,1993;Hanson,2006;Burlakotietal.,2008;Nitschkeetal.,2009;Christetal.,2011;Hilletal.,2011).Wecannotexclude

theproductionofZEAduringstoragebutthistoxin,thatwasalsodetectedinsugarbeetsamplescollectedinthefield(Bosch

andMirocha,1992),isknowntobestableduringtheensilingprocess(KalacandWoollford,1982;Lepom,1988;Oldenburg,

1991;BoudraandMorgavi,2008).ThehighconcentrationofZEAfoundintwosamplescouldpotentiallyhaveanegative

effectonreproductiveefficiency.Thisisindependentofthemycotoxinoriginasmouldypartsofsilagearenotsystematically removed.InadditiontoZEA,therewerethreemycotoxinsthataretypicallyproducedduringstorage,i.e.OTA,MYCOand ROQC.MYCOandROQChavealreadybeenfoundinmaizeandgrasssilage(MüllerandAmend,1997;Auerbachetal.,

2000;Rasmussenetal.,2010)butthepresenceofOTAhasneverbeenreportedinsilage.Althoughwehavenottestedfor

thepresenceofmycotoxinsbeforeensiling,thetypesofmycotoxinsfoundsuggestthatcontaminationcouldbeoriginated bothinthefieldandduringstorage.Fieldcontaminationisdifficulttocontrolasitdependsonweatherconditions.Forthose mycotoxinsthatareproducedduringstorage,itisclearthatawarenessandtrainingforfarmersingoodensilingtechniques shouldreducetheriskofcontamination.

Inconclusion,mycotoxinsweredetectedinsugarbeetpulpsilageinFrance.However,theprevalenceandtypesof mycotoxinsfoundinthisparticularsurveydidnotsuggestahighriskforcattleandconsumerhealth.Complementary studiesunderdifferentconditionsandcoveringothermycotoxinsareneededtoconfirmthelow-riskmycotoxinstatusof sugarbeetpulpsilage.

Conflictofintereststatement

Thereisnoconflictofinterestinthiswork.

Acknowledgements

PartofthisworkwassupportedfinanciallybytheComitéNationaldesCoproduits(Paris,France).WethankSergeHamelin from“ContrôleLaitierd’Ile-de-France”forhisassistanceinprovidingthesilagesamples,andDelphineDelabrefromINRA (Clermont-Theix)forhertechnicalassistance.

References

Auerbach,H.,Oldenburg,E.,Pahlow,G.,2000.PreventionofPenicilliumroqueforti—associatedaerobicdeteriorationofmaizesilagebyvariousadditives. MycotoxinRes.16A,146–149.

(6)

Binder,E.M.,Tan,L.M.,Chin,L.J.,Handl,J.,Richard,J.,2007.Worldwideoccurrenceofmycotoxinsincommodities,feedsandfeedingredients.Anim.Feed Sci.Technol.137,265–282.

Bosch,U.,Mirocha,C.J.,1992.ToxinproductionbyFusariumspeciesfromsugarbeetsandnaturaloccurrenceofzearalenoneinbeetsandbeetfibers.Appl. Environ.Microbiol.58,3233–3239.

Boudra,H.,2009.Mycotoxins:aninsidiouslymenacingfactorforthequalityofforagesandtheperformancesoftheruminants.Fourrages199,265–280. Boudra,H.,Morgavi,D.P.,2008.ReductioninFusariumtoxinlevelsincornsilagewithlowdrymatterandstoragetime.J.Agric.FoodChem.56,4523–4528. Burlakoti,R.R.,Ali,S.,Secor,G.A.,Neate,S.M.,McMullen,M.P.,Adhikari,T.B.,2008.ComparativemycotoxinprofilesofGibberellazeaepopulationsfrom

barley,wheat,potatoes,andsugarBeets.Appl.Environ.Microbiol.74,6513–6520.

Christ,D.S.,Märländer,B.,Varrelmann,M.,2011.CharacterizationandmycotoxigenicpotentialofFusariumspeciesinfreshlyharvestedandstoredsugar beetinEurope.Phytopathology101,1330–1337.

Driehuis,F.,OudeElferink,S.J.W.H.,2000.Theimpactofthequalityofsilageonanimalhealthandfoodsafety:areview.Vet.Q.22,212–216.

EuropeanCommission,2006.CommissionRecommendationNo2006/576of17August2006onthePresenceofDeoxynivalenol,Zearalenone,Ochratoxin A,T-2andHT-2andFumonisinsinProductsIntendedforAnimalFeeding,Availableathttp://eur-lex.europa.eu/legal-content/EN/TXT/PDF/,(L229/7, 7-9).

Hanson,L.E.,2006.FusariumyellowingofsugarbeetcausedbyFusariumgraminearumfromMinnesotaandWyoming.PlantDis.90,686.

Hill,A.L.,Reeves,P.A.,Larson,R.L.,Fenwick,A.L.,Hanson,L.E.,Panella,L.,2011.GeneticvariabilityamongisolatesofFusariumoxysporumfromsugarbeet. PlantPathol.60,496–505.

Kalac,P.,Woollford,M.K.,1982.Areviewofsomeaspectsofpossibleassociationsbetweenthefeedingofsilageandanimalhealth.Br.Vet.J.138,305–320. LeBars,J.,1989.In:AFTAA(Ed.),Aspectsréglementaires:Normespourlesexamensmycologiquesetmycotoxicologiquesetrecommandationspourles

prélèvements.AFTAA,Paris,France,pp.45–52.

Lepom,P.,1988.OccurrenceofFusariumspeciesandtheirmycotoxinsinmaize—methodofdeterminingzearalenoneinmaizeandmaizesilagebymeans ofHPLCwithfluorescencedetection.Arch.Anim.Nutr.38,799–806.

Mansfield,M.A.,Jones,A.D.,Kuldau,G.A.,2008.ContaminationoffreshandensiledmaizebymultiplePenicilliummycotoxins.Phytopathology98,330–336. Morgavi,D.P.,Boudra,H.,Jouany,J.P.,2008.Consequencesofmycotoxinsinruminantproduction.In:Oswald,I.P.,Taranu,I.(Eds.),MycotoxinsinFarm

Animals.TranswordResearchNetwork,Kerala,India,pp.29–46.

Müller,H.M.,Amend,R.,1997.Formationanddisappearanceofmycophenolicacid,patulin,penicillicacidandPRtoxininmaizesilageinoculatedwith Penicilliumroqueforti.Arch.Anim.Nutr.50,213–225.

Nitschke,E.,Nihlgard,M.,Varrelmann,M.,2009.DifferentiationofElevenFusariumspp.isolatedfromsugarbeet.Usingrestrictionfragmentanalysisofa polymerasechainreaction–amplifiedtranslationelongationfactor1␣genefragment.Phytopathology99,921–929.

Nout,M.J.R.,Bouwmeester,H.M.,Haaksma,J.,VanDijk,H.,1993.Fungalgrowthinsilagesofsugarbeetpresspulpandmaize.J.Agric.Sci.121,323–326. Oldenburg,E.,1991.Mycotoxinsinconservedforage.In:ConferenceonForageConservationTowards2000,23–25January,Braunschweig,pp.191–206. Rasmussen,R.,Storm,I.,Rasmussen,P.,Smedsgaard,J.,Nielsen,K.,2010.Multi-mycotoxinanalysisofmaizesilagebyLC–MS/MS.Anal.Bioanal.Chem.397,

765–776.

Richard,E.,Heutte,N.,Sage,L.,Pottier,D.,Bouchart,V.,Lebailly,P.,Garon,D.,2007.Toxigenicfungiandmycotoxinsinmaturecornsilage.FoodChem. Toxicol.45,2420–2425.

VanPamel,E.,Verbeken,A.,Vlaemynck,G.,DeBoever,J.,Daeseleire,E.,2011.Ultrahigh-performanceliquidchromatographic–tandemmassspectrometric multimycotoxinmethodforquantitating26mycotoxinsinmaizesilage.J.Agric.FoodChem.59,9747–9755.

Webreference:

http://www.labetterave.com/lafilierebetteraviere/chiffrescles/chiffresclesfrance/87/index.htm (accessed date: 29/07/2014).

Références

Documents relatifs

The effects shown were mir- rored in the parameter “energy use” since it also included the energy needed for the production of fertilizers; the energy used for sugar beet

523 Conclusively, the inhibitory effect of CB, CD, and PH on sucrose and valine uptake in mesophyll 524 and root cells of sugar beet may be exerted through two but not

Involvement of the HXK-dependent sugar-sensing pathway was tested using 2-DOG or mannose, which are phosphorylated by HXK but poorly metabolized further (37). Neither compound

Using the microarray data collected from sugar beet ESTs and bolting/flowering candidate genes (Table 2), a bolting tolerance model integrating phytohormone signalling

Mixtures of the sugar beet pulp, potato starch and saturated lime water were prepared for different starch / pulp mass ratios, then the drying method

Though glucose catabolism through aerobic glycolysis has in large part become synonymous with the hallmark designation attributed to altered cancer metabolism, it alone cannot

4) PILOTE: PILOTE is a crop-soil interaction model, which was first built for sorghum and sunflower [5], [18], but that can be applied to a large variety of crops. It has

Taking into account the IIV, our model showed that plants receiving Nitrogen tended to have a later time of initiation, a higher rate of leaf appearance, and an earlier rupture