• Aucun résultat trouvé

Perinatal outcomes and gestational weight gain in women with eating disorders: a population-based cohort study

N/A
N/A
Protected

Academic year: 2022

Partager "Perinatal outcomes and gestational weight gain in women with eating disorders: a population-based cohort study"

Copied!
11
0
0

Texte intégral

(1)

Article

Reference

Perinatal outcomes and gestational weight gain in women with eating disorders: a population-based cohort study

MICALI, Nadia, et al.

Abstract

To investigate adverse perinatal outcomes and gestational weight gain trajectories in women with lifetime (current/past) eating disorders (ED: anorexia nervosa [AN] and bulimia nervosa [BN]).

MICALI, Nadia, et al . Perinatal outcomes and gestational weight gain in women with eating disorders: a population-based cohort study. BJOG : an international journal of obstetrics and gynaecology , 2012, vol. 119, no. 12, p. 1493-502

DOI : 10.1111/j.1471-0528.2012.03467.x PMID : 22901019

Available at:

http://archive-ouverte.unige.ch/unige:131888

Disclaimer: layout of this document may differ from the published version.

(2)

Perinatal outcomes and gestational weight gain in women with eating disorders: a

population-based cohort study

N Micali,aB De Stavola,bI dos-Santos-Silva,cJ Steenweg-de Graaff,d,ePW Jansen,e VWV Jaddoe,d,f,gA Hofman,fFC Verhulst,eEAP Steegers,hH Tiemeiere,f,i

aBehavioural and Brain Sciences Unit, UCL Institute of Child Health, London, UKbDepartment of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UKcDepartment of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UKdThe Generation R Study Group, Erasmus Medical Centre, Rotterdam, The NetherlandseDepartment of Child and Adolescent Psychiatry and Psychology, Erasmus Medical Centre – Sophia Children’s Hospital, Rotterdam, The Netherlands

fDepartment of Epidemiology, Erasmus Medical Centre, Rotterdam, The NetherlandsgDepartment of Paediatrics, Erasmus Medical Centre – Sophia Children’s Hospital, Rotterdam, The NetherlandshDepartment of Obstetrics and Gynaecology, Erasmus Medical Centre, Rotterdam, The NetherlandsiDepartment of Psychiatry, Erasmus Medical Centre, Rotterdam, The Netherlands

Correspondence:N Micali, Behavioural and Brain Sciences Unit, UCL Institute of Child Health, 30 Guilford Street, WC1N 1EH, London, UK.

Email n.micali@ucl.ac.uk

Accepted 1 July 2012. Published Online 20 August 2012.

ObjectiveTo investigate adverse perinatal outcomes and gestational weight gain trajectories in women with lifetime (current/past) eating disorders (ED: anorexia nervosa [AN] and bulimia nervosa [BN]).

DesignA longitudinal population-based birth cohort.

SettingRotterdam, the Netherlands.

SampleWomen who enrolled prenatally, had complete information on exposure (lifetime ED), and gave birth to a live singleton (n= 5256). Four groups of exposed women: lifetime AN (n= 129), lifetime BN (n= 209), lifetime AN + BN (n= 100), other lifetime psychiatric disorder (n= 1002) were compared with unexposed women (n= 3816).

MethodsPerinatal outcomes and gestational weight gain were obtained from obstetric and midwifery records, self-report and objective measurements. Exposed women were compared with unexposed women within the cohort using linear, logistic regression and mixed models.

Main outcome measuresAny pregnancy, delivery and postnatal complications. Birthweight adjusted for gestational age,

prematurity (born <37 weeks), small-for-gestational age; maternal weight gain during pregnancy.

ResultsMaternal AN was positively associated with suspected fetal distress. No differences were found in mean birthweight,

prevalence of a small-for-gestational-age, or premature birth.

Relative to unexposed women, women with AN had, on average, a lower body weight but a higher rate of weight gain subsequently;

whereas women with BN had a higher body weight but a lower rate of weight gain.

ConclusionsMaternal lifetime ED is associated with few adverse perinatal outcomes in this sample. Differential gestational weight gain patterns in women with AN and BN are consistent with possible biological compensatory mechanisms aimed at protecting the fetus.

KeywordsEating disorders, Generation R, gestational weight gain, obstetric outcomes, pregnancy.

Please cite this paper as:Micali N, De Stavola B, dos-Santos-Silva I, Steenweg-de Graaff J, Jansen P, Jaddoe V, Hofman A, Verhulst F, Steegers E, Tiemeier H. Perinatal outcomes and gestational weight gain in women with eating disorders: a population-based cohort study. BJOG 2012;119:1493–1502.

Introduction

The literature on the effects of maternal eating disorders (ED) on pregnancy, perinatal complications and gestational weight gain is still limited.

Overall early smaller clinical studies suggested an increased risk of perinatal complications and delivery complications

(gestational hypertension, hyperemesis, gestational diabetes, anaemia, caesarean section and instrumental deliveries) and prematurity in women with ED.1–7 Recent large studies in contrast have shown by and large a comparable prevalence of adverse perinatal outcomes in exposed and unexposed women.1,8,9More evidence is available on the effect of mater- nal ED on birthweight: with a largely positive association

DOI: 10.1111/j.1471-0528.2012.03467.x

www.bjog.org

Epidemiology

(3)

between maternal anorexia nervosa (AN) (both active and past) and lower offspring mean birthweight compared with women with no history of ED, albeit with marked between-study variability in the magnitude of the estimate, perhaps because of differences in sample size and, hence, power.5,8–10 Inconsistencies might reflect the different populations studied, they might also reflect changed risk over time.

There is still uncertainty about biological mechanisms that might explain the increased risk for adverse perinatal outcomes in women with ED. The most plausible ones include poor weight gain in pregnancy, as well as low pre- conception body mass index (BMI).11 There is good evi- dence that low maternal BMI and poor gestational weight gain are associated with low birthweight and prematurity in the general population.12–14We showed in a UK popula- tion-based study (the Avon Longitudinal Study of Parents and Children—ALSPAC) that low BMI preconception mediated, to a large extent, the risk of women with lifetime AN having lower birthweight babies.10 Gestational weight gain is particularly important because it might be partly responsible for the adverse obstetric outcomes seen in women with ED. Only one study to date has investigated gestational weight gain in a population-based sample find- ing that women with bulimia nervosa (BN) gained more weight compared with women without ED in the first and second trimesters of pregnancy.15Gestational weight gain is a modifiable risk factor if adequately targeted during preg- nancy.

In short, the available evidence suggests that both active and past maternal AN may be associated with a decreased birthweight and that maternal ED might be associated with pregnancy and postnatal complications. Methodological limitations of previous studies, i.e. small and unrepresenta- tive clinical studies, small number of cases identified, low representation of ethnic minorities, highlight the need for replication and extension of findings. Replication is impor- tant given that: 1. heterogeneity of confounding structure for different exposures might be at play, therefore analysing samples with a different confounding structure allows unconfounded estimation of effect sizes; 2. many previous studies were carried out 10 or 20 years ago, analyses or recent data allow exploration of consistency over time as exposure patterns may have changed.

No previous study has investigated trajectories of gesta- tional weight gain in women with lifetime ED.

The aim of this study in a large multi-ethnic population- based cohort was to determine if women with lifetime AN or BN were at higher risk of perinatal complications, and had different patterns of gestational weight gain compared with non-exposed women (and women with psychiatric disorders other than ED, to determine the specificity of effect of maternal ED on perinatal outcomes), to replicate

existing findings in a sample with a different confounding structure compared with previous samples and extend them. We also sought to understand whether maternal underweight in women with ED was associated with low birthweight in the offspring.

Methods

Study design

Generation R is a prospective general population cohort study based in Rotterdam, the Netherlands at the Erasmus Medical Centre. Generation R was designed to identify early life risk factors for health and determinants of prena- tal and postnatal growth in a multi-ethnic sample.16

Study population

All pregnant women living in the Rotterdam area were eli- gible for enrolment if they had a delivery date between April 2002 and January 2006. The study aimed to enrol women at the early stages of pregnancy (i.e. before 18 weeks of gestation); but enrolment was possible until the birth of the child. Estimated participation rate was approximately 61% of all liveborn children and parents liv- ing in the area at the time of recruitment. Characteristics of the overall sample and details about recruitment are given elsewhere.16

In total, 8880 women were recruited in pregnancy. Eligi- ble for the present study were mothers enrolled during pregnancy, who gave birth to a live baby (104 had a fetal death) and gave consent for postnatal participation (6493 women, 74.6%).

Data on the exposure of interest (lifetime psychiatric dis- orders) were missing for 1176 women (18.1%); these women were therefore excluded from the current study, leaving 5317 women for analyses. Of these 5317 pregnan- cies, 61 were multiple births. Hence the final sample for this study comprised 5256 women and their babies.

Outcomes

Perinatal complications

These were obtained prospectively from midwifery and hospital registers and linked to the study participants (unless specified below), or via questionnaires administered to participating women.

Perinatal complications were grouped as:

1Pregnancy complications:

• Gestational diabetes (diagnosed according to Dutch obstetric guidelines, i.e. a random glucose level of

‡11.1 mmol/l or a fasting glucose level of >7.0 mmol/l in the absence of a pre-existing diabetes diagnosis)

• Pre-eclampsia, pregnancy-induced hypertension and HELLP (haemolysis, elevated liver enzymes, low platelet

(4)

count) syndrome (defined according to the criteria given by the International Society for the Study of Hypertension in pregnancy17).

• Hospitalisation during pregnancy for >24 hours during the first two trimesters of pregnancy (obtained by question- naire at 30 weeks of gestation)

Suspected fetal distress (diagnosed on the basis of a pH < 7.2 on a fetal blood sample or an abnormal cardio- tocogram).18

2Delivery complications:

•Type of delivery; divided into five categories: spontaneous vaginal; instrumental (including forceps, vacuum extrac- tion); elective caesarean section; emergency caesarean sec- tion; other: caesarean unknown and breech.

3Postnatal complications:

•Apgar score at 5 minutes: this was dichotomised into <7 or‡7.

• Hospital admission: 2 months postpartum women were asked by questionnaire whether the baby had been hospita- lised in the first week after delivery.

Birth outcomes

These included: birthweight obtained from obstetric records (recorded in grams); small-for-gestational-age (SGA) determined using z-scores of birthweight adjusted for gestational age (a z-score <)2 SD was considered indic- ative of SGA); premature birth: defined as <37 weeks of gestation. Gestational age was obtained by fetal ultrasound examination at the first face-to-face examination. All preg- nancies were dated using pregnancy dating curves that were derived using women for whom ultrasound examinations at <25 weeks of gestation and reliable information on last menstrual period were available.19

Gestational weight gain

Objective weight and height were obtained from face-to- face assessments at three time-points in pregnancy: early, mid- and late pregnancy. The medians (95% range) of ges- tational age for the pregnancy measurements were 12.6 (9.6–16.9) weeks, 20.4 (18.6–22.5) weeks and 30.2 (28.5–

32.5) weeks, respectively. Women were measured lightly clothed without shoes to obtain weight (kg) and height (cm).

Exposure

Exposure was determined using data from a pregnancy questionnaire completed by the women at about 20 weeks of gestation. Women were asked whether they had suffered (ever and in the previous year) from a list of psychiatric disorders. For each specific disorder, a vignette was given clarifying with an example what was meant (available on request). All women were asked about having suffered from either AN or BN (ever and in the previous year): 112

women (2.1%) reported having ever suffered from AN, and 17 (0.3%) in the last year; 160 (3.0%) reported having ever suffered from BN and 49 (0.9%) in the last year; 93 (1.8%) reported having suffered from both ED (AN + BN) ever and seven (0.1%) in the last year. As there is evidence that this latter group might have a higher degree of ED severity, it was left as a separate exposure category.10 Given the rela- tively small number of women who reported an ED in the previous year, women with singleton births were grouped according to history of ED: lifetime AN (n= 129); lifetime BN (n= 209); lifetime AN + BN (n= 100). A Dutch sub- sample drawn from the overall Generation R sample (n= 928 women) was administered the Composite Interna- tional Diagnostic Interview (CIDI)20 to diagnose lifetime and current mental health disorders. Although a small number of women received a lifetime diagnosis of ED (8, 0.9% of AN; 17, 1.8% of BN), self-reported lifetime AN had a sensitivity of 100% and specificity of 96%; self- reported BN had a sensitivity of 94% and specificity of 81%.

We also identified women who, in the same question- naire, reported having ever suffered from at least one of these disorders: depression, anxiety, psychosis and manic episodes but no ED. This group ‘other psychiatric disor- ders’ comprised 1002 women (19.1%).

The remaining women formed the unexposed group (n= 3816, 72.6%).

Covariates

Information on women’s age, educational level, ethnicity, prepregnancy weight and height, and parity was obtained by questionnaire at enrolment. Educational level, defined as the highest schooling level attained, was divided into three categories: no education or primary only, secondary educa- tion, university degree or higher. Ethnicity was categorised as: Caucasian (to include Dutch or Western origin), non- Caucasian (which included Indonesian, Asian, Afro-Carib- bean [Dutch Antilles, Suriname, African, Cape Verdian], Turkish, Middle Eastern and others). Parity was dichoto- mised as: primiparae versus multiparae. Family income was obtained at 30 weeks of gestation by questionnaire; and defined as net household monthly income categorised as:

<1200€ (below social security level); 1200–2000€ and

>2000€(above national modal income).

Prepregnancy BMI was derived from self-reported weight (in kg) and height (in m) from the enrolment questionnaire (correlation between self-reported weight prepregnancy and weight measured at enrolment was 0.97;P< 0.01).

Information about smoking habits during the index pregnancy was obtained by postal questionnaires adminis- tered in the first, second and third trimester of pregnancy.

This was collapsed to generate a summary variable categor- ised as: no smoker, ex-smoker (quit when woman knew

Perinatal outcomes in women with eating disorders

(5)

about the pregnancy), continued to smoke during preg- nancy.

Alcohol use was obtained by postal questionnaires in pregnancy as for smoking21 and the information was col- lapsed to generate a summary variable categorised as: no alcohol use, woman quit when she knew about the preg- nancy, continued to drink during pregnancy.

Statistical analyses

Associations between history of ED and covariates were assessed using the chi-square test or the F test depending on the nature of the variable.

Normality assumptions were checked for all continuous outcome variables and, if these were met (possibly after appropriate transformation), mean and standard deviations (SD) were used for group comparisons, with linear regres- sion models. Binary and categorical outcomes were analy- sed using logistic regression. All effects were also controlled for potential confounders, namely maternal age, parity, ethnicity, maternal education, smoking and alcohol use in pregnancy.

Reported results refer to women with complete data on the outcomes and the relevant confounders. Because of concerns regarding the pattern of missing outcome data (see Supplementary material, Appendix S1), the reported adjusted results include variables predictive of ‘missingness’

to deal with possible selection biases (see Supplementary information for details on attrition).

Longitudinal data analyses

Multilevel modelling of hierarchical data was used for the analysis of gestational weight gain during pregnancy while accounting for the correlations among the repeated obser- vations for the same woman.22 The main purpose was to study whether weight gain trajectories over time—modelled in terms of initial size and rate of change between observa- tions—were influenced by the exposure. Results obtained by additionally adjusting for maternal age, parity and smoking in pregnancy were compared with the unadjusted ones to assess confounding. Estimation was by restricted maximum likelihood and significance testing by Wald and likelihood ratio testing as appropriate.22

All statistical tests presented are two-sided, with a P< 0.05 used to define significance. All analyses were per- formed using STATA 11 (Stata Corp., Texas, USA).23

Results

Sociodemographic characteristics and covariates The distribution of sociodemographic variables and covari- ates across exposure groups is shown in Table 1.

Differences among groups were highlighted in relation to marital status, household income, smoking in pregnancy,

maternal age at enrolment and, as expected, BMI prepre- gnancy (see Table 1).

Perinatal complications

Pregnancy complications overall occurred in similar per- centages in women with ED and unexposed women (15%; see Table 2).

Gestational diabetes was rare across the whole sample (0.8%). Pre-eclampsia, pregnancy-induced hypertension and HELLP syndrome, as well as hospitalisation during pregnancy, occurred in similar percentages in exposed and unexposed women (Table 2). There was borderline evi- dence that women with AN had a 80% higher odds of sus- pected fetal distress relative to unexposed women (OR 1.8;

95% CI 1.0–3.1; P£0.05 after adjustment for confound- ers), but not for the other exposure groups.

Women with lifetime AN + BN had increased odds of being hospitalised during pregnancy (OR 2.7; 95% CI 0.9–

7.6; P= 0.06) in unadjusted and adjusted analyses; with a trend towards statistical significance.

Percentages of spontaneous delivery and postnatal com- plications were comparable across exposure groups before and after adjustment for confounders (see Table 2).

Gestational weight gain

As the distribution of the weight variables was positively skewed, these variables were transformed using a natural base logarithm (ln) in all analyses. Figure 1 shows the observed mean pregnancy weights across the three prenatal visits (in the first, second and third trimesters). This plot suggests a quadratic effect of time on weight so both a lin- ear and quadratic effect of time on log-weight, both a lin- ear and a quadratic term for gestational time (in weeks) were included in the mixed effects model. The model including random coefficients for the intercept and the lin- ear and quadratic term of time was found to best fit the data (likelihood ratio test comparing the more complex model with the chosen one:P< 0.0001).

The results suggest a strong effect of gestational time (regression coefficient of the linear term = 0.005 (95% CI 0.004–0.006), and for the quadratic term = 0.00004 (95%

CI 0.00003–0.00005), indicating an average increase of more than 0.5% in weight per week.

Maternal AN was associated with a lower weight com- pared with unexposed women (regression coefficient:

)0.05; 95% CI )0.08 to )0.1), corresponding to a 5%

lower weight on average. However, there was a positive interaction between maternal lifetime AN and the linear term for gestational time (regression coefficient: 0.0007;

95% CI 0.0002–0.001), corresponding to a 0.07% higher relative increase per week compared with unexposed women. In contrast women with lifetime BN had a higher weight (regression coefficient: 0.05; 95% CI 0.03–0.08); but

(6)

a slower increase over time relative to unexposed women (regression coefficient:)0.0005; 95% CI)0.001 to)0.0001), corresponding to a 0.05% smaller weight gain per week com- pared with unexposed. These differences persisted after adjustment for confounders (Table 3).

In relation to weight gain until the last measurement, women with lifetime AN gained on average 9.1 kg (SD 3.2); those with lifetime BN 8.2 kg (SD 4.0), those with AN + BN 8.2 kg (SD 3.8); unexposed gained 8.3 kg (SD 3.6). There was evidence that women with lifetime AN

gained more weight overall compared with unexposed (even after adjustment for maternal age, parity, education and ethnicity; bcoefficient: 0.8; 95% CI 0.1–1.5;P= 0.02), the other groups had comparable weight gain to unexposed (data not shown).

Birthweight, SGA and prematurity

Mean birthweight was similar across exposure groups (3400 g) (see Supplementary material, Table S1) and comparable in babies of women with lifetime ED (and

Table 1.Characteristics of the study population, by exposure groups

Maternal variables AN lifetime

(n= 129)

BN lifetime (n= 209)

AN + BN lifetime (n= 100)

Other psychiatric (n= 1002)

Unexposed (n= 3816)

Statistic

Maternal ethnicity (%) Caucasian (Dutch, European,

of European origin)

95 (73.6) 147 (70.3) 69 (69.0) 669 (66.8) 2433 (63.8) v2= 9.1 P= 0.06 Non-Caucasian (Indonesian,

Asian, Dutch Antilles, Suriname, African, Cape Verdian, Turkish, other)

33 (25.6) 56 (26.8) 30 (30.0) 311 (31.0) 1265 (33.1)

Missing 1 (0.8) 6 (2.8) 1 (1.0) 22 (2.2) 118 (3.1)

Marital status (%)

Married 50 (38.8) 77 (36.8) 44 (44.0) 436 (43.5) 1,872 (49.1) v2= 30.6

P< 0.0001

Unmarried 77 (59.7) 125 (59.8) 52 (52.0) 531 (53.0) 1,750 (45.9)

Missing 2 (1.5) 7 (3.3) 4 (4.0) 35 (3.5) 194 (5.1)

Maternal education (%)

None or primary only 9 (7.0) 7 (3.3) 9 (9.0) 58 (5.8) 284 (7.4) v2= 14.6

P= 0.06

Secondary 61 (47.3) 88 (42.1) 39 (39.0) 432 (43.1) 1,457 (38.6)

Higher 57 (44.2) 109 (52.1) 50 (50.0) 484 (48.3) 1,889 (49.5)

Missing 2 (1.5) 5 (2.4) 2 (2.0) 28 (2.8) 168 (4.4)

Net household income (%)

<1200€/month 16 (12.4) 26 (12.4) 14 (14.0) 151 (15.1) 507 (13.3) v= 19.6

P= 0.01

1200–2000€/month 28 (21.7) 52 (24.9) 22 (22.0) 249 (24.8) 730 (19.1)

>2000€/month 79 (61.2) 111 (53.1) 50 (50.0) 508 (50.7) 2,107 (55.2)

Missing 6 (4.6) 20 (9.6) 14 (14.0) 94 (9.4) 472 (12.4)

Parity (%)

Primiparae 81 (62.8) 125 (59.8) 60 (60.0) 611 (61.0) 2,204 (57.8) v2= 4.2

P= 0.4

Multiparae 48 (37.2) 82 (39.2) 40 (40.0) 389 (38.8) 1,593 (41.8)

Missing 0 2 (1.0) 0 2 (0.2) 19 (0.5)

Smoking in pregnancy (%)

Never (no smoker) 97 (75.2) 146 (69.9) 70 (70.0) 708 (70.7) 3,044 (79.8) v2= 65.2

P< 0.0001 Quit when knew about

pregnancy (ex-smoker)

9 (7.0) 26 (12.4) 8 (8.0) 77 (7.7) 285 (7.5)

Continued during pregnancy 23 (17.8) 37 (17.7) 22 (22.0) 217 (21.7) 486 (12.7)

Missing 0 0 0 0 1 (0.03%)

Alcohol use in pregnancy (%)

Never 53 (41.1) 77 (36.8) 37 (37.0) 346 (34.5) 1,469 (38.5) v= 5.7

P= 0.7 Quit when knew about pregnancy 17 (13.1) 26 (12.4) 11 (11.0) 126 (12.6) 466 (12.2)

Continued during pregnancy 54 (41.9) 93 (44.5) 46 (46.0) 465 (46.4) 1,660 (43.5)

Missing 5 (3.9) 13 (6.2) 6 (6.0) 65 (6.5) 221 (5.8)

Maternal age, Mean(SD) 30.6 (5.0) 30.5 (5.2) 30.8 (5.1) 31.1 (4.9) 30.4 (4.9) F= 3.5 P= 0.007 Prepregnancy body mass

index, mean (SD)

22.2 (3.5) 24.4(5.4) 22.5 (3.8) 23.5 (4.3) 23.4 (4.0) F= 6.1 P= 0.0001 Perinatal outcomes in women with eating disorders

(7)

babies of women with other psychiatric disorders) and babies of unexposed women.

The prevalence of SGA was low in all exposure groups (between 0.8% and 4%; see Supplementary material, Table S1). There was no evidence that women with life- time ED (or lifetime other psychiatric disorders) had increased odds of having SGA babies relative to unexposed women.

The frequency of premature births was comparable across exposure groups, except for a slightly higher per- centage in women with AN + BN (7.8% versus 4.3% in unexposed women). There was no statistical evidence sup- porting either decreased or increased odds of prematurity for any of the exposure groups.

In an exploratory analysis the birthweight of offspring of women with ED underweight prepregnancy (n= 19) was

Table 2.Pregnancy, delivery and obstetric complications by exposure status: numbers, percentages, crude and adjusted odds ratios (OR) and 95% confidence intervals (95%CI) from logistic regression

AN lifetime (n= 129)

BN lifetime (n= 209)

AN + BN lifetime (n= 100)

Other psychiatric (n= 1002)

Unexposed (n= 3816)

Pregnancy complications

Any pregnancy complications,n(%) 21 (16.3) 33 (15.8) 16 (16.0) 170 (16.0) 530 (14.1)

Crude OR (95% CI) 1.2 (0.7–1.9) 1.1 (0.8–1.7) 1.1 (0.7–2.0) 1.2 (0.9–1.4) 1

Adjusted OR (95% CI) 1.1 (0.7–1.9) 1.2 (0.8–1.7) 1.1 (0.7–2.0) 1.1 (0.9–1.3) 1

Gestational diabetes,****n(%) 0 2 (1) 0 6 (0.6) 32 (0.8)

Pre-eclampsia, pregnancy-induced hypertension, HELLP syndrome,n(%)

8 (6.0) 15 (7.0) 4 (3.9) 75 (7.0) 221 (5.8)

Crude OR (95% CI) 1.0 (0.5–2.1) 1.2 (0.7–2.1) 0.7 (0.2–1.8) 1.2 (0.9–1.6) 1

Adjusted OR (95% CI) 0.9 (0.5–2.0) 1.2 (0.7–2.1) 0.6 (0.2–1.7) 1.2 (0.9–1.5) 1

Hospitalisation during pregnancy,n(%) 2 (1.5) 6 (2.8) 4 (3.9) 21 (2.0) 70 (1.8)

Crude OR (95% CI) 0.8 (0.2–3.2) 1.5 (0.6–3.6) 2.2* (0.8–6.2) 1.1 (0.6–1.7) 1

Adjusted OR (95% CI) 0.8 (0.2–3.4) 1.9 (0.8–4.5) 2.7* (0.9–7.6) 1.0 (0.6–1.7) 1

Suspected fetal distress,n(%) 15 (11.6) 14 (6.7) 9 (9.0) 90 (8.5) 273 (7.3)

Crude OR (95% CI) 1.7** (1.0–3.0) 0.9 (0.5–1.6) 1.3 (0.6–2.6) 1.2 (0.9–1.5) 1

Adjusted OR (95% CI) 1.8** (1.0–3.1) 0.8 (0.4–1.5) 1.2 (0.6–2.5) 1.1 (0.9–1.5) 1

Type of delivery

Spontaneous,n(%) 92 (71.3) 137 (65.5) 67 (67.0) 675 (63.7) 2526 (67.2)

OR 1 1 1 1 1

Instrumental,n(%) 17 (13.2) 20 (9.6) 14 (14.0) 158 (14.9) 509 (13.5)

Crude OR (95% CI) 0.9 (0.5–1.6) 0.7 (0.4–1.2) 1.0 (0.6–1.9) 1.2 (0.9–1.5) 1

Adjusted OR (95% CI) 0.8 (0.4–1.4) 0.6 (0.4–1.1) 1.0 (0.5–1.8) 1.2 (0.9–1.5) 1

Elective caesarean,n(%) 2 (1.5) 10 (4.8) 2 (2.0) 50 (4.7) 175 (4.7)

Crude OR (95% CI) 0.3 (0.1–1.3) 1.1 (0.5–2.0) 0.4 (0.1–1.8) 1.1 (0.7–1.5) 1

Adjusted OR (95% CI) 0.3* (0.1–1.2) 1.0 (0.5–2.0) 0.4 (0.1–1.4) 1.0 (0.7–1.4) 1

Emergency caesarean,n(%) 7 (5.4) 21 (10.0) 4 (4.0) 91 (8.6) 246 (6.5)

Crude OR (95% CI) 0.8 (0.4–1.7) 1.6* (1.0–2.5) 0.6 (0.2–1.7) 1.4** (1.0–1.8) 1

Adjusted OR (95% CI) 0.7 (0.3–1.6) 1.4 (0.8–2.3) 0.6 (0.2–1.7) 1.3*** (1.0–1.6) 1

Caesarean (unknown), Breech, Other,****n(%)

1 (0.8) 0 0 2 (0.2) 10 (0.3)

Postnatal complications

Any postnatal complications,n(%) 14 (10.8) 26 (12.4) 9 (9) 151 (14.2) 498 (13.2)

Crude OR (95% CI) 0.8 (0.4–1.4) 0.9 (0.6–1.4) 0.6 (0.3–1.3) 1.1 (0.9–1.3) 1

Adjusted OR (95% CI) 0.7 (0.4–1.3) 0.9 (0.6–1.3) 0.6 (0.3–1.2) 1.0 (0.8–1.2) 1

Apgar score at 5 minutes (<7),n(%) 2 (1.6) 2 (1) 0 8 (0.8) 36 (0.9)

Crude OR (95% CI) 1.7 (0.4–7.0) 1.0 (0.2–4.3) 0.8 (0.4–1.8) 1

Adjusted OR (95% CI) 1.7 (0.3–7.1) 0.1 (0.2–4.1) 0.7 (0.3–1.6) 1

Hospital admission of the baby,n(%) 14 (10.8) 25 (12.0) 9 (9) 150 (14.1) 484 (12.9)

Crude OR (95% CI) 0.8 (0.4–1.4) 0.9 (0.6–1.4) 0.7 (0.3–1.3) 1.1 (0.9–1.4) 1

Adjusted OR (95% CI) 0.8 (0.4–1.4) 0.9 (0.6–1.4) 0.6 (0.3–1.3) 1.1 (0.9–1.3) 1

The adjusted OR are adjusted for maternal age, ethnicity, education, parity and alcohol use in pregnancy.

In the logistic regression all groups are compared with the reference group (unexposed); *P£0.1; **P£0.05; ***P< 0.01

****ORs were not calculated for this variable due to small numbers

(8)

compared with that of babies of normal-weight ED women (n= 269). The mean birthweight of babies born to under- weight women with ED was 3275 g (SD 382.8); whereas that of babies born to normal-weight women with ED was 3488 g (SD 566.0). Formal comparisons showed a trend towards a lower birthweight in underweight ED women after adjusting for gestational age, gender of the baby, maternal age, education, ethnicity and parity (regression coefficient)156.6; 95% CI)354.3 to 41.0;P= 0.1).

Discussion

Overall there was little evidence in this general population sample that maternal lifetime ED was associated with increased risk of perinatal, delivery and postnatal complica- tions.

Few differences in pregnancy outcomes were highlighted in women with lifetime ED compared with unexposed:

increased odds of suspected fetal distress in women with lifetime AN; and a trend for a two-fold increase in the odds of being hospitalised in pregnancy for women with lifetime AN + BN.

Women with ED had babies of comparable birthweight to unexposed women.

Evidence of a differential effect of exposure was found with regards to gestational weight gain patterns (Table 3).

Women with lifetime AN had a significantly lower body- weight and gained more during gestation compared with unexposed women. Women with lifetime BN however had a significantly higher body weight, but gained less across time compared with unexposed women.

Previous research on perinatal complications in relation to maternal ED has been inconclusive, with small clinical studies reporting increased risk of perinatal complications and larger general population studies finding no associa- tions. The present study confirms findings from these lar- ger studies in relation to perinatal complications and prematurity. The inconsistencies between clinical and large population-based studies is likely to be caused by three main reasons: (i) smaller clinical studies often sampled women who were likely to be actively ill with ED, therefore possibly more at risk of complications (although also more prone to bias); (ii) to be included in a cohort of pregnant women, those with ED have to be well enough to conceive;

and (iii) the low prevalence of some perinatal complica- tions means that even large population-based studies have limited power to detect differences between exposure groups.

Collective evidence from studies investigating birthweight in relation to maternal AN suggests an association with decreased birthweight.5,8–10We failed to find an association between birthweight (or SGA) and maternal AN in the cur- rent study. Women from Generation R with lifetime AN had a mean prepregnancy BMI within the normal range (at 22.2 kg/m2); albeit lower than unexposed women; this might partly explain differences with our ALSPAC findings (in which women with lifetime AN had a mean prepre- gnancy BMI of 21.3 kg/m2).10 This might be a result of women with lifetime AN in Generation R being long-term weight-recovered or having achieved higher weight gain before planning a pregnancy. It is also possible that antena- tal care for women with mental health problems in general is more adequate in the Netherlands than in the UK or that recognition of mental health disorders by professionals has improved in the 2000s compared with the 1990s, with sub- sequent less impact on childbirth outcomes. Gestational weight gain patterns, which suggest a protective pattern of more weight gain for AN women, might also explain the lack of differences in offspring birthweight.

Mean birthweight was lower in underweight ED women compared with normal-weight women with ED in this sample; however because of sample size and wide confi- dence intervals (crossing 0, which indicates no effect) we cannot be definitive about the effect of maternal under- weight in women with lifetime ED as a risk for lower birth- weight in the offspring in this sample.

There is a scarcity of evidence on gestational weight gain in women with ED. Earlier clinical studies did not find dif- ferences in gestational weight gain in women with ED and

62646668707274767880

Weight

1 2 3

Visit

Unexposed Lifetime AN

Lifetime BN Lifetime AN + BN

Lifetime other psychiatric

Figure 1.Mean gestational weight trajectories across exposure groups.

Perinatal outcomes in women with eating disorders

(9)

controls.1,4The only large study to date to investigate gesta- tional weight gain found that women with BN gained more weight at each trimester compared with unexposed women;

they were also more likely to gain weight ‘excessively’

(according to the Institute of Medicine definition) com- pared with unexposed women.15This contrasts with findings presented here that women with lifetime BN have a higher weight during pregnancy but gain less weight over time compared with unexposed women. Discrepancies might be a result of differences in case definition (lifetime disorder ver- sus disorder in the 6 months before the pregnancy) and a less accurate weight measurement (self-report in the Siega- Riz study versus objective weight in this study).15

In the Siega-Riz study15 women with AN had a lower risk of gaining an inadequate amount of weight compared with non-ED women; our study confirms and extends this finding using more accurate weight data (based on objec- tive weight measurements in each trimester) and focusing on trajectories rather than absolute weight gain. This is the first study to model gestational weight gain trajectories over pregnancy in women with lifetime ED. Future work should aim to determine what might cause higher gestational weight gain in women with lifetime ED, given the different components of gestational weight gain, i.e. fat and intravas- cular and extravascular fluids.

This study has several strengths but also some limita- tions. Its main strength is the use of a population-based, multi-ethnic cohort of pregnant women. The exposures under investigation are not common, therefore a cohort study is best suited to investigate their effect. Although the available numbers (especially for the smallest exposure group) precluded accurate examination of rare outcomes;

the study was powered to detect a doubling in the preva- lence of common outcomes (‡10%) in exposed versus unexposed women. Generation R is well suited to extend previous findings in the field, given that most previous studies relied on largely white samples, mostly of high socio-economic status.

Another important strength is the availability of objec- tively measured outcomes (pregnancy maternal weight and obstetric outcomes). Hence, these are unlikely to have been affected by information bias. If any misclassification of out- come has occurred this is likely to have been random (non-differential). In contrast, clinical studies have mostly relied on self-reported or retrospective ascertainment of outcomes and self-reported weight and height.

The main limitation of this study relates to ascertainment of exposure, obtained by self-report. However, validation of self-reported ED in a sub-sample of Generation R women yielded excellent sensitivity and specificity of self-report for

Table 3.Mixed effects models of gestational weight gain

Natural base log-transformed gestational weight

Unadjustedbcoefficients (95% CI) Adjusted bcoefficients (95% CI)

AN lifetime (n= 129) )0.05** ()0.08 to)0.1) )0.05** ()0.09 to)0.02)

BN lifetime (n= 209) 0.05*** (0.03–0.08) 0.05*** (0.02–0.08)

AN + BN lifetime (n= 100) )0.02 ()0.06 to 0.02) )0.03 ()0.06 to 0.01)

Other psychiatric lifetime (n= 1002) 0.008 ()0.1 to0.02) 0.006 ()0.007 to 0.02)

Unexposed (n= 3816) Ref. Ref.

Linear term for time (in gestational weeks) 0.005*** (0.004–0.006) 0.005*** (0.004–0.006)

Quadratic term for time 0.00004*** (0.00003–00005) 0.00004*** (0.00003–00005)

Interaction terms

AN lifetime·time 0.0007** (0.0002–0.001) 0.0007** (0.0001–0.001)

BN lifetime·time )0.0005* ()0.001 to)0.0001) )0.0005* ()0.001 to)0.0001)

AN + BN lifetime·time )0.0001 ()0.0008 to 0.0005) 0.00003 ()0.0006 to 0.0006)

Other psychiatric·time )0.0001 ()0.0003 to 0,0001) )0.00006 ()0.0003 to 0,0001)

Random effects Estimate (SE) Estimate (SE)

Standard deviation of Random slope 0.002 (0.00004) 0.002 (0.00004)

Standard deviation of Random intercept 0.20 (0.002) 0.19 (0.002)

Level 2 correlation coefficients )0.63 (0.01) )0.63 (0.01)

Level 1 residual standard deviation 0.02 (0.0002) 0.02 (0.0002)

SE, standard error; 95% CI, 95% confidence intervals.

*P£0.05;**P£0.01; ***P£0.0001 for comparisons between exposed groups and unexposed.

 Adjusted for maternal age, education, parity and ethnicity and smoking in pregnancy.

(10)

lifetime AN and very good sensitivity and specificity for self-reported BN. Previous evidence has highlighted similar results for the diagnostic properties of self-reported ED.24 Moreover, the prevalence of self-reported lifetime ED in this cohort is well within known prevalence figures25and consis- tent with previous cohort studies of pregnant women.10It is also possible that a proportion of women classified as hav- ing had lifetime AN or BN might have suffered from an

‘ED not otherwise specified’ or a milder ED compared with clinical samples. As such, this sample is representative of women with ED who get pregnant.

Third, another limitation of the current study is lack of power to detect differences in rare outcomes between the various exposure groups. Despite the large size, we did not have enough power to detect differences for rare/uncom- mon outcomes between ED women and unexposed women. In fact, weak associations between maternal ED and some perinatal outcomes might be a result of lack of power to detect such small differences.

Conclusion

In summary, pregnancy and postnatal complications of the offspring were broadly speaking as common in women with lifetime ED as in unexposed women, although failure to find differences might be compounded by low preva- lence of specific outcomes.

Women with lifetime AN gained more weight across pregnancy; whereas women with lifetime BN gained less weight across pregnancy compared with unexposed women.

These weight gain patterns might be appropriate and pro- tective considering prepregnancy weight across these two groups. The fact that birthweights were comparable with those of babies of unexposed women corroborates this hypothesis.

At a public health level it will be important to confirm whether all women with ED gain adequate weight in preg- nancy, and, if not, which preventable risk factors predict poor gestational weight gain in this group of women.

Disclosure of interest None.

Contribution to authorship

NM had the original idea for this study, analysed data and wrote this manuscript. HT provided supervision and advice on data available, data analyses and interpretation of results. BDS and ISS provided supervision and guidance on data analyses and interpretation of results. JSD contributed to data cleaning and preparation. HT, BDS, ISS, PWJ, VWVJ, EAPS, AH and FCV contributed to the write-up of the study and revised the article critically.

Details of ethics approval

Ethical approval for the main study was given by the Medi- cal Ethical Committee of the Erasmus Medical Centre in Rotterdam (MEC 198.782/2001/31). Further ethical approval for the secondary data analyses was given by the London School of Hygiene and Tropical Medicine ethical committee. Written consent was obtained from all partici- pating mothers.

Funding

This work is produced by Dr Nadia Micali under the terms of a Clinician Scientist Award issued by the National Insti- tute for Health Research. The views expressed in this publi- cation are those of the author(s) and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health. The general design of the Gen- eration R Study was made possible by financial support from the Erasmus Medical Centre, Rotterdam, the Erasmus University Rotterdam, the Dutch Ministry of Health, Wel- fare and Sport, and the Netherlands Organisation for Health Research and Development (ZonMw). Additional support was received by a grant from ZonMw (no.10.000.1003). The work of HT is supported by a NWO-ZonMW VIDI grant (no. 017.106.370).

Acknowledgements

We are grateful to all the women who participated in the Generation R study. This study was submitted as a disserta- tion for completion of a MSc in Epidemiology at the Lon- don School of Hygiene and Tropical Medicine.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Table S1. Mean birthweight, small-for-gestational-age and prematurity, across exposure groups.

Appendix S1.Missing data patterns.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author.j

References

1Koubaa S, Hallstrom T, Lindholm C, Hirschberg AL. Pregnancy and neonatal outcomes in women with eating disorders.Obstet Gynecol 2005;105:255–60.

2Lacey JH, Smith G. Bulimia nervosa. The impact of pregnancy on mother and baby.Br J Psychiatry1987;150:777–81.

3Morgan JF. Eating disorders and reproduction. Aust N Z J Obstet Gynaecol1999;39:167–73.

Perinatal outcomes in women with eating disorders

(11)

4Mitchell JE, Seim HC, Glotter D, Soll EA, Pyle RL. A retrospective study of pregnancy in bulimia nervosa. Int J Eat Disord 1991;

10:209–14.

5Sollid CP, Wisborg K, Hjort J, Secher NJ. Eating disorder that was diagnosed before pregnancy and pregnancy outcome.Am J Obstet Gynecol2004;190:206–10.

6Morgan JF, Lacey JH, Chung E. Risk of postnatal depression, miscar- riage, and preterm birth in bulimia nervosa: retrospective controlled study.Psychosom Med2006;68:487–92.

7Bulik CM, Sullivan PF, Fear JL, Pickering A, Dawn A, McCullin M.

Fertility and reproduction in women with anorexia nervosa: a con- trolled study.J Clin Psychiatry1999;60:130.

8Ekeus C, Lindberg L, Lindblad F, Hjern A. Birth outcomes and preg- nancy complications in women with a history of anorexia nervosa.

BJOG2006;113:925–9.

9Bulik CM, Holle AV, Siega-Riz AM, Torgersen L, Lie KK, Hamer R, et al. Birth outcomes in women with eating disordres in the Norwe- gian Mother and Child Cohort Study (MoBa). Int J Eat Disord 2009;41:9–18.

10Micali N, Simonoff E, Treasure J. Risk of major adverse perinatal out- comes in women with eating disorders. Br J Psychiatry 2007;

190:255–9.

11Micali N, Treasure J. Biological effects of a maternal ED on preg- nancy and foetal development: a review. Eur Eat Disord Rev 2009;17:448–54.

12Han Z, Mulla S, Beyene J, Liao G, McDonald SD. Maternal under- weight and the risk of preterm birth and low birth weight: a system- atic review and meta-analyses.Int J Epidemiol2011;40:65–101.

13Carmichael SL, Abrams B. A critical review of the relationship between gestational weight gain and preterm delivery.Obstet Gyne- col1997;89:865–73.

14Dodd JM, Grivell RM, Nguyen AM, Chan A, Robinson JS. Maternal and perinatal health outcomes by body mass index category.Aust N Z J Obstet Gynaecol2011;51:136–40.

15Siega-Riz AM, Von Holle A, Haugen M, Meltzer HM, Hamer R, Torgersen L, et al. Gestational weight gain of women with eating

disorders in the Norwegian pregnancy cohort.Int J Eat Disord2011;

44:428–34.

16Jaddoe VW, van Duijn CM, van der Heijden AJ, Mackenbach JP, Moll HA, Steegers EA, et al. The Generation R Study: design and cohort update until the age of 4 years. Eur J Epidemiol 2008;

23:801–11.

17Brown MA, Lindheimer MD, de Swiet M, Van Assche A, Moutquin JM. The classification and diagnosis of the hypertensive disorders of pregnancy: statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertens Pregnancy 2001;

20:IX–XIV.

18Blom EA, Jansen PW, Verhulst FC, Hofman A, Raat H, Jaddoe VW, et al. Perinatal complications increase the risk of postpartum depres- sion. The Generation R Study.BJOG2010;117:1390–8.

19Verburg BO, Steegers EA, De Ridder M, Snijders RJ, Smith E, Hof- man A, et al. New charts for ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population- based cohort study.Ultrasound Obstet Gynecol2008;31:388–96.

20WHO. Composite International Diagnostic Interview (CIDI): a) CIDI- interview (version 1.0), b) CIDI-user manual, c) CIDI-training manual d) CIDI-computer programs. Geneva: World Health Organization, 1990.

21Jaddoe VW, Mackenbach JP, Moll HA, Steegers EA, Tiemeier H, Ver- hulst FC, et al. The Generation R Study: design and cohort profile.

Eur J Epidemiol2006;21:475–84.

22Rabe-Hesketh SS, Skrondal A.Multilevel and Longitudinal Modeling Using Stata, 2nd edn. College Station, TX: StataCorp LP, 2008.

23StataCorp. Stata Statistical Software: Release 11. College Station, TX: StataCorp LP, 2009.

24Keski-Rahkonen A, Sihvola E, Raevuori A, Kaukoranta J, Bulik CM, Hoek HW, et al. Reliability of self-reported eating disorders: optimiz- ing population screening.Int J Eat Disord2006;39:754–62.

25Hoek HW, van Hoeken D. Review of the prevalence and incidence of eating disorders.Int J Eat Disord2003;34:383–96.

Références

Documents relatifs

There is also a large number of clinical studies dealing with the perinatal period in the context of migration, yet the psychological factors which are

Estimating drinking-water ingestion and dermal contact with water in a French population of pregnant women: the EDDS cohort study.. Marion Albouy-Llaty 1,2 , Antoine Dupuis 1,2 ,

In addition to the purely medical terms, emergency medicine requires logistics (having the right equipment and the right medical staff at the right time and the right

Rate of maternal-fetal transmission of Zika virus (amniotic fluid, fetal and neonatal blood, urine, cerebrospinal fluid, and placentas); clinical, biological, and

Based on SCORE and adhering to a maximum of five variables displayed in the CVD risk chart, we used data from NHANES III to compare the traditional prediction model with models

They are also associated with preterm labor and birth, longer labor, increased perception of labor pain and discomfort, and higher cesarean rates (Chang et al., 2010; Nodine

Clinical di ff erences, maternal risk factors and pregnancy outcomes of deliveries complicated by early- (de-livery &lt; 34 weeks) and late-onset (delivery ≥ 34 weeks)

Hence, we inquired about low sexual desire (hypoactive sexual disorder, aversion), sexual arousal disorder, orgasmic disorder, and sexual pain disorder (dyspareunia, vaginismus)..